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Abstract: A study of the adsorption features of bovine serum albumin (BSA), sodium and potassium
cations, and vitamin B1 by porous aluminosilicates with different structures in a medium simulating
blood plasma was conducted. The objects of this study were synthetic silicates with a montmorillonite
structure Na2x(Al2(1-x),Mg2x)Si4O10(OH)2·nH2O (x = 0.5, 0.9, 1), aluminosilicates of the kaolinite
subgroup Al2Si2O5(OH)4 with different particle morphologies (spherical, nanosponge, nanotubular,
and platy), as well as framed silicates (Beta zeolite). An assessment of the possibility of using
aluminosilicates as hemosorbents for extracorporeal blood purification was carried out. For this
purpose, the sorption capacity of the samples both with respect to model medium molecular weight
toxicants (BSA) and natural blood components—vitamins and alkaline cations—was investigated. The
samples were also studied by X-ray diffraction, electron microscopy, and low-temperature nitrogen
adsorption. The zeta potential of the sample’s surfaces and the distribution of active centers on their
surfaces by the method of adsorption of acid-base indicators were determined. A hemolytic test was
used to determine the ability of the studied samples to damage the membranes of eukaryotic cells.
Langmuir, Freundlich, and Temkin models were used to describe the experimental BSA adsorption
isotherms. To process the kinetic data, pseudo-first-order and pseudo-second-order adsorption
models were used. It was found that porous aluminosilicates have a high sorption capacity for
medium molecular weight pathogens (up to 12 times that of activated charcoal for some samples) and
low toxicity to blood cells. Based on the obtained results, conclusions were made about the prospects
for the development of new selective non-toxic hemosorbents based on synthetic aluminosilicates
with a given set of properties.

Keywords: aluminosilicates; kaolinite; montmorillonite; zeolites; hemosorbents; adsorption; albumin;
vitamins; hemolytic activity; body fluid

1. Introduction

In recent years, more and more attention has been paid to studying the features of
the adsorption of protein molecules from model solutions on the surface of sorbents of
various natures, in particular, on the surface of clay minerals [1–6]. Interest in such research
is related to the possibility of exploring the prospects for using clay minerals to remove
proteins from wine, as well as the performance of membranes for protein separation,
biosensors, or protein therapy platforms [2,7,8]. In addition, the relevance of these studies
is associated with the need to develop biospecific sorbents for the selective adsorption of
toxic substances of protein origin that accumulate in the body during oncological, immune,
infectious, and other diseases [9,10].

Hemosorption is the most promising method of performing the sorption detoxification
of the body [11–13]. Such sorption therapy is based on the adsorption ability of materials to re-
move toxic substances of various natures from the blood. The first and most common sorbents
were materials based on activated carbon. Such materials are capable of removing a variety
of toxic molecules-exotoxins (poisons), cytokines, anti-inflammatory mediators, products of
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a bacterial nature, as well as those arising from cell breakdown [14–17]. However, activated
charcoal-based materials have disadvantages, as in the process of hemosorption, there is a
partial traumatization and death of blood cells. In addition, in the process of hemosorption on
carbon sorbents, along with pathological components, a part of physiologically significant
metabolites is removed. In this regard, a promising direction is the development of sorption
technologies based on biospecific (selective) hemosorption.

There are a significant number of hemosorbents on the market, but none of them
currently fully meet all the requirements for such materials, namely having a high sorption
capacity with respect to toxins and metabolites, hemocompatibility, selectivity, and the
ability to withstand certain sterilization methods without losing basic properties. The
high sorption capacity of a number of inorganic adsorbents has great potential for medical
use, however, according to some researchers, inorganic matrices, which usually mean
natural porous minerals—clays, zeolites, etc.—are inferior to other adsorbents (activated
carbon, synthetic and natural organic polymers) in terms of biocompatibility [18–20]. This
problem can be solved by using synthetic inorganic matrices with the following desired
characteristics: high sorption characteristics and hemocompatibility due to the absence
of impurity phases, controlled chemical and dispersion composition, as well as a certain
particle morphology and specified porosity in a wide range (from nano- to macro- and
mesopores), which allows the adsorption of biological molecules of different sizes.

Medical sorbents must meet certain requirements—a high degree of chemical purity,
a minimum content of impurities, a smooth surface relief, a high sorption capacity for
removed substances, and the presence of hemocompatibility [21,22]. Under the conditions
of directed hydrothermal synthesis, the porous aluminosilicates of various structures can be
obtained with specified characteristics, such as a certain phase and chemical composition,
given particle size and morphology, as well as porous textural and sorption characteristics.
Preliminary studies of the cytotoxicity and hemolytic activity of synthetic samples of
aluminosilicates showed that they do not have the toxicity that is characteristic of natural
minerals, which indicates that it is promising to study the possibility of their use as medical
sorbents [23,24].

The present work presents the results of a study of porous textural properties, surface
properties, hemolytic activity, as well as the features of adsorption by synthetic porous
aluminosilicate sorbents with different porosities and particle morphologies from a medium
simulating blood plasma, bovine serum albumin, sodium and potassium cations, as well as
vitamin B1. Framework aluminosilicates (zeolites), layered silicates with montmorillonite
structure, as well as layered silicates of the kaolinite subgroup with spherical, sponge, and
platy morphologies were selected as objects for this study.

