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Abstract: Currently, various industrial processes are carried out in fluidized bed reactors. Knowing
its internal dynamics is fundamental for the intensification of these processes. This work assesses the
motion of fluidized calcium alginate spheres under the influence of an upward fluid flow within a
1.2 m high and 0.1 m inner diameter acrylic column. The liquid–solid fluidized bed was compared
with a gas–liquid–solid fluidized bed operation mode in terms of mixing behavior. The radioactive
particle tracking technique is a proper methodology to study the internal dynamics of these kinds
of equipment. Data gathered were analyzed with Shannon entropy as a dynamic mixing measure.
Mixing times were found to be between 1 and 2.5 seconds for both fluidization modes. The liquid–
solid fluidized bed presents a rather smooth mixing time profile along the column. On the other
hand, the gas–liquid–solid fluidized bed showed high sensitivity of entropy production with height,
reaching a sharp tendency break at the second quartile of the column. The Glansdorff–Prigogine
stability measure can accurately capture flow regime transitions of the gas–liquid–solid fluidized
bed, allowing it to be used to construct reliable operative windows for fluidization equipment.

Keywords: fluidization; radioactive particle tracking; information geometry; stability criteria

1. Introduction

Fluidization has a long history of utility for mineral sorting and has been used for this
purpose for several hundreds of years [1,2]. Many catalytic processes and operations in
the chemical industry are currently carried out in fluidized beds [3] such as the Fischer–
Tropsch reaction for producing cleaner fuels [4]. The use of expanded beds allows for better
homogenization of the cell culture media. Methodologies such as adsorption or fluidized
bed chromatography are currently being established [5,6], which have had promising
results in the extraction of biological products of industrial interest, given the reduction
in the operating volume [7–9]. Their underlying dynamics are fundamental for properly
designing the units and implementing process intensification strategies [10,11]. Such
dynamics are governed by body forces (gravity, buoyancy) and external friction forces.
From the microscopic contribution of each fluid element and the particles of the system has
emerged observables such as bed height, pressure drop, distribution of shear forces, mixing
times, and turbulent kinetic energy. The correct prediction of these observables depends
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upon the precision with which these macroscopic forces are described and remains an open
problem to a large extent [12,13].

On the other hand, in the last few decades, experimental methods have been developed
to determine the trajectories of particles in free movement within multiphase equipment.
The radioactive particle tracking (RPT) technique involves determining the trajectory
of a single radioactive tracer representing the solid particles of the system, providing
comprehensive information on multiphase flows [14–18]. The information obtained by
RPT is highly suitable to evaluate the equipment mixing performance and verify models
aiming to describe the transport of matter and energy.

Shannon (or information) entropy is a statistic that estimates the homogeneity of
a probability distribution, which can be used as a mixing index [19,20]. In statistical
thermodynamics, entropy is the logarithm of the microstate diversity in the system, known
as the Boltzmann H-function [21]. The Shannon entropy is adopting the Boltzmann H-
function as a property of any probability distribution, {pi}, i ∈ (1; . . . ; N), where N is the
number of bins into which the valid range of the distribution is divided. If N is finite, the
discrete probability density function is often called the probability simplex. In the context
of RPT, the valid range of the probability distribution will be enclosed within the space
that the tracer trajectory reaches, and the bins will result from the number of voxels with
which that space is divided, understood as the granularity of the tracer position probability
simplex according to Salierno et al. (2018) [22]. The Shannon entropy is useful to quantify
the mixing of solid particles in suspension or liquid elements from RPT data [12].

Alginates form a hydrogel in aqueous calcium solutions, traditionally used to immobi-
lize enzymes and microorganisms [23]. Its potential uses as a contaminant adsorbent [24,25]
and support for inorganic catalysts are also currently being explored [26,27]. The litera-
ture increasingly presents diverse promising applications of gel particles that eventually
scale up to be implemented in fluidized beds. For example, profitable sugars could be
continuously produced in LSFB columns at higher flow rates [28]. Emergent technologies
for cleaner production such as aerobic cultures for effluent treatment [29] and carbon
dioxide capture by immobilized carbonic anhydrase [30] can be implemented at the pilot to
industrial-scale GLSFBs. Although most of the processes involving immobilized enzymes
are currently carried out in fixed beds, fluidized beds avoid dead zones, and thus the risk
of potentially contaminating the product stream [28,31]. Additional industrially relevant
advantages of fluidized beds compared to fixed bed reactors are lower pressure drop and
superior heat and mass transfer characteristics [31,32].

