
Appendix 

Understanding Catalysis: A simplified simulation of 
catalytic reactors for CO2 reduction 
Jasmin Terreni, Andreas Borgschulte, Magne Hillestad and Bruce D. Patterson 

The following student exercises provide suggestions for further exploration of the concepts 
discussed in the main text. They become progressively more challenging, and answers are provided. 
Exercises 1 and 2 review the computation, using tabulated values of the standard enthalpy of 
formation and entropy, of the free energy and enthalpy changes occurring in the production and 
combustion of C1 synthetic fuels and of the equilibrium constants for methanol and methane 
production. Exercises 3 – 5 treat the state of thermodynamic equilibrium for the hydrogenation of 
CO2 to form methane, and Exercises 6 and 7 deal with introductory aspects of a kinetic model of 
methane formation. Exercise 8 poses a question for thought regarding the thermodynamics and 
kinetics of CO2 hydrogenation. The numerical solution of the differential equations describing the 
operation of a plug flow reactor to produce methane is the subject of Exercises 9 and 10. Finally, 
Exercise 11 quantitatively determines the chemical paths followed by CO2 during its conversion to 
CH4. 

The Exercises generally require numerical computation: A simple spreadsheet is sufficient for 
Exercises 1,2, 5 and 6. Exercise 4 involves 3D plotting of a function of 2 variables and locating the 
position of its maximum. Following the scheme in Figure 6, Exercises 9 and 10 construct a computer 
program to numerically solve the differential equations describing the plug flow reactor, and the 
program is used in Exercise 11 to investigate details of the methanation process. 

Not covered in the Exercises are the sections in the main text dealing with the continuously 
stirred tank reactor, the looped plug flow reactor and the sorption-enhanced plug flow reactor. These 
treatments, which are schematically described in the Figures 10, 12 and 14, involve self-consistent 
numerical calculations suitable for students with advanced programming skills.   
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Exercises 

1. Free energy of formation and enthalpy of oxidation of hydrocarbon fuels.  

For standard conditions (T=25°C, P=1 bar), compute the free energy of formation by 
hydrogenation reduction ΔGred and the enthalpy of oxidation ΔHoxid per mole of formic acid, 
formaldehyde, methanol and methane, and compare them with the Latimer-Frost diagram in Fig. 2. 
Make use of the following standard enthalpies of formation and entropies [Swaddle T. W. Inorganic 
Chemistry – An Industrial and Environmental Perspective, Academic Press: San Diego, 1997 and Lide, D. 
R. CRC Handbook of Chemistry and Physics; Chemical Rubber Publishing company: Cleveland, USA, 
2009].  ΔH0 [kJ/mol] S0 [J/mol K] H2 (g) 0 130.68 O2 (g) 0 205.14 H2O (l) −285.83 69.91 CO2 (g) −393.51 213.74 HCOOH (l) −409.2 129.0 HCHO (g) −115.9 218.7 CH3OH (l) −238.66 126.80 CH4 (g) −74.81 186.26 

Answer:  
 ΔGred [kJ/mol] -ΔHoxid [kJ/mol] 

HCOOH 48.54 270.14 
HCHO 47.38 563.44 
CH3OH −9.02 726.51 

CH4 −130.60 890.36 

2. Equilibrium constants for methanol and methane production reactions. 

Using the thermodynamic data in Table 1, compute the equilibrium constants K1−3
eq  for the gas 

phase chemical reactions in Figures 3a and 3b. For methanol production, assume a reaction 
temperature of 230°C, and for methane, take T=400°C. Compare the values with the plot in Figure 4, 
and confirm in both cases that K1

eq × K2
eq = K3

eq . 
Answer: 

 
CH3OH, T=230°C 
(1/T=0.00199 K−1) 

CH4, T=400°C 
(1/T=0.00149 K−1) 

K1
eq  0.008071 60620 

K2
eq  0.008382 0.1006 

K3
eq  0.00006766 6101   
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3. Equilibrium degree of conversion for methanation I. 

Modify the Equations (3-10) to describe the case of methane formation, instead of methanol 
formation, according to the reactions 2 and 3 in Figure 3b. 

Answer:  

4. Equilibrium degree of conversion for methanation II. 

Express the “reaction quotients” Q2 and Q3, from the previous exercise, in terms of the "degrees 
of reaction completion" ξ2 and ξ3. 

