

MDPI
\sim

Article

SUPPLEMENTARY MATERIALS

4	Porous	Layered	Double	Hydro	cide/TiO ₂

Photocatalysts for the Photocatalytic Degradation of

Orange II

Rodrigue Djeda 1*, Gilles Mailhot² and Vanessa Prevot^{2*} 8 9

UFR Environnement, Département de Chimie Informatique Mathématiques et Physique, Université Jean Lorougnon Guédé, BP 150 Daloa, Côte d'Ivoire; rodrigue.djeda@gmail.comn

² Institut de chimie de Clermont-Ferrand (ICCF), Université Clermont Auvergne, CNRS, Sigma Clermont, F-

11 63000 Clermont-Ferrand, France; vanessa.prevot@uca.fr; gilles.mailhot@uca.fr

* Correspondence: vanessa.prevot@uca.fr; Tel.: +33473405167 (V.P.); rodrigue.djeda@gmail.com; Tel.: +22504345152 (R.D.)

-(Field Code Changed
-[Field Code Changed
	Field Code Changed

Table SI 1: Comparison of the efficiency of different photocatalyst for OII degradation

Photocatalyst	% of OII photodegradation	Ref
TiO2 immobilized on glass slides	9%	[1]
TiO ₂ /SiO ₂	26%	[2]
ZnCr- LDH	10%	[3]
ZnCr-LDH calcined at 600°C	18%	[3]
[MgAl/TiO2]0.66	42%	This work
Reduced graphene oxide-TiO2	95%	[4]

ChemEngineering 2020, 4, x; doi: FOR PEER REVIEW

www.mdpi.com/journal/chemengineering

ChemEngineering 2020, 4, x FOR PEER REVIEW

Figure S1. UV-visible spectra of OII (5.10^{-5} M, pH = 9.30) solution in presence of [Zn₂AlNO₃/TiO₂]_{dry} before

and after stirring the suspension in the dark

Figure S2. TEM image of TiO_2 nanoparticles aged after titration (pH = 9.30)

 $2 \ {\rm of} \ 6$

3 of 6

 $\label{eq:s3.FTIR spectra of compounds obtained by impregnation method a) [Zn_2Al-NO_3] precursor b) [ZnAl/FreshTiO_2]_{2dry} and c) [ZnAl/FreshTiO_2]_{2wet}$

Figure S4. FTIR spectra of [MgAl/TiO2] nanocomposite obtained by coprecipitation for different $MgAl/TiO_2 \ \text{ratios} \ a) \ [Mg_2Al-CO_3], \ b) \ [MgAl/TiO_2]_8, \ c) \ [MgAl/TiO_2]_4, \ d) \ [MgAl/TiO_2]_2 \ and \ e)$ [MgAl/TiO2]0.66

98 99

- 102 103

4 of 6

- 109 110 111 112

- d) 100 V adsorbed(cm³ g⁻¹) 0 100 c) 0 100 b) 0 100a) 0 0.6 0.2 0.8 0.4 0.0 **Relative Pressure (p/p°)**
- 113
- 114 Figure S5. N₂ adsorption-desorption isotherms of a) $[MgAl/TiO_2]_8$, b) $[MgAl/TiO_2]_4$, c) $[MgAl/TiO_2]_2$ and d)
- 115 [MgAl/TiO2]0.66
- 116 117
- 118

5 of 6

