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Abstract: Currently, we assist the emergence of sensors and low-cost information and communication
technologies applied to food products, in order to improve food safety and quality along the food
chain. Thus, it is relevant to implement predictive mathematical modeling tools in order to predict
changes in the food quality and allow decision-making for expiration dates. To perform that, the
Baranyi and Roberts model and the online tool Combined Database for Predictive Microbiology
(Combase) were used to determine the factors that define the growth of different bacteria. These
factors applied to the equation that determines the maximum specific growth rate establish a relation
between the bacterial growth and the intrinsic and extrinsic factors that define the bacteria environ-
ment. These models may be programmed in low-cost wireless biochemical sensor devices applied to
packaging and food supply chains to promote food safety and quality through real time traceability.

Keywords: food safety; predictive model; microbial growth; low-cost wireless biochemical sensor
devices

1. Introduction

The validity periods presented in the traditional labels of perishable products are
described as the period during which a stored product remains safe and retains the desired
properties and qualities for consumption [1,2]. Usually, one of two types of validity periods
are applied: one is the expiration date that limits the period of time for which perishable
food remains safe for human consumption; the other is “consumption before” that indicates
the estimated time for consumption during which the food will be able to maintain its
nutritional properties if it is preserved in the recommended conditions [2].

However, sometimes deviations occur that alter the desired conditions of perishable
foods preservation and maintenance, compromising the quality of the products. When this
happens, differences result between the actual remaining useful life and with the shelf-life
described in the label. For this reason, many countries require regulations so that food has
an indication of appropriate durability on the packaging in order to indicate the supposed
end of its useful life. Therefore, with the determination through traditional methods of the
expiration date, it is not possible to determine the useful life of a product when it has been
adulterated [1].

The current world’s digitalization brings several benefits to food supply chains and to
the consumer. New technologies based on biochemical sensors and low-cost information
and communication technologies (ICT), mostly focusing on Internet of Things (IoT), can
be applied to solve old paradigms and mitigate inefficiencies. Particularly, it can be
applied to food product traceability, promoting better planning and coordination among
the different stages of the supply chain, in terms of the product’s remaining shelf life,
and supply and demand of fresh food [3]. These technologies have been integrated in
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packaging, developing the concept of intelligent or smart packaging [4]. This package is
able to provide additional real time data besides the current regular information available
such as origin, validity date, organization, nutritional composition, among others. It may
inform and/or advise producers, retailers, or consumers about the product traceability
considering routes, extrinsic parameters e.g., temperature (T), relative humidity (RH) and
atmosphere and intrinsic parameters, e.g., water activity (aw), hydrogen potential (pH),
oxidation-reduction potential, chemical composition and biological structure of the food as
well as its anti-microbial substances, microbial development, among others [5].

Intelligent packaging can provide information concerning food quality, safety and the
history of a product during transport and storage, through the six main functions of intelligent
packaging: monitoring, detecting, sensing, recording, tracking and communicating [6].

In this sense, the development and implementation of predictive mathematical model-
ing tools is an effective way to predict changes in food quality and enable decision-making
regarding shelf life [1,7]. These models can be integrated as decisive data information for
a better functioning of several sensors and indicators in intelligent food packaging. In
smart packaging, indicators are usually applied, which are devices that can determine
the presence or absence, the extent of the reaction between two or more substances or the
concentration of a particular substance. This information is transmitted to the user through
an irreversible and visible color change [8–10]. On the other hand, sensors are electronic
devices or tools that can detect, quantify and convert a signal to an electrical signal using
transducers. Most sensors are composed of two parts: the first one can detect the presence,
activity, composition or concentration of certain chemical or physical analytes, such as pH,
humidity, color and biological compounds. Physical or chemical information is also con-
verted by the sensor into a form of energy that can be measured by the second component,
the transducer [9,10]. These two concepts are often confused and alternately applied to
smart packaging, since the indicator refers to a colorimetric sensor normally consisting of a
chemical sensor or a biosensor [11]. Some types of sensors used in intelligent packaging
are physical sensors, chemical sensors, gas sensors and biosensors. Smart packaging with
a sensor that monitors the packaged food product and its environment throughout the
supply chain is really helpful and important in ensuring the food quality and safety for
end consumers [12].

There is a growing diversity of strategies available in the food industry to improve
product quality and reduce food waste, as it is a reality that exists worldwide. This waste
is also due to the food damage along all the food chain, from the producer until the
final consumer, to the point when the food security is compromised [13]. To talk about
food security, it is necessary to know what causes the food deterioration and make them
unhealthy, as well as the conditions it happens [7]. The answer is the bacterial growth
in the food. Each bacteria grows at a different rhythm and under different conditions [7]
depending on intrinsic and extrinsic factors. Despite all factors contributing to bacterial
growth, temperature, pH and water activity, are considered to be the most influent [14],
and can be directly used in the mathematical models.