Bovine serum albumin (BSA) is a water-soluble globular protein (with an approximate
molecular size of 9 nm × 8 nm × 6 nm.) [25,26], which is part of the blood serum and blood
cytoplasm of animals and plants. Albumin refers to proteins with an average molecular
weight of 67–69 kDa. BSA is often used to understand the adsorption mechanism of
proteins at solid/liquid interfaces. In this study, BSA acts as a marker of medium molecular
weight proteins. It is known that pathogenic compounds formed in the body during
oncological, immune, infectious, and other diseases belong to proteins of medium molecular
weight [1,27]. The adsorption of albumin by clay minerals has been widely studied [1–6,28],
especially with regard to biosensors. Since the value of the isoelectric point of albumin is 5,
most studies were carried out with solutions having acidic pH values (4.5) and sometimes at
elevated temperatures. At the same time, the requirements for hemosorbents impose certain
requirements on the experiments being carried out—the pH values must correspond to the
pH of the blood plasma (neutral) and the temperature of the study should not exceed 37 ◦C.
To replicate the conditions of hemosorption as accurately as possible, in this work, studies
of the adsorption process were carried out at room temperature at neutral pH, from the
medium of a synthetic biological fluid, prepared in accordance with the chemical analysis
of human body fluids, with ion concentrations nearly equal to those of the inorganic
components of human blood plasma [29,30]. Alkaline cations and vitamins, the adsorption
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of which was also considered in this work, are essential microelements that are part of
the blood and affect the state of the cardiovascular and other human systems. Sodium,
potassium, calcium, and magnesium play a central role in the normal regulation of blood
pressure [31]. A marked reduction in sodium and potassium intake is effective, even in
treating severe hypertension. Thiamin, or vitamin B1, is an essential water-soluble vitamin
that acts as a coenzyme in carbohydrate and branched-chain amino acid metabolism [32].
Therefore, the loss of mineral substances during the process of hardware blood purification
in the process of hemosorption is extremely undesirable.

The results of the study of the adsorption capacity of synthetic aluminosilicate samples
with different porosity (for example, the maximum diameter of zeolite cavities does not
exceed 1 nm; and montmorillonites have the ability to change the interlayer distance over a
wide range—from 1 Å to complete exfoliation into individual layers) and with different
surface properties, this will allow us to evaluate the possibility of developing universal
and selective sorbents for carrying out the adsorption of substances of different molecular
weights and different molecular sizes.

2. Materials and Methods
2.1. Reagents

The following reagents were used for the synthesis and analysis of the samples:
tetraethoxysilane TEOS ((C2H5O)4Si, special purity grade, ≥99.0%), aluminum nitrate
Al(NO3)3·9H2O (reagent grade, ≥97.0%), magnesium nitrate Mg(NO3)2·6H2O (reagent
grade), nitric acid HNO3 (reagent grade, 65 wt%), aqueous ammonia (25 wt% NH3), ethanol
C2H5OH (96 wt%), hydrochloric acid HCl (35–38 wt%), sodium hydroxide solution (50 wt%
in water), raw halloysite nanotubes (Sigma-Aldrich, Product of Applied Minerals, USA),
potassium hydroxide (KOH, 45% aqueous solution), silica sol (LUDOX HS_40, 40%), alu-
minum sulfate (Al2(SO4)3·18H2O, ≥98%), tetraethylammonium hydroxide ((C2H5)4NOH,
35% aqueous solution, Sigma), activated charcoal (MW 12.01 g/mol, Fluka Analytical),
bovine serum albumin (lyophilized pH~7, Biowest), and vitamin B1 (Thiamine hydrochlo-
ride, reagent grade ≥ 99%, Hubei Maxpharm Industries).

Simulated body fluid (SBF) was prepared according to the procedure in [25] using the
following reagents: NaCl (98%, NevaReactiv), NaHCO3 (99.5%), KCl (NevaReactiv, 99%),
Na2HPO4·2H2O (98%, Chimmed), MgCl2·6H2O (98%, NevaReactiv), CaCl2·2H2O (98%,
NavaReactiv), and (CH2OH)3CNH2 (Trizma base, Sigma, MW127.14 g/mol). Solutions
were prepared in deionized water (Vodolei, NPP Khimelektronika, Russia) with a specific
conductivity no higher than 0.2 µS/cm.

2.2. Synthesis of Aluminosilicates

Porous aluminosilicates of various structural types and with different particle mor-
phologies were chosen as the objects of this study. All studied aluminosilicates were
synthetic, with the exception of halloysite nanotubes. The main characteristics of the
samples, their chemical formulas, and structural types are given in Table 1.

Samples with a montmorillonite structure corresponding to the ideal chemical for-
mula Na2x(Al2(1-x),Mg2x)Si4O10(OH)2·nH2O with various degrees of isomorphic substi-
tution magnesium atoms in octahedral layers were chosen as objects of this study: with
x = 1 (Mg3Si4O10(OH)2·nH2O), x = 0.9 (Na1.8Al0.2Mg1.8Si4O10(OH)2·H2O), and x = 0.5
(Na1.0Al1.0Mg1.0Si4O10(OH)2·nH2O). Samples corresponding to the Al2Si2O5(OH)4 kaoli-
nite formula were synthesized under conditions that made it possible to obtain various
particle morphologies—spherical, sponge, and platy. In addition, the sorption and physico-
chemical properties of the samples were compared with the results of a study of natural
halloysite Al2Si2O5(OH)4.·nH2O with nanotubular morphology. The zeolite of the struc-
tural type Beta was also studied as an object of this study.

The synthesis of all samples was carried out under hydrothermal conditions according
to previously developed methods [23,33–37]. The resulting product was washed with
water and dried. For zeolite samples, an additional decationization procedure was carried
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out, that is, the removal of alkaline cations K+ and Na+ localized in large cavities. Sample
decationization was carried out by the triple treatment of zeolites with an ammonium
salt solution followed by drying at 120 ◦C and the decomposition of the ammonium ion
NH4+ at 600 ◦C for 1 h. In addition, the initial zeolite was preliminarily calcined for 2 h
at a temperature of 350 ◦C in order to remove the adsorbed water and residues of organic
molecules (tetraethylammonium) from the pores of the zeolite.

Table 1. Main characteristics of the studied samples.

Samples
Designa-

tion

Mineralogical
Name

Structural
Type

Chemical
Formula

(by Synthesis)

Particles
Morphol-

ogy

Synthesis
Conditions Content, wt%

T, ◦C t, h SiO2 Al2O3 MgO Loss on
Ignition, % Additionally.