Designing the agitation device is a fundamental feature for the reproducibility of
processes sensitive to concentration gradients [33], avoiding the attrition of catalysts [34] or
hydrodynamic stress control in cell cultures [35]. Estimating the time required for mixing
is key to successfully control the turbulence levels to achieve a certain homogenization rate.
Furthermore, it is mandatory to comprehend the dynamic stability of the equipment during
operation for the safe implementation of new technologies in industrial conditions [36].
This work compared the mixing behavior and the stability of fluidized bed columns. The
motion of 5 mm calcium alginate gel spheres suspended within liquid–solid and gas–liquid–
solid turbulent media were examined with RPT. Information theory was applied to study
particle mixing, and information geometry was used to assess the stability of the mixed
state.

2. Materials and Methods
2.1. The Radioactive Particle Tracking Technique

The method of tracking a single radioactive particle (radioactive particle tracking,
RPT) consists of simultaneously counting the number of gamma rays that arrive from
a stable tracer in motion to a set of high-energy radiation detectors strategically located
around the equipment under study. The number of photons that interact with each detector
is proportional to the solid angle subtended by the detector to the radioactive source used
as a tracer, depending on the tracer–detector distance [17]. Therefore, the simultaneous
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detection of radiation with a set of detectors arranged around the column makes it possible
to determine the mean position of the tracer at each sampling period.

The RPT technique is based on considering an isotropic gamma emission pattern.
Negative-beta decay provides such gamma emissions. This emission mechanism is char-
acteristic of neutron-rich nuclei. Additionally, following the ALARA safety philosophy,
the tracer must be properly active during the experiments. It is also convenient that it has
not so long a half-life to quickly reach a stable state after being used. Therefore, 198Au
(Eγ = 0.412 MeV; t1/2 = 2.7 d) is a good option choice. The tracer consists of a 1 mm
diameter high-density polyethylene (PEAD) hollow sphere that seals a fragment of a few
gold micrograms inside [37]. The gamma sources were obtained by neutron bombardment
in the RA1 nuclear reactor at the National Atomic Energy Commission (CNEA–Buenos
Aires-Argentina). The resulting radioactivity depends upon the exposure time and on the
neutron flux. The tracer path is followed for several hours with a sampling period of 30
ms. For the reconstruction, a calibration stage was performed by measuring the counts
while locating the tracer at known positions within the system. The signal distribution, the
tracer intensity, the media attenuation, and the dead time of the detector system were fitted
for each detector to represent their response to radiation. Details of the reconstruction
procedure can be found elsewhere [16,17]. Experiments were carried out in an acrylic
column (1.2 m height, 0.1 m inner diameter) surrounded by an array of 16 NaI(Tl) 2′ ′

scintillation detectors (Figure 1).
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Two modes of fluidization were considered in this work:

• Liquid–solid fluidized bed (LSFB), where the solid phase motion is driven with the
liquid flowing upward [38]. In this case, there is no gas flow.

• Gas–liquid–solid fluidized bed (GLSFB), where the liquid and the particulate solid
phase are contained in the column while the gas flows upward [15].

2.2. Liquid–Solid Fluidized Bed (LSFB) Operational Parameters

In the LSFB, the liquid phase is a solution of CaCl2 0.05 M (ρL = 1008 kg/m3;
µL = 1.02 mPa·s) in water, flowing in a closed-loop impelled by a centrifugal pump mod-
erated by a diaphragm valve. The liquid superficial velocity (uL) is set and controlled at
different constant values between 0.028 to 0.036 m/s of superficial liquid velocity, 20%
above the minimum fluidization velocity and 20% below the circulation velocity. The liquid
enters into the column from the bottom through a distributor of 2.2% effective section. Gel
bead (ρs = 1030 kg/m3) content was about 8% v/v.

