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Abstract: Cell surface carbohydrates (known as glycans) are often aberrantly expressed or found
at atypical levels in cancer. Glycans can impact all steps in tumour progression, from malignant
transformation to metastasis, and have roles in all the cancer hallmarks. An increased understanding
of glycans in the metastatic cascade offers exciting new therapeutic opportunities. Glycan-based
targeting strategies are currently being tested in clinical trials and are a rich and untapped frontier
for development. As we learn more about cancer glycobiology, new targets will continue to emerge
for drug design. One key change in tumour glycosylation is the upregulation of cancer-associated
sialylated glycans. Abnormal sialylation is integral to tumour growth, metastasis and immune
evasion; therefore, targeting sialic acid moieties in cancer could be of high therapeutic value. Here, we
summarise the changes to sialic acid biology in cancer and discuss recent advances and technologies
bringing sialic-acid targeting treatments to the forefront of cancer therapeutics.
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1. Introduction

All cells are coated with carbohydrates, known as glycans, which form a layer on the cell surface
known as the glycocalyx [1]. Glycans are present in many different forms (including glycoproteins,
proteoglycans and glycolipids) and build the basis for a universal language (the glycome) that is
used for communication between cells [2]. Aberrant glycosylation is a universal feature of cancer
cells, and it is well established that even small changes to the glycome can severely affect tumour cell
biology [3,4]. Common cancer-associated glycome changes include aberrant sialylation, fucosylation,
truncated O-glycans, and changes to N- and O-glycan branching [5]. Aberrant glycosylation is linked
to all of the cancer hallmarks, and glycans can impact all steps in tumour progression, from malignant
transformation to metastasis [4,6]. This makes cancer-associated glycans attractive therapeutic targets,
and new technologies to study glycans have spurred a renewed interest in this area [7].

One key change in tumour glycosylation is the upregulation of cancer-associated sialylated
glycans, known as tumour sialoglycans [8]. Sialic acids are negatively charged sugar residues that often
terminate the glycans of glycoproteins and glycolipids. The cell surface of cancer cells is covered with a
dense layer of sialoglycans including SLeA, SLeX, STn and GM2 [9,10] (Figure 1). Aberrant sialylation
plays a fundamental role in cancer cell growth, metastasis and immune evasion, and targeting sialic
acid in cancer is an attractive therapeutic option. Here, we summarise the changes to sialic acid glycans
in cancer and highlight recent advances in sialic acid therapeutics.
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bloodstream to form metastases [8,10,14–17]. Sialylation of specific proteins has been linked to 
numerous signalling molecules and pathways important in cancer. For example, an increase in α2-3 
sialylation in gastric carcinoma can lead to activation of the receptor tyrosine kinases MET and RON 
to promote a more invasive phenotype [18,19]. The terminal sialylation of N-glycans can also confer 
tumour cell resistance to hypoxia and have a major impact on malignant cell phenotypes [20,21]. N-
glycans containing terminal α2-6 sialic acid contribute to the aberrant regulation of E-cadherin in 
cancer to impair cancer cell adhesion and promote cell invasion and metastasis [22–24]. 

 
Figure 1. Sialylated glycans important in cancer. 

New tools to target sialic acids are being developed and have shown promise in 
preventing/inhibiting cancer metastasis. The sialic acid glycomimetic (P-3Fax-Neu5Ac) delays 
tumour growth in vivo and can be delivered to cancer cells using nanoparticles to prevent the 
metastatic spread of melanoma cells to the lung in a murine model [25,26]. Intra-tumoral injections 
with Ac53FaxNeu5Ac can block sialic acid expression and suppress tumour growth in multiple in vivo 
tumour models [10]. These findings demonstrate the important role of sialic acids in tumour growth 
and metastasis and indicate that a sialic acid blockade could be of high therapeutic value. 

3. Glycosyltransferase and Glycosidase Enzymes 

The tumour glyco-code is generated through the cooperative action of multiple glycosylation 
enzymes that catalyse the addition or removal of specific glycans onto proteins and lipids. These 
changes are often driven by the altered expression of genes involved in glycan synthesis [27]. 
Abnormal sialylation in cancer cells has been linked to the altered expression of both sialyltransferase 
and sialidase enzymes [28]. Sialyltransferases are enzymes that transfer sialic acid residues to the 
terminal position of glycoconjugates. The sialyltransferases are a family of 20 enzymes that catalyse 
the attachment of sialic acid to the underlying glycan chain via different glycosidic linkages (α2-3, 
α2-6, or α2-8). Sialyltransferases are expressed in a tissue-specific manner and can be further divided 
into four sub-families (ST3Gal, ST6Gal. ST6GalNAc, and ST8SIA) [29]. Sialyltransferases are often 
misregulated in cancer and this is linked to the expression of cancer-associated antigens that contain 
sialic acid [5,29,30]. 