MT-Al0 Montmorillonite LS Mg3Si4O10(OH)2
·nH2O layers 250 72 59.39 0 28.63 11.45 -

MT-Al0.2 Montmorillonite LS Na1.8Al0.2Mg1.8
Si4O10(OH)2·H2O layers 350 72 58.10 5.32 18.31 14.75 Na2O 3.52

MT-Al1.0 Montmorillonite LS Na1.0Al1.0Mg1.0
Si4O10(OH)2·nH2O layers 350 72 53.00 22.82 8.04 13.45 Na2O 2.69

Kaol-sph Kaolinite LS Al2Si2O5(OH)4 spheres 220 72 44.74 37.22 0 14.74 -
Kaol-

sponge Kaolinite LS Al2Si2O5(OH)4 nanosponges 220 72 43.77 36.14 0 15.79 -

Kaol-pl Kaolinite LS Al2Si2O5(OH)4 plates 350 96 45.84 39.48 0 14.05 -

Hal Halloysite LS Al2Si2O5(OH)4
·nH2O nanotubes - - 46.22 36.38 0 16.04 -

Beta Zeolite Beta FS H+
7[Al7Si57O128]
·nH2O spheres 135 48 69.38 8.54 0 20.09 Na2O 0.3, K2O

0.2

Designations: LS—layered silicate; FS—framed silicate.

2.3. Characterization

The X-ray phase analysis of the samples was carried out using a powder diffractometer
Rigaku Corporation, SmartLab 3 (CuKα-radiation, operating mode-40 kV/40 mA; semi-
conductor point detector (0D)-linear (1D), θ-θ geometry, measurement range 2ϑ = 5–70◦

(step 2θ = 0.01◦), speed 5◦/min).
The samples were chemically analyzed to gravimetrically determine the Si, Mg, and

Al contents using a quinolate of the silicon molybdenum complex and by complexometric
titration. The sodium and potassium content of the studied samples was determined by
atomic absorption spectroscopy (Thermo scientific iCE 3000, Waltham, MA, USA).

The textural parameters of the materials were determined by means of the low-
temperature adsorption–desorption of nitrogen. The isotherms were collected using a
Quantachrome NOVA 1200e instrument (Quantachrome Instruments, Boynton Beach, FL,
USA). Degassing was performed at 300 ◦C for 12 h. The specific surface area of the sample
was calculated by the BET method [38] using NOVAWin (USA) software. The pore size
distribution and mean pore diameter were calculated by the Barret-Joyner-Halenda (BJH)
method from the desorption curve [39].

The morphology of the samples was studied by scanning electron microscopy (SEM)
by using a Carl Zeiss Merlin instrument (Oberkochen, Germany) with a field emission
cathode. The beam current and accelerating voltage were 2 nA and 21 kV, respectively.
The device was equipped with a two-beam workstation with focused ion and scanning
electron beams, a Carl Zeiss Auriga laser with a field emission cathode, a GEMINI electron
optics column, and an oil-free vacuum system with a beam current range of 400 pA and
an acceleration voltage of 1.5–4 kV. The powders of the samples were directly planted on
conductive carbon tape without additional processing.

The electrokinetic (zeta) potential of the samples was determined using the particle size
and zeta potential analyzer NaniBrook 90 PlusZeta (Brookehaven Instruments Corporation,
USA). The samples were a suspension obtained by dispersing 50 mg of sample in 20 mL of
deionized water. Before the measurements, the suspension was subjected to low power
(50 W) ultrasonication for two minutes on an ultrasonic processor UP50H.

The functional composition of the surface of the samples was studied by the method of
the adsorption of acid-base indicators with different pKa values in the range from −4.4 to
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14.2, undergoing a selective adsorption on the surface of active centers with the correspond-
ing pKa values according to the procedure described in [40]. The content of adsorption
centers was determined from the change in the optical density of the aqueous solutions of
indicators using UV absorption spectroscopy (LEKISS2109UV spectrophotometer).

The adsorption properties of the samples with respect to BSA were studied under
static conditions from BSA solutions in SBF with an albumin concentration of 2.4 g/L.
The experiments were carried out at room temperature (25 ± 1 ◦C), which corresponds
to the conditions of the hemosorption procedure. To a weighed portion of the sorbent
(30 mg), 10 mL of a BSA solution in SBF was added, and the mixture was stirred on a
magnetic stirrer for the time necessary to plot the kinetic curves (from 1 to 30 h). After the
experiment was completed, the sample was centrifuged. The protein concentration in the
supernatant were analyzed with a UV–Vis spectrophotometer (SHIMADZU UV-2600/2700)
at 278 nm. Each point of the kinetic curve was taken as the average of three measurements.
The BSA concentration was determined using UV–Vis absorption spectroscopy (Shimadzu
UV-2600/2700, Shimadzu Europa GmbH) by the optical density at a wavelength of 278 nm.

The capacity of the sorbent, mg/g (the amount of adsorbed substance), was deter-
mined by the following Formula (1):

X= (Ci − Cf) Vs/ ms, (1)

where Ci is the initial concentration of albumin solution, g/L; Cf is the final concentration
after sorption, g/L; Vs is the volume of albumin solution, L; and ms is the weight of the
sorbent sample, g.

To process the kinetic data, pseudo-first-order (PFO) and pseudo-second-order (PSO)
adsorption models [41,42] were used. The kinetic expression for PFO, based on the capaci-
tance of a solid, is written in the following form:

qt = qe

(
1− e−k1t

)
, (2)

where qt and qe are the sorption capacity at time t and in equilibrium (mg/g), and k1 is the
PFO reaction rate constant, min−1

The mathematical expression for the PSO kinetic model is as follows:

qt =
qe

2k2t
1 + qek2t

(3)

where qt and qe are the sorption capacity at time t and in the equilibrium state (mg/g) and
k2 is the PSO rate constant (g/(mg·min)).

The study of the equilibrium adsorption of BSA was carried out at an initial albumin
concentration in the range from 100 to 2400 mg/L. For this, 32 mg of a sorbent sample with
a weighing accuracy of ±0.0002 g was dispersed in 10 mL of BSA solution in SBF with a
given concentration. The experiments were carried out in a static mode in closed glass
bottles with a volume of 20 mL with stirring for the time necessary to achieve adsorption
equilibrium (from 4 to 24 h depending on the structural type of aluminosilicates). The
samples were filtered and the albumin concentration in the filtrate was determined as the
arithmetic mean of three measurements. To establish the patterns of sorption, the equations
of isotherms were calculated according to the most widely used Langmuir, Freundlich, and
Temkin models [43–45]. The parameters of the adsorption equations were calculated by the
method of nonlinear regression using the OriginPro 8 program.