2.3. Gas–Liquid–Solid Fluidized Bed (GLSFB) Operational Parameters

In the case of a GLSFB, the column is operated with compressed air (ρg = 1.22 kg/m3;
µg = 18 µPa·s) flowing upward through a distributor located at the base of the column. The
air entered the column through 42 holes of 1 mm, resulting in an effective cross-section of
0.42%. The superficial velocity of air (ug) was varied between 0.01 and 0.10 m/s, covering
the bubble regime, the heterogeneous regime, and the onset of the churn regime. The
condensed phase is an aqueous solution of CaCl2 0.05 M (ρL = 1008 kg/m3; µL = 1.02 mPa·s)
with 8% v/v of 5 mm diameter calcium alginate spheres (ρs = 1030 kg/m3). The room
temperature was set at 24 ◦C.

3. Shannon Entropy and Mixing Behavior

Shannon entropy [39], or information entropy, is a statistic related to the homogeneity
of a probability distribution. If applied to the probability distribution of discrete particle
positions [40] representing suspended solids or liquid elements, it can be used as a mixing
index [41]. In this work, we defined the statistic Ω(t) relating the instantaneous entropy of
the distribution with the maximum that could be reached for the number of bins or sections
considered in the discretization Equation (1).

Ω(t) = −
∑N

i=1

[
pi(t) ln

(
pi(t)

)]
ln(N)

(1)

where N is the number of bins in which the simplex has been discretized and pi(t) is the
normalized frequency of finding the tracer at the i-th position (with i belonging to the
natural numbers between 1 and N). The magnitude Ω(t) takes real values between 0 and 1
because the Shannon entropy is normalized by the value corresponding to the maximum
possible entropy, uniquely associated with the equiprobable distribution.

To calculate the Shannon entropy, we first constructed a manifold of trajectories from
a properly long single tracer trajectory obtained by RPT. The tracer was carefully built to
mimic the dynamics of the rest of the particles. Then, considering ergodicity, we interpreted
the manifold as an injection of particles at a given region of the space. Figure 2 shows the
axial projection of a trajectories manifold obtained by RPT experiments on the GLSFB.
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Figure 2. Axial projection of a trajectories manifold, obtained from GLSFB, starting from a specific voxel.

Figure 3 illustrates how the histogram of positions of particles that begin their trajec-
tory in a portion of the column at a certain height varies over time. The probabilities of
visiting different regions of the space and associated statistics can be calculated from the
histograms. The granularity of the probability simplex must be chosen considering the size
of the manifold; very small bins would generate discontinuous probability distributions
that could mislead the determination of associated statistics.
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In many cases, the distribution is not homogeneously arranged throughout the bed,
especially if the traced phase differs in density with the rest of the phases of the system
(e.g., solids whose density is greater than that of the fluid that disperses it). Nevertheless,
there is a systematic tendency of the probability distributions to evolve to a fixed form, an
absolute convergence, dependent only on the operating conditions. After a while, these
distributions do not differ from each other.

Figure 4 shows the temporal evolution of the normalized Shannon entropy time-series
Ω(t) of a trajectory manifold starting from the same region of space. It can be observed that
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the quantifier Ω(t) reached an asymptotic value less than one because it is related to the
distribution of the solid phase that is established once the pseudo-steady state is reached
for a given operating condition. This asymptotic value corresponds to the maximum
level of mixing of the phase that the tracer represents within the system. It is consistently
found that Shannon’s time-related path extracts have a concave curvature and converges
at a precise value that depends on tracer density and gas velocity, consistent with the
conception of Lyapunov dynamic equilibrium [42]. Parsimonicall chosen granularities of
the probability simplex lead to the same values of asymptotic Shannon entropy.
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4. Mixing and Stability Assessment Based on Information Geometry
4.1. Mixing Times and Entropy Production