Key examples of sialyltransferases important in cancer include ST6GAL1; ST3GAL4 ST3GAL6 
and ST6GalNAc1/2 (summarised in Table 1). ST6GAL1 is upregulated in numerous cancer types and 
has recently been linked to all of the cancer hallmarks [11,31–33]. Therapeutically, ST6GAL1 can be 
used to predict response to EGFR/HER2 inhibitors in ovarian cancer cells [34]. Similarly, ST3GAL4 is 
also upregulated in cancer, and is associated with poor prognosis; metastasis and the synthesis of 
Sialyl Lewix X (sLeX) in gastric carcinoma [18,35]. ST3GAL6 is also linked to the synthesis of sLeX and 
the generation of E-selectin ligands [36,37]. Recently, ST3GAL6 was found to be critical to bone 
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2. Tumour Growth and Metastasis

Aberrant sialylation contributes to tumour growth and metastasis at multiple levels and has been
described as a key player in cancer progression [11–13]. Sialic acids can promote cancer progression by
driving tumour growth, protecting cells from apoptosis, facilitating cancer cell detachment, enhancing
invasion, promoting immune evasion, and enabling extravasation from the bloodstream to form
metastases [8,10,14–17]. Sialylation of specific proteins has been linked to numerous signalling
molecules and pathways important in cancer. For example, an increase in α2-3 sialylation in gastric
carcinoma can lead to activation of the receptor tyrosine kinases MET and RON to promote a more
invasive phenotype [18,19]. The terminal sialylation of N-glycans can also confer tumour cell resistance
to hypoxia and have a major impact on malignant cell phenotypes [20,21]. N-glycans containing
terminal α2-6 sialic acid contribute to the aberrant regulation of E-cadherin in cancer to impair cancer
cell adhesion and promote cell invasion and metastasis [22–24].

New tools to target sialic acids are being developed and have shown promise in
preventing/inhibiting cancer metastasis. The sialic acid glycomimetic (P-3Fax-Neu5Ac) delays tumour
growth in vivo and can be delivered to cancer cells using nanoparticles to prevent the metastatic spread
of melanoma cells to the lung in a murine model [25,26]. Intra-tumoral injections with Ac53FaxNeu5Ac
can block sialic acid expression and suppress tumour growth in multiple in vivo tumour models [10].
These findings demonstrate the important role of sialic acids in tumour growth and metastasis and
indicate that a sialic acid blockade could be of high therapeutic value.

3. Glycosyltransferase and Glycosidase Enzymes

The tumour glyco-code is generated through the cooperative action of multiple glycosylation
enzymes that catalyse the addition or removal of specific glycans onto proteins and lipids. These
changes are often driven by the altered expression of genes involved in glycan synthesis [27]. Abnormal
sialylation in cancer cells has been linked to the altered expression of both sialyltransferase and
sialidase enzymes [28]. Sialyltransferases are enzymes that transfer sialic acid residues to the terminal
position of glycoconjugates. The sialyltransferases are a family of 20 enzymes that catalyse the
attachment of sialic acid to the underlying glycan chain via different glycosidic linkages (α2-3, α2-6,
or α2-8). Sialyltransferases are expressed in a tissue-specific manner and can be further divided
into four sub-families (ST3Gal, ST6Gal. ST6GalNAc, and ST8SIA) [29]. Sialyltransferases are often
misregulated in cancer and this is linked to the expression of cancer-associated antigens that contain
sialic acid [5,29,30].
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Key examples of sialyltransferases important in cancer include ST6GAL1; ST3GAL4 ST3GAL6
and ST6GalNAc1/2 (summarised in Table 1). ST6GAL1 is upregulated in numerous cancer types
and has recently been linked to all of the cancer hallmarks [11,31–33]. Therapeutically, ST6GAL1
can be used to predict response to EGFR/HER2 inhibitors in ovarian cancer cells [34]. Similarly,
ST3GAL4 is also upregulated in cancer, and is associated with poor prognosis; metastasis and
the synthesis of Sialyl Lewix X (sLeX) in gastric carcinoma [18,35]. ST3GAL6 is also linked to the
synthesis of sLeX and the generation of E-selectin ligands [36,37]. Recently, ST3GAL6 was found
to be critical to bone marrow homing and resistance to therapy in multiple myeloma [36], and a
follow-up study demonstrated this can be inhibited with the E-selectin antagonist GMI-1271 [37]. Other
cancer-associated sialyltrasferases include ST6GalNAc1 (which catalyses the cancer-associated sTn
antigen) and is associated with metastasis [8,27,38–43], and ST6GALNAC2, which has been identified
as a metastasis suppressor in breast cancer patients and could be used to stratify patients for treatment
with galectin-3 inhibitors [44,45].

