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Abstract: In this paper, we present a methodological study of modelling red blood cells (RBCs) in
shear-induced flows based on the discrete multiphysics (DMP) approach. The DMP is an alternative
approach from traditional multiphysics based on meshless particle-based methods. The proposed
technique has been successful in modelling multiphysics and multi-phase problems with large
interfacial deformations such as those in biological systems. In this study, we present the proposed
method and introduce an accurate geometrical representation of the RBC. The results were validated
against available data in the literature. We further illustrate that the proposed method is capable of
modelling the rupture of the RBC membrane with minimum computational difficulty.

Keywords: discrete multiphysics; the smoothed particle hydrodynamics (SPH) method; fluid–solid
interactions (FSI); red-blood cells; numerical modelling; shear flow

1. Introduction

The human red blood cell (RBC; erythrocyte) is a homogeneous biconcave disk-like
microparticle that is surrounded by a fluidic incompressible lipid bilayer membrane that
is underpinned by a thin elastic cytoskeleton [1]. The membrane and its underlying
cytoskeleton have been naturally selected to be sufficiently flexible to allow passage of
the RBC through capillaries of 4 µm diameter in all tissues; this is approximately half of
the cell’s main diameter. The main physiological function of the RBC is the transfer of
oxygen from the lungs to all tissues and the return of CO2 to the lungs where it is exhaled.
The RBC actively metabolises glucose that provides free energy from its bond cleavage to
phosphorylate ADP to make ATP, the ‘energy currency’ of the cell. In the RBC, an ionic
disequilibrium exists across the membrane with a much higher Na+ concentration outside
in the blood plasma, while inside the concentration of K+ is relatively high. The steady-
state of these concentrations is maintained by the membrane protein Na, K-ATPase that
catalyses the hydrolysis of one molecule of ATP for three Na+ ion ejected and two K+

taken up. The detailed kinetics of RBC metabolism and ATP turnover are encapsulated in
a comprehensive computer model [2–4].

Other functions of the RBC are mooted to involve the transfer of ATP and ADP agents
inward and outward in the cell to release various molecules in blood flow through cell
deformation in shear-induced strain fields [5]. These purines are proposed by some to
be key effectors of arteriolar smooth muscle tone and hence affect peripheral resistance
to blood flow and thence blood pressure. The dynamics and deformation of the RBC in
shear flows are crucial in numerous biomedical applications including the detection of
diseases associated with tissue perfusion, the experimental separation of healthy cells from
infected parasitised ones, and studying human metabolism in vivo, and using nuclear mag-
netic resonance spectroscopy (MRS) [6]. The cell might also undergo membrane rupture
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(haemolysis) under conditions of extreme deformation. To have a deep understanding of
these cellular responses, the dynamics of the RBC require investigation.

Furthermore, mechanobiology is concerned with the relationship between cell shape
and energy consumption. Experimental methods to study this interrelationship are few,
but NMR spectroscopy of RBCs distorted in stretched or compressed hydrogels is one
recent example in this field. Specifically, stretching human RBCs by a factor of two enhances
their rate of glucose consumption by approximately the same factor [7]. Therefore, being
able to model the extent of altered membrane geometry will be key to understanding the
role of mechanical or flow induced shape changes of RBCs (and other cells) in whole body
energy metabolism.

There are some notable examples of numerical modelling for investigating the com-
plex fluid dynamics of the RBC in shear-induced flows. RBCs in this context have been
modelled by many methods including the lattice Boltzmann method (LBM ) [8–10] and
the finite element (FE) method [11–13] in which the fluid–solid interface is captured by the
immersed boundary method (IBM). Particle-based methods such as the smoothed particle
hydrodynamics (SPH) [14–16], discrete particle dynamics (DPD) [17], and moving-particle
semi-implicit (MPS) [18] methods have also been used for modelling RBC shape in shear
induced fluid flow.