It was observed that, regardless of the starting point, the entropy calculated using
sets of trajectory extracts reaches a quasi-invariant value in time, denoting the presence of
a pseudo-stationary state. This system of suspended particles against gravity, although
a metastable state sustained by a continuous upward fluid flow, is dynamically stable in
the Lyapunov sense, since it reaches a constant entropy from a certain moment. Figure 5
shows the asymptotic entropy values Ω∞ for each operative condition, determined from
different starting points. Granularity values between 20 and 60 in the axial direction and
1 to 8 in the radial direction provide similar values of Ω∞ [15], dependent only upon the
operational. There is an increment of Ω∞ values when fluid velocity increases. However,
the LSFB showed a systematically lower level of mixing than those observed in the GLSFB.
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The time required to reach Ω∞ can be considered as an estimation of the mixing time.
This concept is widely used to assess the dynamic thermalization of quantum systems [24].
The shape of Ω(t) is usually monotonously increasing, reaching a single stationary value
regardless of the ‘injection point’. However, in some cases, it can temporarily reach a
situation of overmixing (when the instantaneous entropy is greater than that of the steady-
state). Therefore, a robust criterion to determine the mixing time is to find the first portion
of the curve where the product of the slope and the regression coefficient of five successive
points is significantly close to zero, verifying that the Ω value does not differ significantly
from the plateau value [11]. Figure 6 shows the axial distribution of mixing time for
different fluid velocities.
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Results indicate the same order of magnitude but different axial trends for mixing
times determined for the LSFB compared to the GLSFB. However, it should be recalled that
the LSFB achieved a lower bed expansion and homogeneity than those observed in the
GLSFB. The LSFB showed a smooth trend with a maximum of about 0.1 m. On the other
hand, the GLSFB showed a sharp break at 0.15 m. Longer times are necessary to attain
mixing when the manifold starts closer to the bottom [15], plausibly related to circulation
patterns that trap the tracer and delay the relaxation of the probability simplex.

Although the fluid Reynolds number (defined from the fluid properties, the superficial
fluid velocity, and the column inner diameter as the characteristic length) was quite high in
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the case of the LSFB system
(

ReL ∈ [2800; 3500] vs. Reg ∈ [150; 700]
)
, it was observed that

the homogeneity levels were lower at the LSFB than those obtained in the GLSFB.
In the GLSFB system, the highest turbulence spot is localized where the lower and

upper vortices meet [15]. Two zones can be recognized for their different proportionality, as
shown by the mixing time to height within the column. The minimum mixing time naturally
coincides with the maximum entropy production rate; moreover, the proportionality with
height changes abruptly. Figure 7 shows the normalized entropy change reached at the
macroscopic mixing time for both systems.
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4.2. Glansdorff–Prigogine Criterion Based on the Fisher Information

The formal definition of the Fisher information is the squared time derivative of the
Shannon entropy (dΩ/dt)2. In other words, Fisher information can be interpreted as
the squared velocity of the Shannon entropy evolution; thus, it is feasible to obtain an
approximate value from the slope of Ω(t), as shown in Figure 8.
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Recent theoretical investigations regarding applying information geometry to the
fluctuation–response ratio of physical observables provided a general and simple criterion
for stability [43–45]. According to Ito (2019), Fisher information can be interpreted as the
speed change in a probability simplex evolution over time [43]. In the context of information
geometry, the fluctuation of any observable is constrained by its Fisher information. A
decay in the Fisher information is equivalent to convergence to stability. This criterion is
the Lyapunov stability criterion with the Fisher information as the Lyapunov function [43].

A definition of the Glandsdorff–Prigogine stability measure is the time derivative of
the Fisher information [43]. Since the Fisher information is a positive definite quantity for
being the square of a real number, there are three main options:

• If the Glandsdorff–Prigogine stability measure sign is positive, the Fisher information
diverges, so the entropy also diverges rapidly; thus, the system is unstable.

• If the Glandsdorff–Prigogine stability measure sign is negative, the Fisher information
will decay to zero; thus, the Shannon entropy reaches a state where it does not change
over time, making the system stable.

• A Glandsdorff–Prigogine stability measure tending to zero means that the system
is either stable (e.g., fixed bed) or metastable, in which cases could be used to set
operating window limits.