Table 1. Key examples of sialyltransferases important in cancer.

Enzyme Link to Cancer Reference

ST6GAL1
Upregulated in numerous cancer types (including pancreatic, prostate,

breast and ovarian cancer). Role in tumour growth and metastasis.
Linked to several pathways intrinsic to tumour cell biology.

[11,31–33]

ST3GAL4 Upregulated in gastric carcinoma. Linked to poor prognosis, metastasis
and the synthesis of sLeX. [18,35]

ST3GAL6
High expression correlates with reduced survival in multiple myeloma.
Influences homing and engraftment to the bone marrow niche in vivo.
Plays a key role in selectin ligand synthesis through generation of sLeX.

[36,37]

ST6GALNAC1 Catalyses the sTn antigen and is associated with metastasis. [8,27,38–43]

ST6GALNAC2 Metastasis suppressor in breast cancer. Could be used to stratify
patients for treatment with galectin-3 inhibitors. [44,45]

The removal of sialic acids from glycoconjugates is catalysed by sialidase enzymes. Sialidases
can modulate the binding sites of functional molecules and are important in various biological
processes [46]. There are four sialidase enzymes, NEU1, NEU2, NEU3 and NEU4 and each of these can
be altered in cancer [47–51]. Sialidase enzymes are emerging as novel therapeutic targets in cancer.
Of particular interest, NEU1 can be targeted with oseltavimir phosphate in pancreatic, breast and
ovarian tumours, and this may improve the drug sensitivity of chemoresistant cells [48].

4. Cancer-Associated Sialyloglycans

Changes to sialylated glycans in cancer include an upregulation of the Sialyl Lewis antigens (sLeA

and sLeX), an increase in the truncated O-glycan sialyl-Tn (STn) and an increase in the sialylated
ganglioside GM2 [52] (Figure 1). The sialyl Lewis antigens are part of the Lewis family of blood group
antigens, named after the discoverer of a series of antigens found on red blood cells, and are the
minimal recognition motif for ligands of selectins (a family of lectins with roles in leukocyte trafficking
and cancer metastasis). Tumour cells coated with sLeA and sLex are recognised as migrating leucocytes,
enabling them to escape the bloodstream and colonise other organs and tissues [53]. Many solid
tumours and adenocarcinomas express high levels of sLeA and sLeX, and thus targeting selectins and
sLeA/X is attractive therapeutically [53]. Potential strategies include the use of glycomimetic drugs, such
as the selectin inhibitors Uproleselan (GMI-1271) and Rivipansel (GMI-1070), which have been tested
in clinical trials [52,54] (Table 2). Uproleselan (GMI-1271) is in phase 3 clinical trials, in combination
with chemotherapy, to treat relapsed acute myeloid leukemia (NCT03616470), and has also shown
promise in pre-clinical models of breast cancer, where it can prevent bone metastasis and improve
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survival [55]. Rivipansel (GMI-1070) reached phase 3 clinical trials for sickle cell disease but reported
negative results (NCT02187003).

One of the best characterised cancer-associated glycans is the truncated O-glycan STn, which is
upregulated in virtually all epithelial cancers and linked to metastasis and poor patient outcome [8]. STn
is carried by a variety of glycoproteins and glycolipids and has important role in tumour development
and invasiveness [8]. The STn antigen has been investigated widely as a circulating biomarker for
numerous cancer types [17], and a vaccine against STn has been tested in clinical trials and can increase
survival in a subset of breast cancer patients receiving hormonal therapy [56–58].

Gangliosides (sialic-acid-containing glycosphingolipids) are important regulators of cell signalling
in cancer [59]. The complex ganglioside GD2 is expressed on tumours of neuroectodermal origin and
has a key role in the aggressiveness of some cancers including neuroblastoma and melanoma. GD2 can
be inhibited with monoclonal antibodies and holds major potential as a target for cancer therapy [52,60].
The anti-GD2 monoclonal antibody dinutuximab can help improve survival in patients with high-risk
neuroblastoma. Dinutuximab is currently in phase 3 clinical trials for neuroblastoma, and may be
relevant to other cancer types [61].

Table 2. Overview of pre-clinical models and clinical trials targeting aberrant sialylation in cancer.

Target Approach Reference or Identifier

Selectins
Selectin antagonist Uproleselan (GMI-1271) mimics SLeX.
Uproleselan tested in pre-clinical models for breast
cancer bone metastasis.

