

1 Supplementary Materials

Integration of Microalgae Cultivation in a Biogas 2 **Production Process from Organic Municipal Solid** 3

5 Santiago Barreiro--Vescovo 1,2, Elena Barbera 1,2,*, Alberto Bertucco 1 and Eleonora Sforza 1

- 6 ¹ Department of Industrial Engineering DII, University of Padova, Via Marzolo 9, 35131 Padova, Italy; 7 sbarreirovescovo@gmail.com (S.B.V.); alberto.bertucco@unipd.it (A.B.); eleonora.sforza@unipd.it (E.S.)
- 8 ² Interdepartmental Centre Giorgio Levi Cases, Via Marzolo 9, 35131 Padova, Italy
- 9 * Correspondence: elena.barbera@unipd.it
- 10 Received: 17 March 2020; Accepted: 08 April 2020; Published: date
- 11

12

14

13 Figure 1. Scheme of automatic raceway feeding. Orange continuous line represents the start (-) and

blue line (-) the end of the feeding pulse. Violet dotted line (•••) represents the sampling time.

15 16

21

Figure 3. Main nitrogen conversion and removal mechanisms from raceway reactor. N-NH₃ is percentage is represented in blue, , N-NO₂⁻ in red, N-NO₃⁻ in pink, , N-Biomass in green, , and N-NH₃ volatilized in yellow, . Semi Continuous operation is represented in orange, , and the Transitional Stage with grey dotted line (....).

27

22

28

Table 1. Nitrogen transformations during raceway operation.

	N-NH ₃		N-NO _x		N-Biomass		N-Volatilized		N-Lost	
	g N d-1	%	g N d-1	%	g N d-1	%	g N d-1	%	g N d-1	%
Stage 1	0.4 ± 0.2	5.6 ± 3.3	3.1 ± 1.5	39.9 ± 22.6	1.0 ± 0.4	12.5 ± 6.7	4.5 ± 4.4	42.0 ± 27.9	5.5 ± 4.2	54.5 ± 23.9
Stage 2	1.5 ± 0.8	11.6 ± 4.9	6.6 ± 2.4	46.9 ± 15.0	1.4 ± 0.6	10.7 ± 5.1	4.5 ± 3.5	30.8 ± 21.3	6.0 ± 3.2	41.5 ± 18.4
Overall	0.9 ± 0.8	7.9 ± 5.6	4.4 ± 2.5	42.7 ± 19.9	1.2 ± 0.5	11.8 ± 6.1	4.5 ± 4.0	37.6 ± 25.6	5.7 ± 3.8	49.4 ± 22.4

29

30

Table 2. Characterization of anaerobic digestates.

	Digestat	Type	sCOD (mg	tCOD (mg	TCC (m ~ I -1)	N-NH₃ (mg	P-PO4 ³⁻ (mg
e		of AD	L-1)	L-1)	155 (mg L ⁻)	L-1)	L-1)
	D1	UFD	1207.1 ± 32.3	2515.3 ± 28.0	8700 ± 636	2887.2 ± 32.1	9.1 ± 0.0
	D2	UFD	2943.5 ± 16.3	-	80 ± 28	3325.2 ± 13.2	13.7 ± 0.1
	D3	UFD	1585.7 ± 32.4	-	120 ± 14	2019.7 ± 49.9	15.5 ± 0.4
	D4	UFD	2356.8 ± 28.0	-	165 ± 7	1526.0 ± 2.3	35.2 ± 1.1
	D5	UFD	2692.3 ± 25.4	-	262 ± 12	1797.2 ± 16.8	70.4 ± 2.9
	D6	UFD	4413.9 ± 38.1	-	315 ± 64	1316.5 ± 48.6	96.3 ± 0.7
	D7	UFD	3378.3 ± 349.8	-	300 ± 14	1532.4 ± 4.9	95.0 ± 2.15
	D8	UFD -FD	5571.4 ± 158.8	7810.6 ± 390.6	1550 ± 71	3115.5 ± 80	80.5 ± 1.4
	D9	FD	6278,4 ± 15.6	15145.7 ± 883.1	5875 ± 177	3799.4 ± 45.0	70.1 ± 0.4