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Abstract: Nanoparticles often form agglomerates during their manufacturing process. When
nanoparticles form agglomerates, their inherent properties cannot be fully exploited. In this study, we
attempted to establish a conventional method to evaluate the fracture strength of agglomerates into
smaller parts. We used a commercially available nano-indentation instrument with a flat indenter
tip. We chose calcium carbonate nanoparticles with stearic acid coatings as model materials. It was
found that the more fatty acid that is coated on the particle surface, the stronger the agglomerates
become. The technique we propose in this study can be used to rapidly evaluate the fracture strength
of nanoparticle agglomerates.

Keywords: calcium carbonate; nanomaterials; surface treatment; micromechanical properties;
fracture toughness

1. Introduction

Nanoparticles are receiving widespread attention due to their continuously increasing applications
in various industries. In today’s world, nanoparticles are used not only as filler materials in
nanocomposites but also as catalysts, in cosmetics, as carriers for drug delivery, and so on [1,2].
Nanoparticles are materials with at least one dimension less than 100 nm, and thus, they have a high
specific surface area. Some special properties of composite materials can be enhanced by the addition
of nanoparticles (for instance, titania nanoparticles can improve the brightness and opacity of white
paper [3] and silica nanoparticles can improve the mechanical properties of coatings [4]), due to their
large active surface area. This is called the “nano-effect” in the pigment/extender industry. On the
other hand, nanoparticles tend to interact with one another to form micron-sized agglomerates, thus
reducing their high surface energy [5]. In handling powder consisting of nanoparticles, agglomeration
is an important phenomenon that can occur through several engineering processes including synthesis,
filtering (solid-liquid separation), hot-air drying, delivering, and storing. When nanoparticles form
agglomerates in binder materials, their inherent properties cannot be fully exploited. Therefore,
dispersing nanoparticles in a matrix is a key requirement for producing nanocomposites with higher
performances. In industry, each nanoparticle manufacturing process is designed so that agglomerates
are more easily re-dispersed. However, there is no practical standard test method for measuring the
fracture strength of individual agglomerates into smaller parts.

Nano-indentation is a reliable technique used to determine the micromechanical properties of
single particles [6], thin-films [7], bulk materials [8], architected nanocomposites [9], and so on. With
this technique, indentation load can be quantitatively measured as a function of penetration depth
of the indentation tip into the specimen surface with nanometer depth resolution. The method has
been applied to samples ranging from hard materials (e.g., metals [7,8], ceramics [10], and minerals [6])
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to relatively soft materials such as polymers [11]. In this study, we attempted to apply the technique
to evaluate the fracture strength of individual nanoparticle agglomerates. There are a few reports
on application of nano-indentation for nanoparticle agglomerates. Raichman et al. succeeded in
measuring inter-particle (silver nanoparticles, size: ~80 nm) forces in the nanometer regime using a
contact mode scanning force microscope equipped with a cube-corner indenter tip [12]. Schilde et al.
succeeded in measuring micromechanical properties of agglomerates (size: ~10–15 µm) of alumina
nanoparticles (size: ~50–100 nm) with different primary particle morphologies (cuboid, disc, and
needles) via nano-indentation using a Berkovich tip [13]. However, we believe the use of a flat indenter
tip can offer more advantages than a pointed indenter tip (cube, Vickers, or Berkovich), with respect
to a fracture strength test for nanoparticle agglomerates that have irregular shapes. In this study, we
present preliminary data to establish a conventional fracture strength test method for nanoparticle
agglomerates using a commercially available nano-indentation system equipped with a flat indenter
tip. For fracture strength calculation, we used the Hiramatsu equation [14,15], which is used to evaluate
the fracture force of irregularly shaped test pieces by uniaxial compression tests.