Unstable systems are difficult to control, so they are not advisable to run on an
industrial scale [36,46]. Stability studies are important to determine, for example, the safe
operational windows where the fluctuations in the position of the particles are bounded.
The sign of the Fisher information speed rate is used as the Glansdorff–Prigogine criterion
for the stability of non-stationary dynamics [43], as follows:

∆
∆t

(
dΩ
dt

)2
≤ 0⇔ Stability

∆
∆t

(
dΩ
dt

)2
> 0⇔ Instability

(2)

Figure 9 shows the gap values of Fisher information comparing the initial state of
the manifold and the moment after mixing time. There was a clear contrast between the
LSFB and the GLSFB systems; the Fisher information gap slightly increased on the LSFB
operating window while the GLSFB decreased with the gas velocity.
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It was systematically checked within their explored operational windows that both
fluidized systems are stable from the Glandorsff–Prigogine stability perspective. The LSFB
maintained a rather constant stability measure (Figure 9, left), since the flow patterns
maintained great similarity within the fluidization regime [47]. On the other hand, the
GLSFB stability tended to zero as the gas velocity increased (Figure 9, right). This contrast
is reflected in the variability of the flow regimes observed in GLSFB [46]; the tendency
break detected at low gas velocities coincides with the flow regime change from bubble
flow to a heterogeneous flow regime [48]. The upper tendency change can be assigned to
the onset of the churn flow. A further increase in the gas velocity could mean the carryover
of the solid particles, turning the fluidized state unstable.

5. Conclusions

An advanced tomographic method that allows recovering the path of a freely moving
tracer in three dimensions proved appropriate for extracting thorough information within
multiphase systems. Radioactive particle tracking (RPT) data enabled the experimental
stability analysis of freely moving particle trajectories within pilot-scale fluidization equip-
ment, operated as an LSFB and a GLSFB, which are difficult to obtain otherwise. From the
analysis of RPT trajectory manifolds, a normalized form of Shannon entropy arises as a
useful statistic to study the homogeneity, mixing, and stability of the fluidized particles.

Normalized Shannon entropy obtained from the trajectories determined by RPT is
an excellent tool for the quantitative determination of mixing times. Axial profiles of
mixing times in the GLSFB point to a sharp minimum at 0.15 m, interpreted as a hot spot
of turbulence. On the other hand, the LSFB shows a smoother axial profile of mixing times.
Mixing times are remarkably similar in order of magnitude, pointing out that convergence
to stability is a major driver of mixing.

In all operating conditions, it was observed that, regardless of the starting point,
after a certain time, the entropy obtained from trajectory manifolds reached a quasi-
invariant value in time, denoting the presence of a pseudo-stationary state, which is a
thermodynamically stable system in the Lyapunov sense. New theoretical developments
in information geometry confirmed a previous stability criterion based on the Shannon
entropy time evolution. The Fisher information can be interpreted as the squared Shannon
entropy rate of change. Slowing the Fisher information means the stability of the system
and vice-versa; this criterion is equivalent to the Glansdorff–Prigogine criterion for stability.
While the LSFB system presents a rather constant stability measure, the GLSFB system
stability changes significantly through the explored operational window due to flow regime
changes, which the Glansdorff–Prigogine stability criterion could successfully capture. It
is worth recalling that this criterion can be applied to any observable measured as a time
series.
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10. Duduković, M.; Mills, P. Scale-up and Multiphase Reaction Engineering. Curr. Opin. Chem. 2015, 9, 49–58. [CrossRef]
11. Ali, N.; Al-Juwaya, T.; Al-Dahhan, M. An Advanced Evaluation of the Mechanistic Scale-up Methodology of Gas–Solid Spouted

Beds Using Radioactive Particle Tracking. Particuology 2017, 34, 48–60. [CrossRef]
12. Goniva, C.; Kloss, C.; Deen, N.G.; Kuipers, J.A.M.; Pirker, S. Influence of Rolling Friction on Single Spout Fluidized Bed Simulation.

Particuology 2012, 10, 582–591. [CrossRef]
13. Hager, A.; Kloss, C.; Goniva, C. Combining Open Source and Easy Access in the field of DEM and coupled CFD-DEM:

LIGGGHTS®, CFDEM®coupling and CFDEM®workbench. In Computer Aided Chemical Engineering; 28 European Symposium on
Computer Aided Process Engineering; Friedl, A., Klemeš, J.J., Radl, S., Varbanov, P.S., Wallek, T., Eds.; Elsevier: Amsterdam, The
Netherlands, 2018; Volume 43, pp. 1699–1704.