The experimental study of bacterial growth allowed biologists to create a growth
curve [15]. In 1993, Baranyi and, in 1994, Baranyi and Roberts, created a model able to
represent that growth curve, which is showed in Equation (1) [16,17].

y(t) = y0 + umaxt + 1
umax

ln
(

e−vt + e−h0 − e−vt−h0
)
+ . . .

. . .− 1
m ln

(
1 + emumaxt+ 1

umax ln (e−vt+e−h0−e−vt−h0 )−1
em(ymax−y0)

) (1)

The relation between this model variables and the microbial growth curve can be
visualized in Figure 1 and is explained in detail [18,19]:
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Figure 1. Relation between the growth curve and the Baranyi and Roberts model variables (Reprinted
from ref. [19]).

• y(t) is the same as ln(x(t)) where x(t) is the number of colony-forming unit (CFU)/g;
• y0 is the initial value of CFU/g (scaled logarithmically) and its value derived from

Tables 1–6 is shown as result in Table 7;
• ymax is the maximum value of CFU/g (scaled logarithmically) and its value is also

defined in Table 7;
• µmax is the maximum specific growth rate and its value is affected by intrinsic and

extrinsic factors;
• h0 is a constant defined by h0 = − ln(∝0), where ∝0 is the physiological state; It is also

related with λ (lag phase), where λ = h0
umax

;
• m is the parameter that define the curvature between the exponential and station-

ary phase;
• nc is the parameter that define the curvature between the initial and exponential phase

through the equation nc =
v

umax
;

• t is the time since the beginning of the bacteria growth.

As stated above, new technologies applied to the packaging and food supply chain
to promote food safety and quality through real time traceability need to engage low
cost, effective biochemical sensors and ICT. In this case, it is intended to apply predictive
mathematical models of bacterial growth according to temperature, pH and water activity
as a freshness sensor or indicator. Thus, the freshness sensor can be defined as a device
that has the ability to feel the freshness of the food related to the environment inside or
outside the packaging and inform about the food quality and safety. There are diverse
commercially available sensors and indicators for freshness monitoring of food packaging,
such as Freshtag® (COX Technologies), Sensorq® (DSM NV and Food Quality Sensor
International), among others [11].

However, the computational requirements to predict bacterial growth curves that can
be used to predict food safety and quality are substantial for the system requisites.

In this context, the maximum specific growth rate, µmax, represents, in the bacterial
growth curve, how intrinsic and extrinsic factors affect the bacterial development, being
manifested in distinct ways for each bacteria.

Of the various models that relate µmax with temperature (T), pH and water activity
(aw), the Masana & Baranyi model will be used, presented in Equation (2) [20]:

ln(umax) = a0 + a1·T + a2·pH + a3·bw + a4·T·pH + . . .
. . . + a5·T·bw + a6·pH·bw + a7·T2 + a8·pH2 + a9·bw

2 (2)

where ai are the coefficients to be estimated, T and pH are respectively the values of
temperature (◦C) and pH, and bw is calculated through [21]:

bw =
√

1− aw (3)
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The Equation (2) applied in Equation (1) allows to have the parameters that define
intrinsic and extrinsic factors in Baranyi and Roberts model.

Online tool Combase Predictor [22] uses the link of these two equations to present the
growth curve of a previous selected bacteria when subjected to environment conditions
previously defined by the user. This interface, defined in Figure 2, also presents the value
of µmax, that allows to estimate the coefficients of Equation (2).

Figure 2. Example of ComBase Predictor (available online in www.ComBase.com, accessed on 3 March 2021).

ComBase is a highly useful tool, with over 60,000 records, to understand safer ways
of producing and storing foods. These data were obtained from scientific literature and
produced by diverse institutions. Each data record allows users know how bacteria
populations change for a particular combination of environmental factors, and, thus, gives
predictions from models based on selected data as a function of environmental factors such
as temperature, pH and water activity.

Thus, the paper describes a simplified approach to predict food safety through the
maximum specific bacterial growth rate as a function of extrinsic and intrinsic parameters.
The model coefficients developed in this paper allow for the use of bacterial growth curve
models to predict food safety in low-cost computational requirements devices, contributing
in this sense to the development of technologies that improve food systems.