Answer:   
Q2 =

ξ2 ξ2 + 2ξ3( )
1− ξ2 − ξ3( ) 1− ξ2 − 4ξ3 + SN( )

Q3 =
ξ3 ξ2 + 2ξ3( )2 2 − 2ξ3 + SN( )2 P0

2

1− ξ2 − ξ3( ) 1− ξ2 − 4ξ3 + SN( )4 P2

K2
eq T( ) =Q2 ≡

NCONH2O

NH2
NCO2

K3
eq T( ) =Q3 ≡

NCH4
NH2O

2 Ntot
2 P0

2

NH2

4 NCO2
P2

NCO = ξ2NCO2

0

NCO2
= 1− ξ2 − ξ3( )NCO2

0

NH2
= SN +1− ξ2 − 4ξ3( )NCO2

0

NH2O
= ξ2 + 2ξ3( )NCO2

0

NCH4
= ξ3NCO2

0

Ntot = NCO + NCO2
+ NH2

+ NH2O
+ NCH4

= SN + 2 − 2ξ3( )NCO2

0
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5. Equilibrium degree of conversion for methanation III. 

At a reaction temperature T=800°C, the equilibrium constants for methanation have the values:

K2
eq = 1.562  and K3

eq = 0.1034 . Assume a reactor pressure of P=10 bar and an (ideal) initial 
stoichiometry number of SN=3. In order to (numerically) solve the two equations in the two unknown 
degrees of reaction completion, ξ2 and ξ3, form the function to minimize:  

Show that a 2-dimensional plot of 1/F as a function of ξ2 and ξ3 has a maximum at the ξ2 and ξ3 
values we are searching for, and compute the corresponding equilibrium reduced partial pressures 
pj=PNj/PoNtot of CO, CO2, H2, H2O and CH4. (P0 is the pressure 1 bar.) 

 
Answer:  

 
6. Kinetic model of methanation. 

According to the model of Xu and Froment [Xu, J.; Froment, G. F. Methane Steam Reforming, 
Methanation and Water-Gas Shirt: I. Intrinsic Kinetics. AlChE J. 1989, 35 (1), 88 – 96.], the reaction and 
component creation rates corresponding to the expressions for methanol in Eqs. (12-16) are:  

F ≡ ln K2
eq  − ln Q2 ξ2,ξ3( )  + ln K3

eq  − ln Q3 ξ2,ξ3( ) 

T = 800o C, P=10 bar, SN=3
ξ2 = 0.3351, ξ3 = 0.4957
pCO = 0.84 bar
pCO2

= 0.42 bar
pH2

= 4.21 bar
pH2O

= 3.32 bar
pCH4

= 1.24 bar
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Note that we use here the reciprocal of the equilbrium constants appearing in the work of Xu, et 
al. This is because we assume a reversed direction for the chemical reactions. The fitted Arrhenius 
parameters for the kinetic rates are: 

 
 a b (J/mol) 
k1  4.225 x 1015 ௠௢௟௞௚ ௦ −2.401 x 105 

k2  1.955 x 106 ௠௢௟௞௚ ௦ −0.6713 x 105 

k3 1.020 x 1015 ௠௢௟௞௚ ௦ −2.439 x 105 

KCO  8.23 x 10-5 0.7065 x 105 
KH2

 6.12 x 10-9 0.8290 x 105 
KCH4

 6.65 x 10-4 0.3828 x 105 
KH2O

 1.77 x 105 −0.8868 x 105  
In Exercise 5, we found for the reactor conditions: T=800°C, P=10 bar, SN=3, the equilibrium 

reduced partial pressures pi of the 5 chemical species in the methanation reactor. Compute from these 
the reaction rates ri and the component creation rates Rj, per mol/kg s, for the initial conditions (𝑝஼ை =𝑝ுమை = 𝑝஼ுయைு = 𝑝஼ுర = 0, 𝑝஼ைమ = 2, 𝑝ுమ = 8) and for the conditions at thermodynamic equilibrium. 

