

Supplementary Materials

CNT and H₂ Production During CH₄ Decomposition over Ni/CeZrO₂. I. A Mechanistic Study

Agata Łamacz

Figure S2. CH₄ and CO₂ conversion during dry reforming of methane over Ni/CeZrO₂@CNT hybrid catalyst.

Figure S3. Temperature profile for spent Ni/CeZrO2 in flowing Ar.

T (°C)	9.1 wt.% Ni/CeZrO ₂		23.1 wt.% Ni/CeZrO ₂	
	Mass Increase (%)	C/Ni (mol/mol)	Mass Increase (%)	C/Ni (mol/mol)
500	6.6	3.5	10.2	2.2
600	13.1	7.0	14.8	3.1
700	15.9	8.5	18.5	3.9
800	10.6	5.7	11.3	2.4

Table 1. Weight increase for powder Ni/CeZrO₂ after decomposition of 10 vol.% CH₄/Ar at 500, 600 and 700 °C for 3 h.

The powder Ni/CeZrO₂ after CO treatment at 500 °C (11 wt.% of carbon in the sample) was heated to 900 °C in flowing Ar (Figure S1). The oxidation of the most reactive carbon deposits to CO₂ with lattice oxygen from CeZrO₂ (Equation (S1)) occurred from ca. 350 °C. From 400 °C CO₂ and decreased with the simultaneous formation of CO, which indicates that CO₂ is consumed in the oxidation of carbon deposits (Equations (S2) and (S3)).

$$C^* + O^* = CO + 2^*$$
 (S1)

$$CO_2 + * = CO + *O(ex. CO_2)$$
 (S2)

$$C^* + O^*(ex. CO_2) = CO + 2^*$$
 (S3)