We chose synthesized calcium carbonate (CaCO3) nanoparticles with calcite phase as a model
material. Synthesized calcite nanoparticles [16,17] are relatively uniformly-shaped rhombohedral
particles (aspect ratio ~1) with narrow particle size distributions, so the effects of the primary particle
morphology could be minimized in this study. It is reported that agglomerates of calcite nanoparticles
have relatively spherical shapes [18]. CaCO3 nanoparticles are widely used as filler materials in
several industries, including rubber, plastics, sealants, paints, printing inks, and paper [19]. For some
hydrophobic binders such as plastics and sealants, the surfaces of CaCO3 particles are often treated
with fatty acids in order to increase the affinity to the binders [20,21]. For the present study, we
employed agglomerates of CaCO3 nanoparticles with/without fatty acid coatings as model materials.
As the agglomerates are not ideal spheres, we crushed many agglomerates and calculated the average
fracture strength.

2. Materials and Methods

2.1. Materials

Reagent grade calcite rhombohedral nanoparticles (primary particle size: ~80 nm) (Shiraishi
Kogyo Kaisha Ltd., Osaka, Japan) and stearic acid (C17H35COOH) (FUJIFILM Wako Pure Chemicals,
Co., Osaka, Japan) were used as starting materials. Three types of CaCO3 powder (CaCO3 nanoparticles
without surface treatment, with a small amount, and with a large amount of stearic acid coatings) were
prepared by the following steps: (1) preparation of their aqueous suspensions, (2) addition of stearic
acid solution with mechanical agitation, (3) filtered, and (4) heat-dried in air. The powder samples will
be called non-coated, lightly-coated, and heavily-coated samples hereafter.

2.2. Structural Characterization

For the three types of powder samples, Brunauer-Emmett-Teller (BET)-specific surface areas
(SSAs) [22,23] were measured by the single-point method using nitrogen adsorption (Macsorb HM
Model-1208, Mountech Co. Ltd., Tokyo, Japan). The average crystallite sizes were measured by the
Scherrer equation [24] using the calcite diffraction peak (104) at 2θ = 29.5◦ in powder X-ray diffraction
(XRD) patterns (Multi Flex, Rigaku Industrial Co. Ltd., Tokyo, Japan). Fatty acid contents in the
surface treated samples were determined using thermogravimetric analysis (TGA) (Thermo plus EVO2,
Rigaku Co., Ltd., Japan). For TGA, a predetermined quantity of the powders (~20.0 mg) was placed in
a platinum pan and heated at a rate of 20 ◦C/min from room temperature to 600 ◦C under clean-air flow
(500 mL/min). The amount of fatty acid was defined as the weight loss from 200 ◦C to 500 ◦C in this
study. Fatty acid contents were expressed as gram per 100 g of CaCO3. Primary particles were observed
by transmission electron microscopy (TEM) (JEM-2100HR, JEOL Co. Ltd., Tokyo, Japan, operated
at 200 kV, equipped with a LaB6 electron gun). Specimens for TEM observations were prepared by
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suspending powder in ethanol, dispersing in ultrasonic bath for 10 min, and depositing a drop on
carbon/collodion-coated copper grids.

Agglomerate size distributions were measured by static image analysis using a Morphologi
G3 particle characterization system (Malvern Instruments Ltd., Malvern, UK). With this machine,
number-based agglomerate size distributions from 0.5–10,000 µm can be automatically obtained from
optical microscope images with tens of thousands of agglomerates. For the measurement process,
the powder samples were dry dispersed onto glass plates using an automated sample dispersion
unit connected to the machine. Agglomeration state observations were carried out using field
emission-scanning electron microscopy (FE-SEM) (JSM-6330F, JEOL Co. Ltd., Japan, operated at 3.0 kV).
Specimens for SEM observations were prepared by spreading powder onto Si wafer substrates and
sputter-coating with platinum (FINE COATER JFC-1200, JEOL Co. Ltd., Japan) to avoid electrostatic
charging during observations. Pore size distributions located within agglomerates were measured by
mercury intrusion porosimetry (Pascal 140/240, Thermo Finnigan, Milan, Italy). BET-SSA, XRD, TGA,
and mercury intrusion porosimetry were conducted three times for each sample, in order to obtain
average results.