The adsorption capacity of the samples for vitamin B1 was determined under static
conditions at room temperature (25± 1 ◦C). Vitamin B1 solution in SBF (100 mg/L, 10 mL) was
added to 30 mg of the sorbent and stirred on a magnetic stirrer for 1 h. After the experiment
was completed, the sample was centrifuged. The vitamin concentration in the supernatant
was analyzed with a UV–Vis spectrophotometer (Shimadzu UV-2600/2700, Shimadzu Europa
GmbH) at 242 nm. Each concentration was taken as the average of three measurements.
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The content of the sodium and potassium cations (in mmol/L) in the SBF solutions after
contact with sorbent samples for 1 h was determined by atomic absorption spectroscopy
(Thermo scientific iCE 3000, USA). To a weighed portion of the sorbent (30 mg), added
20 mL of SBF was and stirred on a magnetic stirrer for 1 h at room temperature. After
the experiment was completed, the sample was centrifuged. The content of the cations
in the initial SBF solutions corresponded to the reference values of the content of sodium
and potassium cations in human blood plasma and amounted to 142 and 3.43 mmol/L,
respectively. The sorption capacity of the samples (C, mg/g) was determined using the
following formula (1).

A hemolytic test was used to determine the ability of the studied samples to damage
the membranes of eukaryotic cells [46]. Human erythrocytes obtained from the periph-
eral blood of healthy donors by standard procedure [46,47] were used to determine the
hemolytic activity. The studies were carried out according to the previously described
method. [23,34]. The final concentration of aluminosilicate preparations in the incubated
samples was 10 mg/mL and 0.3 mg/mL. The result of the study was presented as a per-
centage of hemolysis corresponding to the content of hemoglobin released from destroyed
erythrocytes after the incubation of a suspension of erythrocytes with the studied samples
of aluminosilicate.

3. Results and Discussion

The X-ray diffraction patterns of samples are shown in Figure 1. The comparison of
the diffraction patterns of the samples with the bar charts of the standards allows us to
conclude that the single-phase samples of specified structures, montmorillonite, kaolinite,
halloysite, and Beta zeolite are used as initial samples. The results of the chemical analysis
of the samples (Table 1) confirm that the samples studied are hydrous aluminosilicates with
different Si/Al ratios.

Figure 2 shows the SEM images of the samples. It is observed that the aluminosilicate
samples are characterized by different particle morphologies. Thus, the main morphology
of the samples with the montmorillonite structure are layers self-organized into larger
micron size agglomerates (Figure 2a–c). According to previous studies [33], the average
particle size of montmorillonite is approximately 20 nm. Samples with a kaolinite structure
were obtained with spherical, platy, and sponge morphologies. Particles with a spherical
morphology have an average diameter of approximately 200–300 nm (Figure 2g). Samples
with a nanosponge morphology are formed by aluminosilicate layers with a thickness of
approximately 24–27 nm which are combined into micron-sized agglomerates (Figure 2f).
Platy particles have a thickness of approximately 100 nm and an average lateral size of
approximately 1 µm (Figure 2d). The raw halloysite has a nanotubular particle shape
(Figure 2e). The nanotubes are approximately 700 nm long and 60 nm in diameter. Zeolite
Beta particles have a spherical morphology with an average diameter of 300 nm (Figure 2h).

Figure 3 shows low-temperature nitrogen adsorption curves for the studied alumi-
nosilicate samples. All curves can be attributed to a type IV isotherm according to the
IUPAC classification. This type of isotherm indicates the presence of both micro- and
mesopores [48]. The hysteresis loops are of different shapes, which is associated with the
different types and shapes of pores in the samples. The shape of the hysteresis curves for
kaolinite samples with a spherical and sponge morphology of particles, tubular halloysite,
samples of montmorillonite, and Beta zeolite can be attributed to the H2 type. This shape of
the hysteresis loop points to complicated partly constricted pore network [49]. The shape
of the hysteresis loop of the kaolinite sample with a platy morphology can be attributed to
the H3 type and indicates the presence of the aggregates of platy particles that form slit-like
pores. The samples differ considerably in their specific surface area (SSA), which increases
from 20 to 676 m2/g depending on the particle morphology (see Table 2). In addition, the
samples differ in the average pore diameter. For example, an average pore diameter of
MT-Al0 sample is 4.4 nm, while that of MT-Al0.2 and MT-Al1.0 montmorillonites is 1.8 and
3.8 nm, respectively. The average pore size of the samples with the structure of kaolinite
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and zeolite Beta is 3.7 nm. For the Beta zeolite, this value most likely characterizes the
secondary porosity, since the average size of the channels and cavities of this zeolite does
not exceed 0.8 nm [50].
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Figure 2. SEM images of the samples: (a)—MT-Al0; (b)—MT-Al0.2; (c)—MT-Al1.0; (d)—Kaol-pl;
(e)—Hal; (f)—Kaol-sponge; (g)—Kaol-sph; and (h)—Beta. Samples are designated in accordance
with the designations presented in Table 1.

Along with the porous textural properties of the sorbents, an important role in the choice
of sorption materials in medicine is played by the chemical nature of their surface, namely
the composition and number of functional groups on the surface. The chemistry of surface
compounds determines the course of donor–acceptor interactions, which significantly affects
the spectrum of absorbed molecules, and consequently, biochemical parameters ([51]).

The distribution of the adsorption sites on the surface of the studied samples as a function
of their pKa values is shown in Figure 4. These results indicate the presence of different types
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of adsorption centers on the surface including a Lewis base (pKa ≤ 0, formed by oxygen
atoms) and acidic (pKa ≥ 14, formed by silicon atoms), Bronsted acidic (0 < pKa < 6), neutral
(pKa~6–8), and basic (8 < pKa < 14) sites corresponding to hydroxyl groups [40].
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Table 2. Properties of the studied samples of aluminosilicates.