The Lagrangian feature of particle-based methods is one of its advantages by which
fluid–solid interfaces such as the RBC membrane can be explicitly captured. In all these
methods, it is challenging to represent the RBC shape accurately. It is this that undergoes
large deformations while leading to no structural damage. The RBC displays in-plane area
incompressibility as observed in experimental studies [19,20].

In general, there are two main approaches to representing the RBC membrane, namely
shell-based, and spring-based models. In the shell-based model [21], the membrane is
represented by a zero-thickness quasi-two-dimensional structure. This view provides a
continuum representation of the membrane that can be coupled with several constitutive
laws including the neo-Hookean [22–24] and Skalak [13,25,26] laws for evaluating in-plane
tension and transverse shear. A detailed comparison and investigation of the effect of the
requisite constitutive laws has been conducted by Lac et al. [27] for spherical capsules
under shear-induced deformations. On the other hand, spring-based models e.g., the lattice-
spring model (LSM) and mass-spring model (MSM) represent the membrane through a
(structured) geometrical network of points and particles that are inter-connected by means
of virtual springs. In the latter approach, the mechanical response of the membrane depends
on the geometry of the structured network (i.e., triangular, tetrahedral, etc.) and it is
specified through mathematical correlations that relate the spring constant of the connecting
bonds with the overall elastic properties of the membrane. For specifying the in-plane area
incompressibility of the membrane in mathematical correlations, we can use linear models
that employ Hookean spring characteristics [28], or nonlinear correlations that include
virtual dampers [29], or angular springs [30,31]. In addition to these two main approaches
(LSM and MSM), other models have also been used for capturing the deformation of
the RBC membrane; these include an area-difference-elasticity-theory [32,33]; linear finite
element (LFE) method [34], and high fidelity simulations of RBCs [35,36].

As mentioned above, the modelling of RBC behaviour under conditions of flow
might also include the sporadic occurrence of haemolysis (membrane rupture) under
specific conditions. Taking into account that haemolysis might occur in extreme conditions,
a comprehensive model should be able to accommodate all these possible scenarios. On the
other hand, and to the best of our knowledge, all models thus far in the literature are
not fully comprehensive in this regard. Therefore, this motivated our use of hybrid
multiphysics numerical modelling, which is fully capable of capturing all possible scenarios
of the RBCs under a shear field.

Therefore, we present a methodological study of modelling RBCs in shear-induced
flows based on using what we call the discrete multiphysics (DMP) approach [37–39].
DMP is an alternative approach from traditional multiphysics by combining particle-
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based methods, e.g., the SPH for solving fluid flow and the MSM for capturing the elastic
deformation of flexible solid materials, and it has been particularly successful in modelling
biological systems [40–42]. The SPH method is a Lagrangian particle-based technique,
which was developed for astrophysical studies [43,44]. The method was later extended
for modelling fluid flow [45,46]. In SPH modelling the fluid domain is discretised into
Lagrangian computational particles that possess fluid properties viz. density, viscosity,
and internal energy, while interacting with their neighbouring particles in a way that is
described mathematically by a kernel function [47]. The Lagrangian nature of the SPH
method makes it suitable for simulating systems that undergo large deformations, such as
occur in free surface flows [46,48], droplet and bubble dynamics [49–51], and fluid–solid
interactions [52,53]. Within the DMP framework, the MSM was used to generate the RBC
membrane through a linear mathematical correlation. In order to accommodate haemolysis
in our model, we extended the DMP by setting a limited strain threshold beyond which
the virtual bonds, that connect the membrane particles are dispelled, thus representing
membrane rupture.

2. Methodology
2.1. General Equations

An incompressible Newtonian fluid in laminar flow is governed by:

Dρ

Dt
= −ρ∇ · u, (1)

Du
Dt

=
−∇p

ρ
+

1
ρ
(∇ · µ∇u) + F, (2)

where u is the velocity vector, while ρ, µ, and p are the fluid properties density, kinematic
viscosity, and pressure, respectively. D

Dt is the material time derivative where t denotes
time, and F denotes denotes the volumetric body force.