14. Roy, S. Radiotracer and Particle Tracking Methods, Modeling and Scale-Up. AIChE J. 2017, 63, 314–326. [CrossRef]
15. Salierno, G.; Maestri, M.; Piovano, S.; Cassanello, M.; Cardona, M.A.; Hojman, D.; Somacal, H. Solid Motion in a Three-Phase

Bubble Column Examined with Radioactive Particle Tracking. Flow Meas. Instrum. 2018, 62, 196–204. [CrossRef]
16. Wang, M. Industrial Tomography: Systems and Applications; Elsevier: Boston, MA, USA, 2015; ISBN 978-1-78242-118-4.
17. Chaouki, J.; Larachi, F.; Dudukovic, M.P. (Eds.) Non-Invasive Monitoring of Multiphase Flows; Elsevier: Amsterdam, The Nether-

lands; New York, NY, USA, 1997; ISBN 978-0-444-82521-6.
18. Bhusarapu, S.; Cassanello, M.; Al-Dahhan, M.H.; Dudukovic, M.P.; Trujillo, S.; O’Hern, T.J. Dynamical Features of the Solid

Motion in Gas–Solid Risers. Int. J. Multiph. Flow 2007, 33, 164–181. [CrossRef]
19. Salierno, G.L.; Maestri, M.; Piovano, S.; Cassanello, M.; Cardona, M.A.; Hojman, D.; Somacal, H. Discrete Axial Motion of a

Radioactive Tracer Reconstructed from the Response of Axially Aligned Detectors: Application to the Analysis of a Bubble
Column Dynamics. Chem. Eng. Sci. 2013, 100, 402–412. [CrossRef]

20. Shiraishi, N.; Sagawa, T. Fluctuation Theorem for Partially Masked Nonequilibrium Dynamics. Phys. Rev. E 2015, 91, 012130.
[CrossRef]

http://doi.org/10.1002/ceat.201400463
http://doi.org/10.3390/chemengineering5030038
http://doi.org/10.3390/chemengineering4020021
http://doi.org/10.1016/j.bej.2018.09.005
http://doi.org/10.1016/j.seppur.2020.117324
http://doi.org/10.1016/j.cep.2017.06.004
http://doi.org/10.1021/ie801501y
http://doi.org/10.1016/j.coche.2015.08.002
http://doi.org/10.1016/j.partic.2016.11.005
http://doi.org/10.1016/j.partic.2012.05.002
http://doi.org/10.1002/aic.15559
http://doi.org/10.1016/j.flowmeasinst.2017.10.002
http://doi.org/10.1016/j.ijmultiphaseflow.2006.08.006
http://doi.org/10.1016/j.ces.2013.03.029
http://doi.org/10.1103/PhysRevE.91.012130


ChemEngineering 2021, 5, 65 12 of 12

21. Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001; ISBN 978-0-471-20061-1.
22. Salierno, G.; Maestri, M.; Piovano, S.; Cassanello, M.; Cardona, M.A.; Hojman, D.; Somacal, H. Features of the Motion of Gel

Particles in a Three-Phase Bubble Column under Foaming and Non-Foaming Conditions. Chin. J. Chem. Eng. 2018, 26, 1370–1382.
[CrossRef]

23. Liu, M.; Liu, L.; Zhang, H.; Yi, B.; Everaert, N. Alginate Oligosaccharides Preparation, Biological Activities and Their Application
in Livestock and Poultry. J. Integr. Agric. 2021, 20, 24–34. [CrossRef]

24. Sutirman, Z.A.; Sanagi, M.M.; Wan Aini, W.I. Alginate-Based Adsorbents for Removal of Metal Ions and Radionuclides from
Aqueous Solutions: A Review. Int. J. Biol. Macromol. 2021, 174, 216–228. [CrossRef]

25. Borgiallo, A.; Rojas, R. Reactivity and Heavy Metal Removal Capacity of Calcium Alginate Beads Loaded with Ca–Al Layered
Double Hydroxides. Chem. Eng. 2019, 3, 22. [CrossRef]