Samples SSA a, m2/g ζ (pH 7), mV
Sorption Capacity for

Cations, mg/g
Sorption Capacity

for Vitamin B1,
mg/g

Hemolysis%, at Sample
Concentration

Na+ K+ 10 mg/mL 0.3 mg/mL

MT-Al0 549 −15.1 ± 0.2 0 0 22.4 ± 0.9 5.1 ± 0.9 0.6 ± 0.5
MT-Al0.2 320 −33.3 ± 0.3 3.3 ± 0.9 0.20 ± 0.08 39.9 ± 0.1 58.5 ± 5.9 2.0 ± 1.2
MT-Al1.0 190 −34.1 ± 0.9 4.2 ± 0.5 0.14 ± 003 31.6 ± 0.8 86.9 ± 9.0 14.9 ± 4.6
Kaol-sph 240 −18 ± 0.8 2.7 ± 0.3 0.13 ± 0.02 1.37 ± 0.1 23.1 ± 2.6 3.9 ± 4.6

Kaol-sponge 470 −20 ± 0.6 0 0 23.3 ± 0.2 27.0 ± 7.0 2.3 ± 0.8
Kaol-pl 22 −19 ± 0.9 3.1 ± 0.3 0.12 ± 0.03 0.8 ± 0.2 66.1 ± 1.8 3.8 ± 1.6

Hal 41 −28 ± 0.4 4.3 ± 0.2 0.13 ± 0.03 1.1 ± 0.1 97.5 ± 8.6 25.5 ± 9.5
Beta 676 −32.2 ± 0.6 9.1 ± 0.6 0.19 ± 0.05 29.5 ± 0.7 15.7 ± 1.7 0.9 ± 0.2

Carbon 360 0.6 ± 0.4 0 6.7 ± 0.9 8.7 ± 2.3 0.9 ± 0.2

Designations: SSA—specific surface area (m2/g); ζ (pH 7)—zeta potential of the surface as pH 7, mV, a—relative
error in the specific surface area (SSA) value is 1%.
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An analysis of the surface of the studied samples by the method of adsorption of acid-
base indicators allows us to draw conclusions about the distribution of active centers on the
surface, as well as about the change in the strength and ratio between these centers with a
change in the chemical composition of aluminosilicates and their morphology. Samples
of all compositions contain weakly acidic Brønsted acid sites (BASs) with pKa 5 and BAS
with increased acidity with pKa 2.5. At the same time, the maximum amount of BAS with
pKa 5 is typical for a sample of MT-Al0 and kaolinite with a spherical particle morphology.
Their smallest amount is observed for a kaolinite sample with nanosponge morphology. All
samples are characterized by the presence of Lewis basic sites (LBSs) with pKa-4.4. At the
same time, the number of such sites is at its maximum for the zeolite sample, and somewhat
less for the kaolinite samples with a platy morphology. In other samples, the content of
LBSs with pKa 4.4 is quite low. The kaolinite sample with platy particle morphology is also
characterized by a significant content of LAS with pKa 14.2. The activated carbon sample
is characterized by a high content of active sites with pKa 6.4, corresponding to Brønsted
neutral centers, and a rather low number of active sites with pKa 5. Most aluminosilicate
samples, on the contrary, are characterized by a high number of active centers with pKa
5 and a small number, or even the complete absence, of active sites with pKa 6.4. An
exception is a sample of kaolinite with a spherical morphology of particles and MT-Al0,
which have a large number of active centers with pKa 5 and with pKa 6.4. The MT-Al0
sample is also characterized by a large number of active centers with pKa 8.8. The rest of
the samples have practically no active centers in this region.

Comparison of the obtained data with the results of the chemical analysis of the sam-
ples and the study of the morphology of their particles allows us to conclude that both
the chemical composition and morphology affect the distribution of active centers on the
surface of silicate sorbents. Thus, the MT-Al0 sample studied in this work, which does
not contain aluminum in its composition, but contains magnesium oxide, is characterized
by the largest number of BAS among all samples with pKa 8.8 and 2.5. Samples of alu-
minosilicates of the same chemical composition, but with different particle morphologies,
such as kaolinite with spherical, platy, and sponge morphologies, as well as nanotubular
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halloysite, have a different functional composition of active centers on their surface, which
may be due to the different availability of these centers, as determined by their morphology.
Thus, the largest amount of BAS with pKa 5 in this series of samples is characteristic of
a sample with a spherical particle shape. The sample with a platy morphology has the
highest amount of LAS with pKa 14.2. The sample with nanotubular morphology as a
whole has the smallest number of active centers, however, the amount of LAS with pKa
14.2 in this sample is significant. A comparison of the functional composition of the surface
of the studied samples with activated carbon shows that silicates have more active centers
both in terms of their number and in terms of their diversity.

The results of the study of the zeta potential of the surface of the samples are presented
in Table 2. All the studied samples have a negative surface zeta potential at pH 7, which is
typical for aluminosilicates, and ranges from −25 ± 8 mV. Somewhat more negative values
are typical for the samples of montmorillonite and zeolite (approximately −30 mV) than
for samples of kaolinite—from −18 to −28 mV—depending on the particle morphology.
The least negative surface charge among all the samples is characteristic of the MT-Al0
sample (−15 mV), which is associated with the absence of isomorphic substitutions in the
octahedral magnesium–oxygen layers. The magnitude of the surface charge can make
a significant contribution to the nature of the adsorption of charged molecules. Thus,
aluminosilicates, having a negative surface charge, usually sorb positively charged ions
from aqueous solutions very well (e.g., methylene blue, vitamin B1) [23,52], and sorb
negatively charged ions (e.g., azorubine, 5-fluoracil) [23,53] to a much lesser extent. It is
known that the albumin molecule has a net negative charge at a physiological pH [54],
which can lead to difficulties in the adsorption of albumin by porous aluminosilicates.

Figure 5 shows the kinetic curves of albumin adsorption by the studied samples of
aluminosilicates. The data obtained allow us to conclude that the time to achieve sorption
equilibrium, depending on the sorbent, varies in the range from 4 to 24 h. The shortest time
to achieve sorption equilibrium (1 and 2 h) is characteristic for activated carbon and Beta
zeolite, respectively. It can be seen that the samples of montmorillonite have the highest
sorption capacity with respect to albumin, both with isomorphic substitutions (MT-Al1.0
and MT-Al0.2) and without them (Sap), however, the time to reach adsorption equilibrium
for them is the longest and reaches 20–24 h. Upon contact with albumin for 24 h, the
sorption capacity of the montmorillonite samples reaches 220–250 mg/g. Montmorillonite
MT-Al1.0 has the highest sorption capacity. For 24 h of contact, the sorption capacity
of MT-Al1.0 reaches 256 mg/g, which is more than 12 times higher than the sorption
capacity of activated carbon. The sorption capacity of montmorillonites samples of other
compositions is somewhat lower, but they also have rather high values. The obtained
values of the sorption capacity of synthetic montmorillonite samples correlate with the
previously obtained results of the study of the sorption capacity of raw clays [2,5] and
even slightly exceed them, which is due to the absence of impurity phases in the samples
under study.