2. Materials and Methods

To estimate ai values, will be used the online tool available in www.ComBase.com
(accessed on 3 March 2021). This way will only be considered some bacteria presented on
the referred tool:

• Aeromonas hydrophila;
• Bacillus cereus;
• Bacillus licheniformis;
• Bacillus subtilis;
• Clostridium botulinum;
• Clostridium perfringens;
• Escherichia coli;
• Listeria monocytogenes;
• Salmonella;
• Shigella flexneri;

www.ComBase.com
www.ComBase.com
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• Staphylococcus aureus;
• Yersinia enterocolitica;
• Brochothrix thermosphacta;
• Pseudomonas.

Interventional studies involving animals or humans, and other studies that require
ethical approval, must list the authority that provided approval and the corresponding
ethical approval code.

2.1. Determination of the Maximum Specific Growth Rate

The coefficients ai varies from 0 to 9 and are used in Equation (2). These coefficients
will be estimated for the calculation of the value of the maximum specific growth rate
for any temperature, pH and aw for any bacteria. Thus, to determine the maximum
specific growth rate to each bacteria is necessary to get the values of these coefficients of
Equation (2), as will be described below. To do that, the value of maximum specific growth
rate obtained in the referred online tool is used, together with the values of temperature,
pH and water activity that give origin to that value of µmax.

2.2. Calculation of Coefficients

Once the experimental procedure of calculation is the same for all the bacteria, is used
only as one example of demonstration. Thus, the values of ai to the Brochothrix thermosphacta
bacteria will be estimated. To do that, with Combase, Table 1 with different combinations of
values of temperature, pH and aw (and bw) is constructed and, after, with those conditions
the maximum specific growth rate is verified.

Table 1. Maximum specific growth rate to different values of temperature (T), pH and water activity
(aw), to the bacteria Brochothrix thermosphacta.

Input

T [◦C] pH aw µmax

1 5.50 0.950 0.012
1 6.25 0.975 0.027
1 7.00 0.95 0.011
15 5.50 1.000 0.132
15 6.25 1.000 0.247
30 5.50 0.950 0.028
30 6.25 0.950 0.061
30 7.00 0.950 0.066
30 7.00 0.975 0.145
30 7.00 1.000 0.313

From those values, Table 2 is constructed, where are presented the ai. factors. This
table will be used as a matrix, Matrix A, with 10 rows and 10 columns. Another matrix,
Matrix B, with 10 rows and 1 column, is made with the values of ln(µmax), which also
included in Table 2.

Using a linear equations system, these matrices will be used to calculate the coefficients
a0 to a9, through the Equation (4).

[A]·[ai] = [B] (4)

That represents a system with 10 equations and 10 unknowns, from which is possible
to obtain the values presented in Table 3. These are the estimated values that when applied
in Equation (2) permit the calculation of the value of the maximum specific growth rate for
any temperature, pH and aw for any bacteria, in this case for the Brochothrix thermosphacta.
Once all these values start to be calculated with an estimation, when compared with
Combase Predictor there is a small error associated. Table 4 represents that error for
randomly obtained environments.
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Table 2. Matrix A and Matrix B to the bacteria Brochothrix thermosphacta, using the values of Table 1.

Matrix A Matrix B

T pH bw T·pH T·bw pH.bw T2 pH2 bw
2 ln(µmax)

1 1 5.50 0.223607 5.50 0.2236068 1.229837388 1 30.2500 0.050 −4.42285
1 1 6.25 0.158114 6.25 0.1581139 0.988211769 1 39.0625 0.025 −3.61192
1 1 7.00 0.223607 7.00 0.2236068 1.565247584 1 49.0000 0.050 −4.50986
1 15 5.50 0 82.5 0 0 225 30.2500 0 −2.02495
1 15 6.25 0 93.75 0 0 225 39.0625 0 −1.39837
1 30 5.50 0.223607 165.00 6.7082039 1.229837388 900 30.2500 0.050 −3.57555
1 30 6.25 0.223607 187.5 6.7082039 1.397542486 900 39.0625 0.050 −2.79688
1 30 7.00 0.223607 210.00 6.7082039 1.565247584 900 49.0000 0.050 −2.71810
1 30 7.00 0.158114 210.00 4.7434165 1.106797181 900 49.0000 0.025 −1.93102
1 30 7.00 0 210.00 0 0 900 49.0000 0 −1.16155

Table 3. Value of ai to the bacteria Brochothrix thermosphacta, using the values of Table 1.

ai Value

a0 −28.3244
a1 0.0976
a2 7.8197
a3 8.0746
a4 0.0217
a5 −0.1346
a6 −0.5496
a7 −0.0051
a8 −0.6221
a9 −31.9812

Table 4. Calculation errors of µmax using estimated values of ai.