We note once again that the present numerical approach was based on the DMP
model [38], which combines the SPH method for modelling fluid flow, and the MSM for
representing the elastic properties of membrane particles. It is relevant to outline these
approaches along with how their coupling has been achieved mathematically.

2.2. The SPH Method

The governing equations of motion i.e., Equations (1) and (2) are solved by the SPH
method over computational particles using a kernel function, W(rij, h). The kernel func-
tion, which can be concisely represented by Wij, relates particle i with its neighbouring
particle j [46,54], based on their distance rij = |ri − rj|, and the smoothing length, h as
the horizon limit for the interactions with neighbouring particles. Figure 1 represents the
interactions between two-dimensional SPH particles based on their relative proximity,
through a smoothing kernel function. Among several kernel functions in the literature,
the Lucy kernel function [44] was used in this study:

Wij = β

{
(1 + 3q)(1− q)3 if 0 ≤ q ≤ 1
0 if q > 1,

(3)

where q = (rij/κh) and β = (105/16 πh3) for three-dimensional simulations.
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Figure 1. Schematic of the SPH method representing the interaction between particles through the
kernel function.

In the SPH method, any field variable f can be approximated using the summation
over discrete particles as:

fi '
Ji

∑
j=1

mj

ρj
f jWij, (4)

where mj and Ji denote the mass and the number of computational neighboring particles
for particle i. The SPH method discretizes the continuity and momentum equations,
Equations (1) and (2) into the following form as:

ρ̇i = −
Ji

∑
j=1

mjuij
∂Wij

∂xi
, (5)

fi = −
Ji

∑
j=1

mimj

(
pi

ρ2
i
+

pj

ρ2
j

)
∂Wij

∂xi
+

Ji

∑
j=1

mimj
(
µi + µj

)
ρiρj

uij
∂Wij

∂xi
+ Fi. (6)

In Equation (6), the first term is the pressure gradient and the second is the dis-
sipation term that conforms to a laminar viscosity model [55]. To evaluate the pres-
sure term in the SPH method, one may solve a Poisson equation to obtain an incom-
pressible solution [50,56,57] or might consider a weakly compressible SPH (WCSPH) ap-
proach [48,58,59], in which the pressure is obtained by an equation of state (EOS) using
density variations. We used this approach by using the so-called Tait EOS [47,48]:

p =
c2

0ρ0

γ

[(
ρ

ρ0

)γ

− 1
]

. (7)

where, c0 is the reference speed of sound. In order to keep density variations below 1%, it is
recommended that the speed of sound should be set at least one order of magnitude larger
than the maximum velocity in the domain [45]. ρ0 is the reference density (1000 kg m−3),
and γ is empirically set to be 7 in this power law equation [45,46].
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2.3. The MSM

As mentioned, the MSM [60], which is sometimes referred to as coarse grained molec-
ular dynamics (CGMD) [38], was employed to implement elasticity of the RBC membrane.
In the MSM [61], a network of harmonic bonds connects computational particles, allowing
them to deform and stretch according to the Newtonian equations of motion using linear
spring bonds. Figure 2 shows the structure of the MSM for a quasi-two-dimensional RBC
membrane. To account for Hookean elasticity, harmonic bonds are used as follows:

Fi,bond = kb
(
rij − r0

)
(8)

where kb and r0 are the coefficient and the equilibrium distance of Hookean springs,
respectively. In this methodological approach, our emphasis is on the discretization and
implementation of the model, so we adopted the linear Hookean model for the sake of
simplicity and lower computational costs, while other nonlinear models can be easily
replaced without further difficulties. Another advantage of the MSM is inherited in the
modelling of membrane rupture, for which we nullified the springs once their length
exceed the ultimate threshold set equal to 1.05 of their initial value.

Figure 2. Schematic of the MSM representing the network of interconnected particles via spring network.

