

Supplementary Material: Dissolution of Trihexyltetradecylphosphonium Chloride in Supercritical CO₂

Mark P. Heitz, Kristina L. Fuller and Kaitlin A. Ordiway

Figure S1. Single (**left**) and double (**right**) exponential autocorrelation data for C153/scCO₂ intensity decay data at $Q_{\rm r} = 0.575$. The autocorrelation of the residuals shows clear improvement for the double exponential decay model as it eliminates bias from the initial part of the decay.

Figure S2. Double (**left**) and triple (**right**) exponential autocorrelation data for C153/IL/scCO₂ intensity decay data at $\rho_r = 0.754$. The autocorrelation of the residuals shows clear improvement for the double exponential decay model as it eliminates bias from the initial part of the decay.

Figure S3. Insets to Figure 6 for C153/IL/scCO₂. Blue and green dots are fluorescence intensity decay data and solid lines are the fits for C153 in $[P_{6,6,6,14}]$ ⁺Cl⁻/scCO₂ at 323 K. Excitation was at 405 nm and emission at 450 nm for all traces. Blue traces were recorded at $\rho_r = 0.754$ and green traces were at $\rho_r = 1.726$. Black dots at short time show the instrument function. Top panel: fits to a double exponential decay model for these data. Bottom panel: fits to a triple exponential model for these data.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).