Input µmax

T [◦C] pH aw µmax µmax (estimated)
Absolute

Error
Relative

Error

4.65 5.7 0.960 0.031 0.0313837 3.837 × 10−4 1.2%
17.00 6.8 0.962 0.129 0.1302418 12.418 × 10−4 1.0%
28.00 6.5 0.990 0.257 0.2611274 41.274 × 10−4 1.6%
1.50 6.5 0.990 0.036 0.0360317 0.317 × 10−4 0.1%
1.50 5.8 0.960 0.020 0.0199184 0.816 × 10−4 0.4%
3.50 6.0 0.990 0.051 0.0520164 10.164 × 10−4 2.0%
5.40 6.0 0.997 0.074 0.0746830 6.83 × 10−4 0.9%

20.00 7.0 0.997 0.323 0.3226309 3.691 × 10−4 0.1%
3.00 5.9 0.960 0.027 0.0271576 1.576 × 10−4 0.6%

10.00 6.8 0.960 0.070 0.0702477 2.477 × 10−4 0.4%
23.00 6.0 0.962 0.114 0.1167338 27.338 × 10−4 2.4%

Using the values that would generate the smaller error when estimating ai coefficients,
Table 5 was formulated, which contains these coefficients to the bacteria.
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Table 5. Coefficients to determine the maximum specific growth rate to each bacteria.

Microorganism
ai

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

Aeromonas
hydrophila −28.0530 0.2469 7.2505 3.1783 0.0067 −0.0561 1.3009 −0.0054 −0.5609 −125.5860

Bacillus cereus −2.7330 0.1622 −0.8614 1.5969 0.0122 −0.1831 1.2199 −0.0025 0.0720 −59.3343
Bacillus

licheniformis −29.1238 0.4592 6.4417 −12.1128 −0.0053 0.0649 2.7058 −0.0055 −0.4889 −54.4646

Bacillus subtilis −20.5091 0.2066 4.7178 2.1808 0.0075 0.0456 −1.1555 −0.0025 −0.3835 19.8195
Clostridium
botulinum −32.7539 0.4803 7.6414 26.4667 0 −0.0939 −1.0452 −0.0096 −0.5609 −163.932

Clostridium
perfringens −7.4775 0.2831 0.0580 8.6498 0.0068 0.1154 2.3642 −0.0042 −0.0195 −153.4672

Escherichia coli −20.3231 0.4115 4.1261 2.2349 0.0002 −0.2249 −0.0415 −0.0060 −0.3162 −31.9882
Listeria

monocytogenes −18.2070 0.2029 3.9028 6.0167 0.0024 0.0408 −0.1241 −0.0028 −0.2886 −43.1797

Salmonella −12.9739 0.3529 1.8967 6.4026 −0.0048 0.0224 −0.0118 −0.0043 −0.1336 −62.1296
Shigella flexneri −17.2012 0.4993 1.7936 21.6882 −0.0044 0.3454 −0.5534 −0.0065 −0.1091 −182.8641
Staphylococcus

aureus −18.4275 0.3267 3.8293 −4.5893 0.0029 0.1031 0.9995 −0.0050 −0.3105 −25.0405

Yersinia
enterocolitica −15.3130 0.2159 3.2613 4.7524 −0.0118 0.1356 0.4380 −0.0016 −0.2312 −93.5564

Brochothrix
thermosphacta −28.3244 0.0976 7.8197 8.0746 0.0217 −0.1346 −0.5496 −0.0051 −0.6221 −31.9812

Pseudomonas −14.0267 0.1571 3.2135 0.4892 0.0005 −0.0371 2.9697 −0.0021 −0.2671 −117.0019

Using the values obtained, Table 6 includes the relative error provided by those values,
when subjected to different environments randomly chosen. These errors are divided into:

• Relative error below 5%, er < 5%;
• Relative error between 5% and 10%, 5% < er < 10%;
• Relative error between 10% and 15%, 10% < er < 15%;
• Relative error above 15%, er > 15%.

Table 6. Relative errors in the calculation of µmax using estimated values of ai.

Microorganism
Relative Error, er Total Number of

Testser < 5% 5% < er < 10% 10% < er < 15% er > 15%

Aeromonas hydrophila 45% 23% 7% 25% 60
Bacillus cereus 64% 19% 14% 3% 36

Bacillus licheniformis 62% 24% 10% 5% 21
Bacillus subtilis 100% 0% 0% 0% 21

Clostridium botulinum 86% 10% 5% 0% 21
Clostridium perfringens 95% 5% 0% 0% 20

Escherichia coli 80% 10% 10% 0% 20
Listeria monocytogenes 64% 27% 9% 0% 22

Salmonella 83% 4% 8% 4% 24
Shigella flexneri 86% 5% 10% 0% 21

Staphylococcus aureus 62% 14% 24% 0% 21
Yersinia enterocolitica 76% 14% 5% 5% 21

Brochothrix thermosphacta 100% 0% 0% 0% 21
Pseudomonas 95% 5% 0% 0% 20

The values presented in Table 6 corresponds to the number (in percentage) of tests
that fit between the limits referred.