Answer:   
Note: 

because 
there is 
initially no 

CO 
present, 
reaction 

rate r1 = 0, 
and at 

equilibrium, all reaction and component creation rates vanish. 

a)                                  

 b)    initial conditions: 
ξ2 = 0, ξ3 = 0
r1 = 0
r2 = 3294 mol/kg s
r3 = 800 mol/kg s
RCO = 3294 mol/kg s
RCO2

= −4094 mol/kg s
RH2

= −6496 mol/kg s
RH2O

= 4895 mol/kg s
RCH4

= 800 mol/kg s

equilibrium conditions: 
ξ2 = 0.3351, ξ3 = 0.4957
r1 = r2 = r3 = 0
RCO = RCO2

= RH2
= RH2O

= RCH4
= 0

r1 = − k1

pH2

5/2

pCH4
pH2O

− pH2

3 pCOK1
eq( )

denom

r2 = − k2

pH2

pCOpH2O
− pH2

pCO2
K2
eq( )

denom

r3 = − k3

pH2

7/2

pCH4
pH2O

2 − pH2

4 pCO2
K3
eq( )

denom

denom = 1+ KCOpCO + KH2
pH2

+ KCH4
pCH4

+ KH2O

pH2O

pH2











2

R = RCO,RCO2
,RH2

,RH2O
,RCH4( )

= −r1 + r2, −r2 − r3, −3r1 − r2 − 4r3, r1 + r2 + 2r3, r1 + r3( )
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7. Equilibrium condition on the kinetic rate expressions. 

We saw in the previous exercise that at thermodynamic equilibrium, all kinetic reaction rates 
vanish. Show, both for the case of methanol production, Eqs (12-15), and of methanation, Exercise 6, 
that the condition for zero reaction rate ri implies the equality between the equilibrium constant and 
the reaction quotient: Ki

eq =Qi . Recall that the reduced partial pressure pj for each chemical 
component is related to its molar concentration Nj by pj=PNj/PoNtot. 

8. A question to ponder. 

In our discussion of thermodynamic equilibrium, we considered only two of the three reactions 
in Figure 3, invoking the “degrees of completion”, ξ2 and ξ3. We justified this by stating that only 2 of 
the 3 reactions are “independent”. But in our models for the kinetics of methanol and methane 
production, we took account of all three reactions. Why are two reactions sufficient for 
thermodynamics but three are necessary for kinetics? 

Answer: 
As mentioned in a footnote in the main text, the “degrees of completion”, ξ2 and ξ3, are in reality 

only book-keeping devices, which serve to guarantee that the stoichiometry, i.e., the number of atoms 
of each element, is preserved. The equilibrium condition, at a given pressure P, temperature T and 
initial stoichiometry number SN, defines a particular combination of molar concentrations 
NCO,NCO2

,NH2
,NH2O

,NCH3OH /CH4
, representing 5 unknowns. This takes account of three 

stoichiometry constraints, one for each element C, H and O. In order to determine the equilibrium 
state, two additional constraints are thus required, and we took these to be the two equations 

K2
eq =Q2 and K3

eq =Q3 . Note that the third equation of this type, K1
eq =Q1 , is simply a linear 

combination of the other two. 
The equilibrium state only gives us the corresponding molar concentrations. Thermodynamics 

cannot tell us how we got there, e.g., whether the methanol or methane we obtained was produced 
directly from CO2 (reaction 3) or via CO from the reverse water gas shift reaction (reactions 2 and 1). 
For this information, we need to know the individual kinetic reaction rates of all three reactions. (See 
Exercise 11 below.)   
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9. PFR simulation I. 

Based on the computation scheme in Figure 6, we want to build our own computer routine to 
numerically simulate the operation of a simplified plug flow reactor (PFR) for methane production. 
As in the main text, we assume all chemical components are ideal gases, at a uniform temperature T 
and pressure P.  

 
In a first step, set up a routine which, given the molar flow rates 

N = NCO, NCO2
, NH2

, NH2O
, NCH4( ) , computes the component creation rates R N( ) (see Exercise 6). 

For this, it will be necessary, from the flow rates, to compute the component-specific reduced partial 
pressures pj = P N j / Nk

k
 . As in the main text, we use the reactor parameters:  

 

From the component creation rates R , one can calculate the spatial derivative of the molar flow 
rates: 

d N
dx

= ρcatalystAtubesR N( ) 
These are the coupled differential equations, which describe the PFR operation. At the entrance 

to the reactor (x=0), show that the initial values of the partial pressures p , the molar flow rates N  
and the component creation rates R are: 

 

Using the results of Exercise 6 and the kinetic model of Xu and Froment [Xu, J.; Froment, G. F. 
Methane Steam Reforming, Methanation and Water-Gas Shirt: I. Intrinsic Kinetics. AlChE J. 1989, 35 
(1), 88 – 96.], and the reactor parameters above, find the numerical values of these three vector 
quantities. 