For samples of the kaolinite subgroup with different particle morphologies, the sorp-
tion capacity for albumin is significantly lower than that for montmorillonite, and is at
the level of 60–80 mg/g for samples with platy, spherical, and tubular morphologies. For
samples of kaolinite with a spherical particle morphology, the sorption capacity for albumin
is even lower and is at the level of 25–40 mg/g. The sorption capacity of Beta zeolite is
53 mg/g. The sorption capacity for the albumin of all studied aluminosilicate samples
exceeds the sorption capacity of activated carbon.

Such adsorption by aluminosilicate samples is associated with the features of their
structure and surface properties. No direct relationship between the specific surface area of
the samples and their sorption capacity for albumin was found. Thus, the highest values of
the specific surface area are typical for MT-Al0 samples (549 m2/g), kaolinite nanosponges
(470 m2/g), and Beta zeolite (676 m2/g). However, the sorption capacity of these samples is
not the highest. Montmorillonite samples are characterized by the highest sorption capacity
for albumin, despite the highest values of the negative zeta potential of the surface. The
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high sorption capacity of montmorillonite compared to other samples is most likely due
to its ability to increase the interlayer distance over a wide range (from 1 Å to complete
exfoliation into individual layers) in the process of the adsorption of organic and inorganic
molecules and their intercalation in the interlayer space [55,56]. As a result, albumin is
located both on the outer (сhips, edges, and outer surface of layers) and inner surfaces
(interlayer space) of montmorillonite particles. The structures of other aluminosilicate
samples do not have this feature, and albumin adsorption mainly occurs on the outer
surface of the particles. On the other hand, the ability to intercalate and increase the
interlayer distance leads to an increase in the adsorption equilibrium time for samples with
the montmorillonite structure.
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Based on the results of the graphical processing of the experimental data (Table 3),
it was found that the sorption kinetics of all samples, except for MT-Al0.2 and MT-Al1.0
samples, is well described by a pseudo-second-order (PSO) equation: the theoretically
calculated values of the sorption capacity qcalc are close to those found experimentally,
and the high approximation coefficient is 0.92–0.98. The PSO kinetic model is usually
associated with the situation where the rate of the direct adsorption/desorption process
is rate limiting. Within the framework of kinetic models, the rate constants of the process
were calculated (Table 3). The PSO rate constants are the highest for the activated carbon
and Beta zeolite samples, which is consistent with the short equilibration time in the system
(1 and 2 h, respectively). The most adequate model for the MT-Al0.2 and MT-Al1.0 samples,
taking into account the qcalc values, is PFO.

Table 3. Parameters of the kinetic models of sorption of albumin on aluminosilicates with different
morphologies.

Samples
Morphology

qexp, mg/g
PFO Model PSO Model

qcalc k1 R2 qcalc k2 R2

MT-Al0 229 ± 19 207 ± 11 0.32 ± 0.07 0.93 229 ± 10 (3 ± 1)·10−3 0.97
MT-Al0.2 229 ± 15 222 ± 18 0.14 ± 0.03 0.92 278 ± 32 (5 ± 2)·10−4 0.93
MT-Al1.0 256 ± 24 250 ± 18 0.17 ± 0.03 0.92 301 ± 30 (7 ± 3)·10−4 0.93
Kaol-sph 42 ± 4 41 ± 2 0.13 ± 0.02 0.96 52 ± 4 (2 ± 1)·10−3 0.98

Kaol-sponge 92 ± 2 86 ± 6 0.18 ± 0.04 0.89 101 ± 9 (2 ± 1)·10−3 0.93
Kaol-pl 72 ± 3 64 ± 4 0.22 ± 0.04 0.92 74 ± 5 (3.5 ± 1)·10−3 0.95

Hal 82 ± 4 72 ± 6 0.23 ± 0.06 0.87 83 ± 7 (3.4 ± 1)·10−3 0.92
Beta 59 ± 7 51 ± 3 2.9 ± 1.1 0.90 55 ± 3 (5 ± 0.2)·10−2 0.95

Carbon 22 ± 5 20 ± 1 2.5 ± 0.8 0.98 21 ± 1 0.34 ± 0.18 0.99
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Figure 6 shows albumin adsorption isotherms by synthetic aluminosilicates, as well as
by activated carbon. The symbols represent the experimental data, and the lines represent
the model that best fits the data. Taking into account the high values of the correlation
coefficients (R2) and the close values of the experimental and calculated sorption capac-
ity (Table 4), among the three nonlinear models, the Langmuir isotherm best describes
adsorption on all samples, except for Hal and Kaol-pl. This model describes a homoge-
neous monomolecular adsorption process and assumes that the surface of a solid body
contains a finite number of active centers with equal energy. For the Hal and Kaol-pl
samples, the Freundlich equation is the most appropriate. According to the Freundlich
model, the surface of the studied sorbents contains active centers with different affinity
energies for adsorbate molecules. The value of 1/n can be considered as an indicator of
the inhomogeneity of sorption centers: as the inhomogeneity increases, 1/n→0, and as the
homogeneity of centers increases, 1/n→1. At the same time, the data obtained make it
possible to characterize aluminosilicates as materials with a high concentration of sorption
centers with different degrees of activity, which is consistent with the results of studying
the distribution of active centers on the sample surface (Figure 4). The constant KF has a
linear dependence on the adsorption capacity of the adsorbent, i.e., the larger this constant,
the greater the adsorption capacity.

Table 2 presents the results of determining the sorption capacity of samples in relation
to potassium and sodium cations, as well as vitamin B1 in the SBF medium. The results of
the study of the hemolytic activity of the samples are also given there.