2.3. Graphic Generating

Table 5 allows to determine the value of µmax in order of the intrinsic and extrinsic
factors that define a specific bacterial growth environment. This way it is possible to
analyze how the temperature, pH and water activity affects the maximum specific growth
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rate. Since there are no graphics that represent this, a code in MatLab was created that
presents a tridimensional graphic with the predictive value of µmax when changing the
three parameters referred. Because is only possible to build graphics until 3 variables, and
in this case there is a requirement to see the changes in four parameters, the temperature
and the pH were represented in the axes x and y and µmax in z. To represent how aw
changing affects the maximum specific growth rate, the graphic with the lowest value of aw
was constructed. Then, this value was increased and built the graphic, in the same figure,
to this new value. This process was repeated until the maximum value of aw is reached.
This way it is possible to visualize the changing of the four variables in the same graphic.
As a complement, a graphic was also created that represents the maximum value of µmax
obtained to each value of aw. In this figure is also represented the maximum specific growth
rate value for the studied bacteria and the conditions that make it happen.

3. Results

Despite all bacteria following the same development model, their growth can be very
different from each other. This is due to the alteration of the environment where they exist.
Below, these differences will be analyzed to the 14 bacteria considered in this study, and
some representative graphics that define them. It is important to emphasize that the graphs
are not all with the same conformation and direction of axes (T and pH) in order to improve
the visualization and perception of all three-dimensional variables.

Since each factor has a different minimum and maximum value for each bacteria,
Equation (5) is used, in order to simplify the process of comparing bacteria, where X can be
the temperature or the pH.

X%opt =
Xopt − Xmin

Xmax − Xmin
·100 (5)

3.1. Aeromonas hydrophila

Figure 3 represents the most usual growth curve between the analyzed bacteria. This
growth is characterized by a maximum point of growth with a temperature between 70%
and 80% of the bacteria temperature range in which it grows, a pH between 65% and 75%
of the bacteria pH range of development and a water activity of approximately 90%. For
this bacteria those values are 71.4% (T = 34 ◦C), 72.4% (pH = 7.4) and 92.3% (aw = 0.999),
respectively. The decrease of temperature causes a quit decrease in µmax value, the same
that happens for pH and water activity, but, in this last case, not so abruptly. The maximum
value of µmax = 0.6.

Figure 3. Influence of intrinsic and extrinsic factors in the maximum specific growth rate of Aeromonas hydrophila.

3.2. Bacillus cereus

The way the temperature, pH and aw affect this bacteria growth is different to all the
others analyzed. To Bacillus cereus as represented in Figure 4, the maximum specific growth
rate is maximum to the maximum value of temperature and pH, meanwhile for water
activity only decreases when its value is greater than aw = 0.999, which can be ignored in a
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practical situation. The maximum µmax = 1.8 log(CFU/g)/h, which is the greatest between
the microorganisms analyzed. It is also relevant to mention that the values for µmax are
relatively low (about 0.5 log(CFU/g)/h) while the temperature is lower than 25 ◦C, pH
below 5.5 and aw until 0.97. A small increase of these values triggers a quit increase of the
maximum specific growth rate.

Figure 4. Influence of intrinsic and extrinsic factors in the maximum specific growth rate of Bacillus cereus.

3.3. Bacillus licheniformis

As shown in Figure 5, this bacteria curve reveals a growth of µmax similar to the one
presented for Aeromonas hydrophila. The main difference is that while in the first case
the maximum specific growth rate increases until 73% of the temperature value range of
growth, in this case the maximum value happens to the maximum value of temperature
(T = 34 ◦C). The values to pH and water activity to get the maximum value of µmax are
pH = 6.6 and aw = 0.995, respectively, which is between the same range defined in the first
bacteria commented, with values of 72% and 94%.

Figure 5. Influence of intrinsic and extrinsic factors in the maximum specific growth rate of Bacillus licheniformis.

3.4. Bacillus subtilis

Of the 14 bacteria studied, Bacillus subtilis has a unique property. Despite all the others,
which in high values of the water activity means an increase of µmax, in Bacillus subtilis
the reaction is the opposite. The optimal growth condition is achieved with aw = 0.933,
and, after that point, the maximum specific growth rate decreases with the rise of aw and
increases again only between 0.993 and 1, thus not being relevant. While the rise of the
temperature value creates an increase in µmax, the pH simply does this until half of the
range of growth of this bacteria, which causes a decrease with the same rhythm.
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3.5. Clostridium botulinum

As referred in the description of Aeromonas hydrophila, this kind of curve is assigned
with diverse bacteria, and this is one of them. The percentage value of the range of growth
of Clostridium botulinum that causes a maximum value of µmax are in the range defined
previously: 78% (T = 24.5 ◦C), 70% (pH = 6.8) and 88% (aw = 0.997) respectively for the
range of values of temperature, pH and water activity.