 
Answer: 

pinitial = P 0, 1
2 + SN

, 1+ SN
2 + SN

, 0, 0





Ninitial =
Atubesv flow
RT

pinitial

AtubesρcatalystR Ninitial( ) = Atubesρcatalyst

−r1 pinitial  + r2 pinitial 

−r2 pinitial  − r3 pinitial 

−3r1 pinitial  − r2 pinitial  − 4r3 pinitial 

r1 pinitial  + r2 pinitial  + 2r3 pinitial 

r1 pinitial  + r3 pinitial 


























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10. PFR simulation II. 

For the PFR reactor, in order to compute the degree of conversion of the initial CO2 to product 
species, we must numerically integrate the PFR equation: 

 
d N
dx

= ρcatalystAtubesR N( )   
beginning at x=0 with the initial molar flow rates Ninitial , until we reach the end of the reactor at 

x=Ltube. This is an example of coupled first-order ordinary differential equations with given initial 
conditions, and a standard algorithm for the numerical integration is the Runge-Kutta method [Press, 
W. H. Numerical recipes: the art of scientific computing, Cambridge University Press, Cambridge, UK, 
2007]. Here discrete steps of size h in the independent variable xn are made, and the dependent 
variables are updated from yn  to yn+1 . The “fourth-order” Runge-Kutta method requires 4 

evaluations of the derivative function f x,y( )  for each step. The procedure RK to make a single step, 

outlined below requires as input the values xn , yn , f0 = f xn, yn( ) and h :   
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For a simulation of the plug flow reactor, where rapid changes occur at the beginning of the 
reactor and much slower changes occur at the end, the standard Runge-Kutta procedure, with a fixed 
step size h, is insufficient. We need to extend the method to dynamically adjust the step size, as 
required. The “quality control” Runge-Kutta procedure RKQC accomplishes this by comparing the 
effect of making two small RK steps with that of making a single step and adjusting the step size 
accordingly. An additional input parameter, ε0 , specifies the required relative accuracy of the 
dependent variables. 

Implement the RK and RKQC procedures and use them, for the methanation PFR parameters 
given in Exercise 9, to compute the degree of conversion from CO2 to CH4, NCH4

x = Ltube( ) / NCO2

initial , 

for a sequence of reactor temperatures, T = 200, 300, 400, 500, 600, 700 and 800°C, and compare it with 

the corresponding values ξ3  from equilibrium thermodynamics (Exercise 5). Use ε0 = 0.001 . 
Compare with Figure 7b. 

Answer:  
T [°C] 

Equilibrium 
ξ3  

PFR 
NCH4

x = Ltube( ) / NCO2

initial  
200 0.996 0 
300 0.983 0.171 
400 0.954 0.953 
500 0.901 0.901 
600 0.816 0.816 
700 0.684 0.684 
800 0.496 0.496 
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11. Does the CH4 come from reaction 1 or reaction 3? 

As discussed in Exercise 8, in order to determine how much of the product CH4 is produced 
directly from the hydrogenation of CO2 and how much indirectly via CO from the reverse water gas 
shift reaction, we need to consider the reaction kinetics in the plug flow reactor. To this end, we 
introduce modified expressions to the PFR equations: 

 
While the 5-component reduced partial pressure vector p is unchanged, we have added two CH4 

components, specific to reactions 1 and 3, to the molar flow and component creation rate vectors. 
Use the Runge-Kutta routines from Exercise 10 to integrate the 7-component PFR equation, and 

plot the resulting CO2 to CH4 degrees of conversion as a function of reactor temperature. Discuss the 
results. 

Answer: 

 
We note the following two features: a) At the lowest reaction temperatures, the exothermic 

reaction 1 is principally responsible for the CH4 production, b) At very high temperatures, the 
conversion via reaction 1 is negative, implying that the CH4 produced by reaction 3 is “back-
converted” to CO via the inverse of reaction 1. 

p = pCO, pCO2
, pH2

, pH2O
, pCH4 total( )( )

N = NCO, NCO2
, NH2

, NH2O
, NCH4 total( ), NCH4 1( ), NCH4 3( )( )

RCH4 total( ) = r1 p[ ] + r3 p[ ]
RCH4 1( ) = r1 p[ ]
RCH4 3( ) = r3 p[ ]