2.4. Coupling of SPH and MSM

To model the physical properties at the fluid–solid interface, we considered three
types of boundary conditions to be taken into consideration [62], i.e., the no-penetration,
the no-slip, and continuity of stresses at the interface. In continuum mechanics these
conditions are often represented, respectively, as:(

∂

∂t
u f − us

)
· n = 0, (9)

(
∂

∂t
u f − us

)
× n = 0, (10)

and

σsn = σf (−n), (11)

where n represents the unit normal vector. us and u f denote the solid displacement and
fluid velocity, respectively, while the solid and fluid stresses are represented by σs and σf .
Within the DMP framework, we considered ghost SPH particles, which are assigned to
MSM particles at the fluid–solid interface. To satisfy all three boundary conditions, these
particles have dual identity; they interact with the SPH fluid particles for solving fluid
properties but they interact with other MSM particles as membrane particles.
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2.5. Numerical Algorithm

The velocity verlet (VV) algorithm was used to integrate over time by using a first-
order Euler approach with a variable time step, specified by the following stability condi-
tion, ∆t = ζh2/ν. Here, ν represents the dynamic viscosity equal to ν = ρ/µ and ζ = 0.125
provided satisfactory results [38]. Considering that (∗) and (n) superscripts denote vari-
ables at the intermediate and nth time step, the particle velocities were calculated using the
VV algorithm as:

u∗i = u(n)
i +

∆t
2mi

f(n)i . (12)

Then, particle densities were calculated according to:

ρ∗i = ρ
(n)
i +

∆t
2

ρ̇
(n)
i . (13)

In the above equation, ρ̇ is the rate of density variations according to Equation (5),
in which the density should be updated based on the velocity difference between the
particles uij. However, using uij causes numerical instabilities arising from the lag of the
velocity in the VV algorithm. So, we use an extrapolated velocity in the calculation of the
rate of density variations, which can be represented as:

ui = u(n)
i +

∆t
mi

f(n)i , (14)

where uij = (ui − uj). Once particle velocities are updated, computational particles are
moved to their new positions using:

x(n+1)
i = x(n)i + ∆tu∗i . (15)

Then, ρ̇
(n+1)
i , and f(n+1)

i were calculated at the (n+ 1) time step using Equations (5) and (6),
respectively. Finally, the velocity and density were calculated at the (n + 1) time step,
respectively, as:

u(n+1)
i = u∗i +

∆t
2mi

f(n+1)
i , (16)

and,

ρ
(n+1)
i = ρ∗i +

∆t
2

ρ̇
(n+1)
i . (17)

We have extensively used the above-mentioned numerical algorithm in our previous
studies [28,63,64] where we can refer interested readers to for more detailed discussions.

3. Problem Set-Up

The literature contains several models of the geometry of the RBC, including the
frequently cited one by Evans et al. [25]. In this study, we used a model which we consider
represents the dimples of the biconcave disc more accurately. The model consists of a set of
three parametric equations that involve Jacobi elliptic functions [65] as:

x = A
CN (µ, m) CN (ν1, mp)

g
cos(ψ), (18)

y = A
CN (µ, m) CN (ν1, mp)

g
sin(ψ), (19)

and

z = A
SN (µ, m)DN (µ′, m) SN (ν1, mp)DN (ν1, mp)

g
, (20)
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where, SN , CN , and DN are the Jacobi elliptic functions. The coefficient A was defined by us-
ing three geometrical distances obtained from experimental electron microscope measurements.

A =
1
2

√
d2 − 2h2 − 2

√
h2(−b2 + h2)cos(ψ), (21)

This was used to define other intermediate parameters. Also, g = 1− (DN (µ, m)2

SN (ν1, mp)2) and,

m = 1−mp = k2 = 2d
√
(A2(−4A2 − b2 + d2))/d2)√
(4A2) + b2

√
(−4A2) + d22 . (22)

The key specific lengths of the RBC are the cell diameter at the plane splitting the
biconcave into two cup-shaped halves d = 8× 10−6 m, the thickness of the cell at the
thickest position (like the width of the tyre on a car wheel) h = 2.12× 10−6 m, and the
thickness at the centre of the dimple, b = 1× 10−6 m. Considering these parameters,
the surface area and volume of the RBC are found to be equal to S = 85.8 fL and
V = 128 µm2 respectively [65]. Figure 3 shows the shape of the RBC in a two dimensional
projection of the three-dimensional body.