3.6. Clostridium perfringens

This bacterium has several characteristics different from the others. Regarding the
temperature, it is possible to see that an increase of its value causes an increase in µmax which
becomes bigger as it approaches the maximum temperature range of growth, T = 41.5 ◦C.
When this value is achieved, the decrease of µmax, caused by the rise of the temperature,
happens at a slow pace. However, pH is mainly responsible for the odd curve created.
While, in the other bacteria, the increase of pH causes a greater raise of µmax until the
optimal value of pH is reached, for Clostridium perfringens, the rise of pH causes the
same increase of µmax along all the range of growth. Therefore, the pH value that causes
the maximum value of µmax = 8. Water activity also has a distinct growth curve, since
its minimum value corresponds to a specific growth rate value of 0.6, which increases
with the increase of aw until aw = 0.989, that represents the maximum µmax = 1.24. These
characteristics are described in Figure 6.

Figure 6. Influence of intrinsic and extrinsic factors in the maximum specific growth rate of Clostridium perfringens.

3.7. Escherichia coli

The influence of the temperature and pH in this bacterium is identical to the cases of
Aeromonas hydrophila and Clostridium botulinum, wherein the percentages are in the range
defined for that kind of curve (Figure 7). In this case, the maximum value of µmax occurs
with temperature at 76% (T = 34.5 ◦C) of its range of growth and 66.7% (pH = 6.5) of the
same range of pH. The maximum µmax is obtained with the maximum value of water
activity, this is, aw = 1, Escherichia coli being the only bacteria where this happens.

Figure 7. Influence of intrinsic and extrinsic factors in the maximum specific growth rate of Escherichia coli.
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3.8. Listeria monocytogenes

Listeria monocytogenes presents a similar curve with Aeromonas hydrophila, however
the difference of the optimal temperature value has to be equal to its maximum value
(T = 40 ◦C). As shown in Figure 8, The values of pH and water activity for which µmax is
maximum, are, respectively, pH = 6.9 and aw = 0.994 that, in percentage, represents 80%
and 90% of its correspondent range of growth.

Figure 8. Influence of intrinsic and extrinsic factors in the maximum specific growth rate of Listeria monocytogenes.

3.9. Salmonella

This bacterium is similar with the previous, except in the µmax value, where Listeria
monocytogenes achieved a maximum value of µmax = 0.63 and Salmonella went beyond 0.93.
This value is reached with both temperature (T = 37.5 ◦C) and water activity at aw = 90% of
its range of growth, while the optimal pH = 6.4 happens around 70%.

3.10. Shigella flexneri

Shigella flexneri growth curve (Figure 9) represents a direct and constant relation
between the increase of the temperature and the increase of the maximum specific growth
rate, which achieves it maximum value with the maximum temperature, T = 37 ◦C. The
increase of the pH value represents a tiny increase (about 25%) in µmax value that justifies
the growth curve shape. Water activity almost has a symmetrical growth curve, once the
minimum value of µmax is achieved to aw,min, but also to aw,max, where aw = 0.993 represents
the maximum value of µmax = 0.76.

Figure 9. Influence of intrinsic and extrinsic factors in the maximum specific growth rate of Shigella flexneri.

3.11. Staphylococcus aureus

Staphylococcus aureus has a growth curve like some graphics already defined, as
shown in Figure 10. It is characterized by an optimal temperature equal to the maximum
temperature, an optimal pH = 60% of its growth range and aw between 80% and 90% of
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water activity growth range. In this specific case, these percentages are respectively 67.7%
(pH = 6.5) and 89% (aw = 0.99), that, with a temperature of 30 ◦C, result in µmax = 0.58.

Figure 10. Influence of intrinsic and extrinsic factors in the maximum specific growth rate of Staphylococcus aureus.

3.12. Yersinia enterocolitica

The growth of this bacteria is similar to the graphic of Staphylococcus aureus, only with
differences in the percentage of temperature, pH and water activity growth range, which
are 100% for temperature, T = 37 ◦C, 64% for pH = 6.2 and 90% for water activity, aw = 0.996.
The value of µmax for these parameters is equal to 0.66.