Based on the obtained results, it can be concluded that all studied samples absorb
sodium and potassium cations from SBF in small amounts, potentially not leading to
serious pathological changes. At the same time, two samples—MT-Al0 and kaolinite with
nanosponge morphology—do not have a sorption capacity for these cations. The sorption
capacity of aluminosilicates with respect to vitamin B1 is relatively high and is the highest
for samples with a montmorillonite structure—MT-Al0.2, MT-Al1.0, Sap, and for Beta
zeolite. The samples of the kaolinite subgroup with spherical, platy, and tubular particle
morphologies are characterized by the lowest sorption capacity. The results of the vitamin
B1 adsorption study generally correlate with the results of the BSA adsorption study and
can be explained by the structural features of the studied samples.
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Table 4. Equation constants of albumin sorption isotherms.

Sample Mor-
phologies

qexp
Langmuir Equation Freundlich Equation Temkin Equation

qm KL R2 n KF R2 BT AT R2

MT-Al0 334 ± 20 404 ± 34 (5 ± 1)·10−3 0.97 2.9 ± 0.7 30.5 ± 2.9 0.90 89.2 ± 7.5 (1 ± 0.1)·10−2 0.96
MT-Al0.2 255 ± 12 272 ± 5 (8 ± 1)·10−3 0.99 364 ± 0.4 36.0 ± 8.0 0.96 50.0 ± 2.0 (11 ± 2)·10−2 0.94
MT-Al1.0 190 ± 14 180 ± 11 (25 ± 9)·10−3 0.94 7.3 ± 2.5 67.0 ± 6.5 0.93 20.5 ± 6.3 4.6 ± 1.1 0.92
Kaol-sph 24 ± 1 23 ± 1 0.8 ± 0.3 0.99 49.2 ± 5.0 20.4 ± 1.4 0.97 1.0 ± 0.4 3.1 ± 0.2 0.97

Kaol-sponge 48 ± 1 46 ± 2 (8 ± 3)·10−3 0.98 5.2 ± 0.8 12.6 ± 2.3 0.97 6.8 ± 0.6 1.0 ± 0.5 0.96
Kaol-pl 24 ± 1 20 ± 2 (13 ± 1)·10−2 0.87 7.2 ± 2.0 8.1 ± 2.0 0.95 9.7 ± 1.6 2.2 ± 0.9 0.95

Hal 48 ± 3 43 ± 3 (8 ± 4)·10−2 0.91 6.2 ± 1.0 15.3 ± 2.6 0.98 5.4 ± 0.8 5.1 ± 0.3 0.97
Beta 50 ± 6 55 ± 2 (13 ± 2)·10−2 0.99 4.4 ± 1.2 18.0 ± 4.6 0.90 9.7 ± 1.6 2.2 ± 1.5 0.95

Carbon 63 ± 8 66 ± 2 (31 ± 7)·10−3 0.99 4.2 ± 0.8 14.3 ± 3.5 0.98 10.9 ± 1.2 0.6 ± 0.4 0.94

qm—maximum sorption capacity (mg/g); qexp—experimental value of sorption capacity (mg/g); Langmuir constant
related to adsorption free energy (L/mg); BT—constant related to the heat of adsorption (L/g); KF—Freundlich
constant related to adsorbent capacity (L/g); AT—dimensionless Temkin isotherm constant.

Blood plasma is an aqueous solution of electrolyte, nutrients, metabolites, proteins,
vitamins, trace elements, and signaling substances. The most important characteristic of a
selective hemosorbent is the presence of sorption capacity in relation to pathogens, and its
absence in relation to other blood components, particularly vitamins and microelements. In
this case, the optimal hemosorbent should also not have the ability to destroy blood cells,
that is, it should not have hemolytic activity. The results of the study of hemolytic activity,
presented in Table 2, indicate that the greatest increase in hemolytic activity (toxicity) at a
sample concentration of 10 mg/mL occurs in the series Sap<Carbon<Beta<Kaol-sph<Kaol-
sponge<MT-Al0.2<Kaol-pl<MT-Al1.0<Hal. The presence and difference of the hemolytic
activity in samples may be associated with differences in their chemical composition,
surface properties, and particle shape. Thus, the dependence of the hemolytic activity
and cytotoxicity of aluminosilicates of the kaolinite subgroup on the morphology of their
particles was shown earlier [57]. It was found that among single-phase samples with the
same chemical composition Al2Si2O5(OH)2, samples with a tubular morphology have the
highest toxicity, and samples with spherical particles have the lowest toxicity. In addition
to this effect, the effect of the influence of the chemical composition on the hemolytic
activity was found in the present work. Among the samples with the montmorillonite
structure, samples with the highest aluminum content have the highest hemolytic activity.
The sample of magnesium silicate montmorillonite (Mg3Si4O10(OH)2·nH2O) has the lowest
hemolytic activity among all the studied samples, including activated carbon.

It should be noted that samples are considered non-toxic if their hemolytic activity
does not exceed 5% [58]. With a decrease in the concentration of the studied samples to
0.3 mg/mL, the hemolytic activity of all samples decreases, and for most samples, reaches
values not exceeding 5% (with the exception of samples MT-Al1.0 and Hal).

4. Conclusions

This work studied the possibility of using porous aluminosilicates with different
structures and particle morphologies as hemosorbents. The sorption capacity of the samples
in relation to the model medium molecular weight toxicants (BSA), vitamin B1, and alkaline
cations in a simulated body fluid, as well as their hemolytic activity, were studied. It was
established that the sorption capacity of aluminosilicate samples is largely determined
by their structural features, porous textural characteristics and surface properties (charge
and distribution of active centers on the surface). Thus, samples with a montmorillonite
structure, which have the ability to increase the interlayer space over a wide range, have
the highest sorption capacity with respect to BSA. However, the time to reach sorption
equilibrium for such samples is quite long and amounts to approximately 24 h, which
is also related to the peculiarities of their structure. The sorption capacity of zeolite
samples is several times lower than montmorillonite, however, the sorption equilibrium is
reached in 1 h. The Langmuir isotherm best describes adsorption on all samples, except for
samples with nanotubular and platy particle morphology. For these samples, the Freundlich
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equation is the most appropriate. The hemolytic ability of the samples is largely determined
by the morphology of the particles and the chemical composition of the samples. Thus,
aluminosilicates with tubular particles and samples with the highest aluminum content
have the highest hemolytic activity.