Figure 3. A representative illustration of an RBC.

In the present analysis the RBC was represented by a hybrid model, as described in
Section 2 by which the SPH was used for modelling the fluid flow, and the RBC membrane
was simulated by the MSM. In order to apply the surface area incompressibility of the
membrane (conservation of area), the spring constants were taken to be sufficiently large
so that a change in the net surface area was minimized. The spring constant could not
be taken to be very large since large spring constants resulted in numerical instabilities.
Here, the spring constant was set to kb = 0.0005 N/m. The shear modulus of the RBC was
tuned by adjusting the angular spring constant. It has been seen that the angular constant
of ka = 1× 10−20 Nm/rad led to convincing simulated behaviours in shear fields.

Figure 4 represents the 3D simulation domain with height, width, and depth of H, W,
and D, respectively. The top and bottom walls abide the no-slip boundary conditions, while
periodic boundary conditions were implemented on the rest of boundaries. To maintain a



ChemEngineering 2021, 5, 33 8 of 14

constant shear rate γ̇, the top and bottom boundaries were given with velocity U and −U,
respectively. The RBC was placed at the centre, equidistant from all domain boundaries.
A uniformly-spaced Cartesian grid was used to populate the domain with fluid particles.
All in all, there were four different types of particles in this model: (1) particles of the
top boundary (white); (2) particles of the bottom boundary (red); (3) the RBC particles
(blue); (4) the fluid particles (green), as illustrated in Figure 4. In total, the simulation
domain contained more than one million computational particles comprising all four
particle types. It should be noted that a particle-resolution study was carried out for four
different particle resolutions in a shear flow [28] in our previous study, and it was observed
that the results and hydrodynamics did not improve significantly beyond the resolution
that is equivalent to the one we used in this study. The test-case was simulated on the UK’s
national super computing facilities (ARCHER with 2.7 GHz, 12-core Intel Xeon E5-2697).
The computational cost was 23 h of wall-time on approximately 1500 CPU cores (MPI) for
each test-case.

The domain undergoes shear in the x-direction by moving the top and bottom bound-
ary particles in opposite directions. Subsequently, the shear imposed RBC deformation are
described and analysed in the next section.

Figure 4. Computational domain for cell under shear rate; the RBC is illustrated by red particles,
the top and bottom boundaries are blue, and the fluid particles are green (different particle size,
particularly for green and red particles, is a post-processing trick for better illustration and has no
further modelling or physical interpretations).

4. Results

In this section, we show that the presented model was capable of capturing the
dynamics of the RBC with superior features, relative to other models reported in the
literature. Thus, we show how the current model could predict membrane rupture that
was induced by extreme flow conditions.

In order to characterise the deformation of the RBC, a quantitative measure was
introduced. Specifically, this was the deformation index, D12 = |L−H|/(L+H), where L
andH were the length of the RBC in the plane passing through its origin in the direction of
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the main axis, and its transverse direction, respectively. Figure 5 represents the variation of
the deformation index for three capillary numbers with respect to dimensionless simulation
time and compares them with the numerical data in the literature [13]. It was shown that
the present model produced accurate results with respect to the models in the literature
and it captured the frequency of deformation with the sinusoidal variations of flow rate.
Any discrepancy in the results was due to the different geometries used to model a RBC;
these produced a larger amplitude in the sinusoidal variation of the deformation index [13].

Figure 5. Validation of the present RBC model with those of Omori et al. [13].