3.13. Brochothrix thermosphacta

The microorganism Brochothrix thermosphacta is, once more, one of the bacteria related
with Aeromonas hydrophila because of their similar growth curve. However, it is important to
refer the value of aw for which µmax is maximum, because of its proximity to the maximum
value (aw = 0.999). Both values of temperature and pH are close to 80% (T = 23.5 ◦C;
pH = 6.7) of their growth range and contribute to a maximum µmax = 0.38.

3.14. Pseudomonas

A growth curve identical to the one of Pseudomonas is already described in Staphylococ-
cus aureus graphic. Just like Yersinia enterocolitica, µmax is maximum when the temperature
achieves its maximum value (T = 20 ◦C), while pH is around 60% (pH = 6.5) of its growth
range and the water activity is slightly lower than the other bacteria, 82% (aw = 0.993). The
largest value of µmax = 0.28 is the lowest between the bacteria analyzed.

4. Discussion

Despite many recent advances in food safety and quality, there is still an existential
challenge and, therefore, a gap for novel opportunities in which the current technologies
available can be improved in order to have versatile, fast, simple, portable, robust and
multivariate levels of detection of food contaminants and different analytes matrices [23].
Therefore, after the individualized study of the 14 bacteria, it is possible to verify that
despite the values of each factor considered—temperature, pH and water activity—having
different minimum, maximum and optimal values, as well as different maximum values of
µmax, between bacteria, they can be put together in groups defined by their growth curve
relation of these 4 parameters.

The bacteria Aeromonas hydrophila, Brochothrix thermosphacta, Clostridium botulinum and
Escherichia coli are characterized by T%opt = [70%, 80%] and pH%opt = [65%, 80%] and are put
together in one group. The other group is composed of bacteria where T%opt = Tmax, this
is, T%opt = 100% and pH%opt = [50%, 70%]. This occurs in bacteria like Bacillus licheniformis,
Bacillus subtilis, Staphylococcus aureus, Yersinia enterocolitica and Pseudomonas.

Listeria monocytogenes and Salmonella are some of the cases where there is a join of
the groups presented. On one hand, T%opt is bigger than 90%, on the other, pH%opt has
bigger values than the ones considered in the second group, pH%opt = [70%, 80%]. One
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example of this category is the bacteria Shigella flexneri, which maintains the value of
T%opt = 100% but has pH%opt > 90%. Bacillus cereus is an extreme case of the last exam-
ple, once T%opt = pH%opt = 100%. Beyond this microorganism, Clostridium perfringens also
presents a unique case where T%opt = 70%, like the first group, but with pH%opt = 100%.

Concerning the water activity influence seen in previous graphics, it is possible to
relate the increase of water activity with the approach of maximum value of µmax. With
the particular case of Escherichia coli, where the increase happens until the water activity
maximum value, in all of the others the growth of aw represents an increase of µmax but only
until a certain value. The increase after that value represents a decrease of the maximum
specific growth rate. That value will be denoted as aw,opt. The different water activity
limits are due to the diverse mechanisms of water movements between bacteria and their
environment. This conditions the way different microorganisms deal with osmotic stress,
that is, the impossibility of absorbing more water into the cells, and, thus, becoming unable
to grow. In Table 7 all the values obtained with this study are presented, represented as
minimum, maximum and optimal values of the temperature, pH and water activity for
each bacteria, and also the values of initial, final and infective dose of CFU/g for each
microorganism already described [22,24].

Table 7. Minimum, maximum and optimal parameters to bacterial growth.

Microorganism Tmin
[◦C]

Topt
[◦C]

Tmax
[◦C] pHmin pHopt pHmax aw ,min aw ,opt aw ,max µmax,opt

Initial
Colony
[UFC/g]

Infective
Colony
[UFC/g]

Final
Colony
[UFC/g]

Aeromonas hydrophila 2.0 27-0 37.0 4.6 6.7 7.5 0.974 0.998 1 0.60732 103 >105 107.39

Bacillus cereus 5.0 34-0 34.0 4.9 7.4 7.4 0.94 0.999 1 1.83940 101 >105 107.61

Bacillus licheniformis 13.0 34.0 34.0 4 6.6 7.6 0.907 0.995 1 1.56890 103 >105 107.83

Bacillus subtilis 10.0 34.0 34.0 4.3 6.1 7.8 0.933 0.933 1 1.17800 101 >105 107.83

Clostridium botulinum 4.0 24.5 30.0 5.1 6.8 7.5 0.974 0.997 1 0.75511 100 >104 107.04

Clostridium perfringens 15.0 41.5 52.0 5.0 8.0 8.0 0.971 0.989 1 1.24150 101 >106 107.61

Escherichia coli 10.0 34.5 42.0 4.5 6.5 7.5 0.961 1 1 1.26770 102 >106 108.7

Listeria monocytogenes 1.0 40.0 40.0 4.4 6.9 7.5 0.934 0.994 1 0.63606 101 >102 108.52