2.3. Nano-Indentation

Fracture strength of agglomerates was measured by nano-indentation method using a commercially
available nano-indentation system (ENT-2100, Elionix Co. Ltd., Tokyo, Japan). The instrument has a
force range of 1 µN–100 mN and a displacement resolution of 0.06 nm. Figure 1a shows a schematic
illustration of the fracture strength test by the nano-indentation system. The powder samples were
dry dispersed onto Si wafer substrates (~15 mm × 15 mm), and the substrates were fixed onto a
sample holder using a commercially available instant adhesive. We chose a polycrystalline diamond
flat tip with a diameter of 20 µm. Agglomerates within the predetermined size range of 9–12 µm
in diameter were chosen as indentation targets. The maximum load applied for each indentation
was set to 2 mN. The measurement was conducted in ambient conditions at room temperature. The
measurements were carried out until ten pieces of data were collected for each sample. The indenter
tip was cleaned with acetone-soaked cotton swabs after each indentation test. Optical micrographs of
agglomerates before and after the nano-indentation tests were taken from the direction parallel to the
substrate using a CMOS camera (maximum magnification: ×2000) attached to the instrument. The
diameter of each agglomerate was defined as the average of the length and width measured from the
optical micrographs.
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From the load-displacement curves obtained by nano-indentation tests, fracture strength were
calculated using the Hiramatsu equation [14,15]:

Csp = 1.4
Fsp

πd2 (1)

where Csp is fracture strength, Fsp is load at fracture point, and d is diameter of agglomerate. The
equation is widely used to calculate fracture strength for irregularly shaped test pieces. Figure 1b
shows a schematic load-depth diagram for the nano-indentation test. In this study, agglomeration
fracture point was defined as where the depth between a plot and the following plot (∆Dfollowing in
Figure 1b) becomes more than twice as large as the depth between the plot and the previous plot
(∆Dprevious in Figure 1b) for the first time during an indentation test.

3. Results and Discussion

3.1. Primary Particle Structure

Figure 2 shows a typical bright-field (BF) TEM image of primary particles in the non-coated
sample. Calcite rhombohedral particles with an approximate size of 80 nm can be confirmed. Fatty
acid contents derived from TGA (Figure S1), average crystallite sizes derived from XRD patterns
(Figure S2), and the BET-SSA of the three types of CaCO3 powders are listed in Table 1. Fatty acid
content of the heavily-coated sample was about twice that of the lightly-coated sample. Assuming
that stearic acids form close-packed homogeneous layers on the calcite surface, lightly-coated and
heavily-coated samples have 81% and 152% of their respective calcite nanoparticle surfaces coated
with stearic acids. Although all three samples had similar average crystallite sizes, the BET-SSAs of the
fatty acid-coated samples were significantly lower than the non-coated sample. This is likely to be
because “apparent sizes” and surface roughness of the treated particles become larger due to the fatty
acid coatings.
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Table 1. Powder characteristics of the non-coated, lightly-coated, and heavily-coated calcium
carbonate powders.

Non-Coated Lightly-Coated Heavily-Coated

Fatty acid content (g/100 g-CaCO3) - 3.3 6.3
Crystallite size (nm) 75 75 74

BET-SSA (m2/g) 18.7 16.5 16.7
Agglomeration size (µm)