The studies of adsorption features and properties of porous aluminosilicates have
shown that aluminosilicate sorbents can be considered potential hemosorbents. They have
a high sorption capacity for medium molecular weight pathogens (up to 12 times that of
activated charcoal for some samples) and low toxicity to blood cells. Directed hydrothermal
synthesis makes it possible to obtain aluminosilicates with a given chemical and phase
composition, certain surface properties, and porous textural characteristics. It is shown
that the chemical composition, surface charge, particle morphology, and structural features
determine the adsorption capacity and biological activity of the samples.

Based on the performed study, it can be concluded that the optimal option for the
further development of new selective and non-toxic hemosorbents is synthetic magnesium
silicate montmorillonite (Mg3Si4O10(OH)2·nH2O), since it has a significant sorption capacity
with respect to BSA, modeling pathogens with an average molecular weight, lack of
sorption capacity for potassium and sodium cations from the blood plasma medium, and
low hemolytic activity.
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5. Mucha, M.; Maršálek, R.; Bukáčková, M.; Zelenková, G. Interaction among clays and bovine serum albumin. RSC Adv. 2020, 10,

43927–43939. [CrossRef] [PubMed]
6. Wasilewska, M.; Adamczyk, Z.; Pomorska, A.; Nattich-Rak, M.; Sadowska, M. Human Serum Albumin Adsorption Kinetics on

Silica: Influence of Protein Solution Stability. Langmuir 2019, 35, 2639–2648. [CrossRef]
7. Sommer, S.; Sommer, S.J.; Gutierrez, M. Characterization of Different Bentonites and Their Properties as a Protein-Fining Agent in

Wine. Beverages 2022, 8, 31. [CrossRef]
8. Silva-Barbieri, D.; Salazar, F.N.; López, F.; Brossard, N.; Escalona, N.; Pérez-Correa, J.R. Advances in White Wine Protein

Stabilization Technologies. Molecules 2022, 27, 1251. [CrossRef]
9. Uzhinova, L.D.; Krasovskaja, S.M. Interactions of biospecific sorbents with physiologically active substances. J. Mater. Sci. Mater.

Electron. 1991, 2, 189–192. [CrossRef]
10. Ruiz-Rodríguez, J.C.; Plata-Menchaca, E.P.; Chiscano-Camón, L.; Ruiz-Sanmartin, A.; Ferrer, R. Blood purification in sepsis and

COVID-19: What’s new in cytokine and endotoxin hemoadsorption. J. Anesth. Analg. Crit. Care 2022, 2, 15. [CrossRef]
11. Napp, L.C.; Lebreton, G.; De Somer, F.; Supady, A.; Pappalardo, F. Opportunities, controversies, and challenges of extracorporeal

hemoadsorption with CytoSorb during ECMO. Artif. Organs 2021, 45, 1240–1249. [CrossRef] [PubMed]

https://rscf.ru/project/22-23-00227/
http://doi.org/10.1016/b978-0-08-102432-4.00008-1
http://doi.org/10.3390/min9070396
http://doi.org/10.1016/j.clay.2014.05.003
http://doi.org/10.1007/s00449-010-0408-8
http://doi.org/10.1039/D0RA01430C
http://www.ncbi.nlm.nih.gov/pubmed/35517170
http://doi.org/10.1021/acs.langmuir.8b03266
http://doi.org/10.3390/beverages8020031
http://doi.org/10.3390/molecules27041251
http://doi.org/10.1007/BF00703367
http://doi.org/10.1186/s44158-022-00043-w
http://doi.org/10.1111/aor.14025
http://www.ncbi.nlm.nih.gov/pubmed/34152637


ChemEngineering 2022, 6, 78 16 of 17

12. Kovacs, J. Hemoadsorption in Critical Care—It Is a Useful or a Harmful Technique? J. Crit. Care Med. 2020, 6, 207–209. [CrossRef]
[PubMed]

13. Asgharpour, M.; Mehdinezhad, H.; Bayani, M.; Zavareh, M.S.H.; Hamidi, S.H.; Akbari, R.; Ghadimi, R.; Bijani, A.; Mouodi, S.
Effectiveness of extracorporeal blood purification (hemoadsorption) in patients with severe coronavirus disease 2019 (COVID-19).
BMC Nephrol. 2020, 21, 356. [CrossRef] [PubMed]

14. Nikolaev, V.G.; Samsonov, V.A. Analysis of medical use of carbon adsorbents in China and additional possibilities in this field
achieved in Ukraine. Artif. Cells Nanomed. Biotechnol. 2013, 42, 1–5. [CrossRef]

15. Mikhalovsky, S.; Nikolaev, V. Chapter 11 Activated carbons as medical adsorbents. Interface Sci. Technol. 2006, 7, 529–561.
[CrossRef]

16. Inoue, S.; Kiriyama, K.; Hatanaka, Y.; Kanoh, H. Adsorption properties of an activated carbon for 18 cytokines and HMGB1 from
inflammatory model plasma. Colloids Surf. B Biointerfaces 2014, 126, 58–62. [CrossRef]

17. Barnes, J.; Cowgill, L.D.; Auñon, J.D. Activated Carbon Hemoperfusion and Plasma Adsorption: Rediscovery and Veterinary
Applications of These Abandoned Therapies. Adv. Small Anim. Care 2021, 2, 131–142. [CrossRef]

18. Maisanaba, S.; Pichardo, S.; Puerto, M.; Gutiérrez-Praena, D.; Cameán, A.M.; Jos, A. Toxicological evaluation of clay minerals and
derived nanocomposites: A review. Environ. Res. 2015, 138, 233–254. [CrossRef]

19. Petushkov, A.; Ndiege, N.; Salem, A.K.; Larsen, S.C. Toxicity of Silica Nanomaterials: Zeolites, Mesoporous Silica, and Amorphous
Silica Nanoparticles. Adv. Mol. Toxicol. 2010, 4, 223–266. [CrossRef]
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