Salmonella 7.0 37.5 40.0 3.9 6.4 7.4 0.973 0.997 1 0.93591 102 >105 108.52

Shigella flexneri 15.0 37.0 37.0 5.5 7.3 7.5 0.971 0.993 1 0.76419 100 >102 108.78

Staphylococcus aureus 7.5 30.0 30.0 4.4 6.5 7.5 0.907 0.99 1 0.58302 101 >105 108.09

Yersinia enterocolitica −1.0 37.0 37.0 4.4 6.2 7.2 0.957 0.996 1 0.66226 102 >107 108.3

Brochothrix
thermosphacta 0.0 23.5 30.0 5.5 6.7 7.0 0.950 0.999 1 0.38374 102 >107 107.83

Pseudomonas 0.0 20.0 20.0 5.0 6.5 7.4 0.961 0.993 1 0.27746 102 >107 108.26

5. Conclusions

With growing consumer demand for food safety and security, several commercial
sensors for smart packaging have been developed, however these require more research
for their integration in food packaging and, still, it is necessary to overcome the obstacles
for the commercial application of sensors on a large scale.

Thus, special attention is required, and extensive research efforts must be applied due
to the potentially dangerous effects of chemical and biological components of sensors in
food packaging. Therefore, the integration of such devices in the food industry is not an
easy ordeal as the sensor components cannot be placed directly in contact with the food. In
addition, it is necessary to evaluate their propensity to migrate to food content, in order to
avoid interference in the texture, flavor, or taste of food.

That said, the application of mathematical predictive models to biochemical sensors
represents an increasing challenge for sensor technologies applied to smart packaging. In
this work a simplified approach to predict the food safety through the maximum specific
bacterial growth rate as function of extrinsic and intrinsic parameters was described.

After the study of Baranyi and Roberts model, as well as the study of the variables
that define it, it is possible to understand the relation between the bacterial growth curve
and the intrinsic and extrinsic factors of the environment in which the bacteria develops.
It is represented by the maximum specific growth rate (µmax). Through the Massana
and Baranyi model, that allows the calculation of the referred growth rate, and the data
provided in Combase Predictor, the coefficients that define the bacterial growth were
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estimated. Obtaining the value of these coefficients was possible to create tridimensional
graphics that represent the relation between four parameters—temperature, pH, water
activity and maximum specific growth rate—and conclude that the 14 bacteria studied
can be divided in different groups characterized by the way that µmax is affected by the
described factors.

The four groups were elaborated according to the similarities of the parameters
that influence the bacterial growth, that is, mainly according to the optimal conditions
of temperature, pH and water activity. Aeromonas hydrophila, Brochothrix thermosphacta,
Clostridium botulinum and Escherichia coli composed the first one. The second group is
formed by Bacillus licheniformis, Bacillus subtilis, Staphylococcus aureus, Yersinia enterocolitica
and Pseudomonas. Another group is composed of Listeria monocytogenes, Salmonella and
Shigella flexneri, and at last, the fourth group is constituted by unique and extreme cases
such as Bacillus cereus and Clostridium perfringens.

Therefore, with these mathematical models it was possible to categorize some bacteria
according to their different bacterial growth. In addition, they also allow to evaluate the
conditions of temperature, pH and water activity that affect the development of these
bacteria. Thus, it is possible to predict food security with regard to bacterial development,
since this is one of the main promoters in food corruption. This study can then be applied
as a predictive model for diverse food preservation, maintenance and packaging systems.
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Nomenclature

ai Coefficients that define the maximum specific growth rate;
aw Water activity;
bw Constant (bw =

√
1− aw);

e Euler’s number (e = 0.5772);
er Relative error [%];
h0 Logarithmic value of a bacteria physiological state (h0 = -ln α0);
m Parameter that define the curvature between the exponential and stationary phase;
nc Parameter that define the curvature between the initial and exponential phase;
pH Potential of hydrogen;
t Time [h];
T Temperature [◦C];
X%opt Percentage of the value range in which bacteria grow, for which bacterial growth is

optimal (with X = Temperature or X = pH);
Xopt Value for which bacterial growth is optimal (with X = Temperature or X = pH);
Xmin Minimum value for which a bacteria grows (with X = Temperature or X = pH);
Xmax Maximum value for which a bacteria grows (with X = Temperature or X = pH);
y Logarithmic value of the number of colony forming unit by gram;
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y0 Initial number of colony forming unit by gram;
ymax Maximum number of colony forming unit by gram;
α0 Bacteria physiological state;
λ Lag [h];
µmax Maximum specific growth rate [log(CFU/g)/h].
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