D10 2.3 1.8 1.8
D50 5.3 4.0 3.0
D90 9.6 9.2 8.2

Most frequent pore diameter (nm) 48 28 23
Pore volume (mm3/g) 0.45 0.28 0.25

Fracture strength (Csp) (MPa) 1.7 ± 0.3 1.9 ± 0.3 2.1 ± 0.2

3.2. Agglomeration States

Figure 3 shows number-based agglomerate size distributions in the range of 0–12 µm measured
by static image analysis. The agglomerate sizes at the 10%, 50%, and 90% levels of the cumulative size
distributions (D10, D50, and D90) are given in Table 1. It can be seen that the non-coated sample has a
broader size distribution compared with those of the fatty acid-coated samples. In addition, the larger
the amount of fatty acid, the smaller the agglomerate size becomes and the sharper the size distribution
becomes. This is thought to be because the surface activity of the nanoparticles was lowered by fatty
acid-treatment. Note that the agglomeration size range selected for nano-indentation tests in this study
(9–12 µm) is larger than the sizes D90 in all the agglomerate size distributions for the three samples.
Figure 4 is an FE-SEM image of an agglomerate of lightly fatty acid-coated nanoparticles. It can be
seen that the nanoparticles are densely packed without any large pores within the agglomerate, and
the agglomerate has a relatively spherical shape. Figure 5a,b show the pore size distributions and
cumulative pore volume in the pore diameter range of 5–500 nm measured by mercury intrusion
porosimetry. The most frequent pore diameters within the range were measured to be approximately
48 nm, 28 nm, and 23 nm for the non-coated, lightly-coated, and heavily-coated powders, respectively.
When combined with the FE-SEM observation results shown in Figure 4, these peaks are deduced to be
due to the pores between agglomerates. Supposing that the cumulative mercury intruded volume from
a pore diameter of 5 nm (the low limit of the measurement) to diameters where dV/dlog(Diameter)
reached local minimums (62 nm, 37 nm, and 31 nm for non-coated, lightly-coated, and heavily-coated
powders, respectively) as the pore volume within agglomerates, pore volume within agglomerates
were 0.45 mm3/g, 0.28 mm3/g, and 0.25 mm3/g for non-coated, lightly-coated, and heavily-coated
powders, respectively. Thus, it can be said that the higher the amount of fatty acid is, the smaller the
pore size and pore volume within agglomerates becomes. It can be interpreted from these results that
the fatty acid is treated even on the particles inside the agglomerates. The most frequent pore diameters
and pore volumes within the agglomerates for the three types of samples are summarized in Table 1.
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3.3. Nano-Indentation

Figure 6a,b is optical micrographs of agglomerates before and after the nano-indentation tests.
These images were taken from the direction parallel to the indentation direction, and it can be seen that
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the agglomerate was fractured by the indentation test. The length and width of each agglomerate was
measured from an optical micrograph taken before the fracture test. The diameter of the indentation
tip used in this study was 20 µm (corresponding to the area indicated by the dotted blue circle in
Figure 6b), and the positions of agglomerates other than the fractured one did not change. It can
therefore be assumed that load-depth curves were measured only for the targeted agglomerates, and
the effect of static electricity was not significant during the indentation.
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From the load-depth curves obtained during the indentation tests, the fracture strength was
calculated using the Hiramatsu equation for ten agglomerates for each sample. Figure 7 shows the
average fracture strength as a function of fatty acid content for the non-coated, lightly-coated, and
heavily-coated samples. The fracture strength values are listed in Table 1. As the amount of surface
treatment increases, fracture strength of agglomerates becomes slightly higher. This is interpreted to
be because of the existence of fatty acid inside the agglomerates. Under the experimental conditions
employed in this study (ambient conditions at room temperature), the smaller the pore volume within
the agglomerates becomes due to interior fatty acid, the stronger the agglomerates become. It can be
concluded that fracture strength of nanoparticle agglomerates can be quickly evaluated by using a
commercially available nano-indentation instrument equipped with a flat indentation tip, and the
Hiramatsu equation. Finally, in order to evaluate the fracture strength more quantitatively, the diameter
of each agglomerate has to be determined using microscopes with higher resolution such as SEM and
atomic force microscope. For the experiment, the usage of commercially available coordination-linked
sample holders for SEM and the nano-indentation system may be beneficial.
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