26. Zhan, T.; Lu, S.; Liu, X.; Teng, H.; Hou, W. Alginate Derived Co3O4/Co Nanoparticles Decorated in N-Doped Porous Carbon as
an Efficient Bifunctional Catalyst for Oxygen Evolution and Reduction Reactions. Electrochim. Acta 2018, 265, 681–689. [CrossRef]

27. Ghorbani-Vaghei, R.; Veisi, H.; Aliani, M.H.; Mohammadi, P.; Karmakar, B. Alginate Modified Magnetic Nanoparticles to
Immobilization of Gold Nanoparticles as an Efficient Magnetic Nanocatalyst for Reduction of 4-Nitrophenol in Water. J. Mol. Liq.
2021, 327, 114868. [CrossRef]

28. Lorenzoni, A.S.G.; Aydos, L.F.; Klein, M.P.; Ayub, M.A.Z.; Rodrigues, R.C.; Hertz, P.F. Continuous Production of Fructooligosac-
charides and Invert Sugar by Chitosan Immobilized Enzymes: Comparison between in Fluidized and Packed Bed Reactors. J.
Mol. Catal. B Enzym. 2015, 111, 51–55. [CrossRef]

29. Mehrotra, T.; Dev, S.; Banerjee, A.; Chatterjee, A.; Singh, R.; Aggarwal, S. Use of Immobilized Bacteria for Environmental
Bioremediation: A Review. J. Environ. Chem. Eng. 2021, 9, 105920. [CrossRef]

30. Ren, S.; Chen, R.; Wu, Z.; Su, S.; Hou, J.; Yuan, Y. Enzymatic Characteristics of Immobilized Carbonic Anhydrase and Its
Applications in CO2 Conversion. Colloids Surf. B Biointerfaces 2021, 204, 111779. [CrossRef]

31. Derksen, J.J. Simulations of Solid–Liquid Mass Transfer in Fixed and Fluidized Beds. Chem. Eng. J. 2014, 255, 233–244. [CrossRef]
32. Cassanello, M.; Larachi, F.; Guy, C.; Chaouki, J. Solids Mixing in Gas-Liquid-Solid Fluidized Beds: Experiments and Modelling.

Chem. Eng. Sci. 1996, 51, 2011–2020. [CrossRef]
33. Levenspiel, O. Chemical Reaction Engineering, 3rd ed.; Wiley: New York, NY, USA, 1999; ISBN 978-0-471-25424-9.
34. Wu, D.; Gu, Z.; Li, Y. Attrition of Catalyst Particles in a Laboratory-Scale Fluidized-Bed Reactor. Chem. Eng. Sci. 2015, 135,

431–440. [CrossRef]
35. Martin, C.; Olmos, É.; Collignon, M.-L.; De Isla, N.; Blanchard, F.; Chevalot, I.; Marc, A.; Guedon, E. Revisiting MSC Expansion

from Critical Quality Attributes to Critical Culture Process Parameters. Process. Biochem. 2017, 59, 231–243. [CrossRef]
36. Paidoussis, M.P. Fluid-Structure Interactions: Slender Structures and Axial Flow, 2nd ed.; Elsevier: Amsterdam, The Netherlands;

Boston, MA, USA, 2014; ISBN 978-0-12-397312-2.
37. Salierno, G.; Maestri, M.; Piovano, S.; Cassanello, M.; Cardona, M.A.; Hojman, D.; Somacal, H. Calcium Alginate Beads Motion in

a Foaming Three-Phase Bubble Column. Chem. Eng. J. 2017, 324, 358–369. [CrossRef]
38. Maestri, M.; Salierno, G.; Piovano, S.; Cassanello, M.; Cardona, M.A.; Hojman, D.; Somacal, H. CFD-DEM Modeling of Solid

Motion in a Water-Calcium Alginate Fluidized Column and Its Comparison with Results from Radioactive Particle Tracking.
Chem. Eng. J. 2019, 377, 120339. [CrossRef]

39. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
40. Abel, M.; Biferale, L.; Cencini, M.; Falcioni, M.; Vergni, D.; Vulpiani, A. Exit-Times and ε-Entropy for Dynamical Systems,