Considering the variations of the deformation index shown in Figure 6, it was interest-
ing to note that the RBC underwent a tumbling motion, and it rotated around its centre of
mass when the shear rates were symmetrical. This is the reason why there was a sinusoidal
trend in the deformation index. At small capillary numbers, the RBC did not deform
very much, and accordingly the deformation index exhibited minimal variation over time.
The variation of the deformation index was restricted between 0.56 ≤ D12 ≤ 0.58 for the
smallest capillary number. At moderate capillary numbers i.e., Ca = 0.02, the deformation
index indicated sinusoidal behaviour of large amplitude. This was interpreted to be due to
the resistance of the RBC against the applied shear. When the applied shear met the RBC
when it was oriented such that its main diameter was along the flow direction, the RBC
geometry was similar to its undisturbed shape. This was the point in time when the
deformation index was at its peak value. On the other hand, when the main diameter of the
RBC was transverse to the flow direction, the deformation index decreased considerably.
For large capillary numbers, the shear rate was sufficiently high to stretch the RBC along
the direction of shear. The variation of the deformation index with such high capillary
numbers was also due to the re-orientation of the RBC during its tumbling motion.

Figure 6 represents the RBC shape at different simulation times for three capillary
numbers corresponding to Figure 6. Our numerical model was further compared with
data in the literature [13] and it showed that the shape of the RBC was accurately captured.
The shape of the RBC remained almost undisturbed during its tumbling motion. For mod-
erate values of capillary number, the RBC was similar in shape to its undisturbed form
whereby its major diameter was along the direction of the applied shear. For large capillary
numbers, the RBC was stretched along it direction of shear.
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Figure 6. Validation of the present RBC model with those of Omori et al. [13] for three test-cases
(a) Ca = 0.002, (b) Ca = 0.02, and (c) Ca = 3.0 at different dimensionless times.

In many applications, once RBCs are exposed to high shear rates, the membranes of
unhealthy cells might rupture. To simulate this biomedical eventuality is difficult but our
method is one that can model the responses under shear of healthy cells and unhealthy
or parasite-infected ones. On the other hand, current numerical techniques generally
have systemic problems for modelling the membrane rupture of RBCs under shear fields.
In summary, we present in Figure 7 membrane rupture of a RBC under flow-induced shear.
It was clear that rupture could occur at relatively low shear rates in contrast to when the
RBC was exposed to extreme shear such as those in Figure 5.

The modelling is a numerical depiction of RBCs under shear and serves to illustrate its
capabilities for applications to particles of other geometries and elastic properties. In other
words, in order to simulate realistic membrane rupture, careful experimental analysis and
membrane characterisation were required to determine the threshold strain that must be in
the numerical model. These characterisations lie in the realm of cellular biophysics of RBCs
(and other cell types) that will be developed as we refine the current numerical modelling
to help interpret experimental data.
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(a) (b)

(c) (d)

Figure 7. Rupture of the membrane under shear (Ca = 2.0) at different dimensionless times (a) γ̇t = 0,
(b) γ̇t = 2, (c) γ̇t = 4, and (d) γ̇t = 6.

5. Conclusions

In this study, we employed a novel numerical technique using the DMP model for
simulating the deformation of RBCs in shear-induced flows. This methodological study
describes a simple but accurate and flexible numerical technique for simulating a myriad of
problems involving RBCs in in vivo and in vitro applications. In this study, we discussed
the methodology in details from the mathematical, numerical, and technical perspectives,
describing the governing equations, numerical algorithm, and implementation techniques.

The model has a Lagrangian particle-based nature and utilised a complex mathemat-
ical formulation derived from the Jacobi elliptic functions, which provided an accurate
representation of the RBC geometry. Then, the proposed mathematical formulation was
linked to the MSM, which modelled the RBC through a complex network of interconnected
particles on its interface. The proposed model is employed for modelling RBC deformation
under shear at various capillary numbers. It was observed that RBCs represented a sinu-
soidal behaviour in their deformation index factor which is accurately comparable with
available data in the literature.

We have further extended the model to simulate the rupture of the RBC’s membrane
under extremely large shear rates, which could be used in many biological and pharmaceu-
tical applications. The membrane rupture was implemented via breaking the spring bonds
between particles of which their deformation exceeded a certain strain threshold. Another
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advantage of the proposed method is that it can be easily extended to other complex
physics, and applied to other real-world problems.
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