Stochastic Processes, and Turbulence. Phys. D Nonlinear Phenom. 2000, 147, 12–35. [CrossRef]
41. Guida, A.; Nienow, A.W.; Barigou, M. Shannon Entropy for Local and Global Description of Mixing by Lagrangian Particle

Tracking. Chem. Eng. Sci. 2010, 65, 2865–2883. [CrossRef]
42. Prigogine, I.; Nicolis, G. Self-Organisation in Nonequilibrium Systems: Towards A Dynamics of Complexity. In Bifurcation

Analysis; Hazewinkel, M., Jurkovich, R., Paelinck, J.H.P., Eds.; Springer: Dordrecht, The Netherlands, 1985; pp. 3–12, ISBN
978-94-009-6241-5.

43. Ito, S. Thermodynamics of Information Geometry as a Generalization of the Glansdorff-Prigogine Criterion for Stability. arXiv
2019, arXiv:1908.09446.

44. Ito, S.; Dechant, A. Stochastic Time-Evolution, Information Geometry and the Cramer-Rao Bound. arXiv 2019, arXiv:1810.06832.
[CrossRef]

45. Yoshimura, K.; Ito, S. Information Geometric Inequalities of Chemical Thermodynamics. arXiv 2020, arXiv:2005.08444.
46. Ebrahimi-Mamaghani, A.; Sotudeh-Gharebagh, R.; Zarghami, R.; Mostoufi, N. Dynamics of Two-Phase Flow in Vertical Pipes. J.

Fluids Struct. 2019, 87, 150–173. [CrossRef]
47. Zhang, Y.; Ren, P.; Li, W.; Yu, K. Turbulent Mass Transfer Model for the Simulation of Liquid-Solid CFB Risers and Its Verification.

Powder Technol. 2021, 377, 847–856. [CrossRef]
48. Salierno, G.; Maestri, M.; Picabea, J.; Cassanello, M.; De Blasio, C.; Cardona, M.A.; Hojman, D.; Somacal, H. Industrially Relevant

Radioactive Particle Tracking Study on the Motion of Adsorbent Granules Suspended in a Pilot-Scale Water–Air Three-Phase
Fluidized Bed. Chem. Eng. Res. Des. 2021, 173, 305–316. [CrossRef]

http://doi.org/10.1016/j.cjche.2018.03.026
http://doi.org/10.1016/S2095-3119(20)63195-1
http://doi.org/10.1016/j.ijbiomac.2021.01.150
http://doi.org/10.3390/chemengineering3010022
http://doi.org/10.1016/j.electacta.2018.02.006
http://doi.org/10.1016/j.molliq.2020.114868
http://doi.org/10.1016/j.molcatb.2014.11.002
http://doi.org/10.1016/j.jece.2021.105920
http://doi.org/10.1016/j.colsurfb.2021.111779
http://doi.org/10.1016/j.cej.2014.06.067
http://doi.org/10.1016/0009-2509(96)00058-9
http://doi.org/10.1016/j.ces.2015.01.005
http://doi.org/10.1016/j.procbio.2016.04.017
http://doi.org/10.1016/j.cej.2017.05.060
http://doi.org/10.1016/j.cej.2018.11.037
http://doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://doi.org/10.1016/S0167-2789(00)00147-0
http://doi.org/10.1016/j.ces.2009.12.041
http://doi.org/10.1103/PhysRevX.10.021056
http://doi.org/10.1016/j.jfluidstructs.2019.03.010
http://doi.org/10.1016/j.powtec.2020.09.050
http://doi.org/10.1016/j.cherd.2021.07.022

	Introduction 
	Materials and Methods 
	The Radioactive Particle Tracking Technique 
	Liquid–Solid Fluidized Bed (LSFB) Operational Parameters 
	Gas–Liquid–Solid Fluidized Bed (GLSFB) Operational Parameters 

	Shannon Entropy and Mixing Behavior 
	Mixing and Stability Assessment Based on Information Geometry 
	Mixing Times and Entropy Production 
	Glansdorff–Prigogine Criterion Based on the Fisher Information 

	Conclusions 
	References