NCT03616470 phase 3 study in combination with
chemotherapy for relapsed acute myeloid leukaemia.

[55]

Sialylation
A sialic acid-blocking glycomimetic delivered using
nanoparticles can inhibit metastasis and has been shown
to be safe in pre-clinical models.

[26]

Siglecs

Siglecs-9, -7, -10 and -15 and their ligands have shown
promise as targets to dampen anti-tumor immunity. [62–69]

The EAGLE platform (that delivers a targeted sialidase
enzyme to the tumours) is about to enter clinical trials for
breast cancer

[70]

sTn glycan THERATOPE STn-KLH vaccine NCT00003638 phase 3 clinical trial for metastatic breast
cancer. [56–58]

Glycolipid GD2 anti-GD2 antibody ch14.18/CHO (dinutuximab) Neuroblastoma phase 3 trial
[61]

5. Siglecs and Cancer Immunotherapy

The aberrant glycosylation of tumour cells can lead to new connections with immune cells
resulting in an immunosuppressive phenotype. This can be through the induction of self-glycan
structures to limit immune self-reactive responses or by the expression of glycans that can reduce the
function of effector T cells [71]. The dense layer of sialic acids on the surface of cancer cells has long
been implicated in protecting tumours from eradication by the immune system. In the 1960s and 1970s,
immunotherapy clinical trials using irradiated cancer cells treated with bacterial sialidase were carried
out but were not taken forward [72–74]. Recent developments in glyco-tools have driven a renewed
interest in the role of sialic acids in the formation of an immuno-suppressive environment, with sialic
acids on the surface of cancer cells believed to play a crucial role in immune modulation and tumour
immune evasion [10]. Sialylated glycans found on both glycoproteins and glycolipids are recognised
by Siglecs, a family of lectins that are expressed on the surface of many immune cell subtypes in
the tumour microenvironment [75–79]. The interaction of cancer cell bound sialic acid with Siglecs
can thus modulate immune cell phenotype and allow tumours to escape the immune system [64]
(Figure 2). Cancer-associated glycans, such as STn and sialyl T, are well characterised examples of
this, being linked to the impaired maturation and activation of macrophages and dendritic cells, and
are also implicated in the deactivation of natural killer (NK) cells and the formation of regulatory T
cells [63,78,80–82]. Hence, determining the specific glycan signature of cancer cells (known as the
‘glyco-code’) will be crucial to understand how glyans promote immune evasion [71,83].
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Figure 2. The siglec and sialoglycan axis in cancer. Siglec binding to hypersialylated tumour glycans
blocks immune cell activation to promote immunosuppression.

Targeting sialic acid moieties has become an upcoming strategy for cancer immunotherapy [10,52].
Studies have shown that a sialic acid blockade has a profound effect on the tumour immune
microenvironment, with pro-inflammatory effects, including increased numbers and activation state of
CD8+ T cells, reduced percentages of myeloid and regulatory T (Tregs) cells, and increased tumour cell
killing by cytotoxic t cells [10]. Bull et al. (2018) also demonstrated that a sialic acid blockade induces
a protection upon rechallenge, suggestive of a curative immune response and conversion to a more
immune-permissive microenvironment [10]. How sialic acid inhibition promotes these changes in
tumour microenvironment is poorly understood; however, emerging studies suggest loss of tumour
sialic acid can block the action of immune modulatory Siglecs on immune cells. To date, Siglecs-9, -7,
-10 and -15 and their ligands have shown promise as targets to dampen anti-tumor immunity [62–69].
The interaction of Siglec-9 with sialylated MUC1 can induce the differentiation of monocytes to
tumour-associated macrophages and increase levels of the checkpoint ligand PD-L1 [78,79]. Siglec-9
is upregulated on tumour-infiltrating T cells from patients with non-small lung cancer (NSCLC),
colorectal and ovarian cancer and targeting of the sialoglycan-Siglec-9 pathway could be used to
enhance T cell activation [63]. A high-profile 2019 study found that sialoglycoprotein CD24 acts an
anti-phagocytic ‘don’t eat me’ signal that can protect cancer cells from attack by Siglec-10-expressing
macrophages. Blockade of CD24-Siglec10 enhances clearance of CD24+ tumours and is a potrntial
immunotherapy target [62]. Siglec-15 is upregulated in cancer cells and tumour-infiltrating myeloid
cells, and is a critical immune suppressor. Siglec-15 suppresses antigen-specific T cell responses at
the tumour site. An anti-Siglec-15 antibody has been developed and can reverse T cell suppression to
promote tumour immunity and is potentially useful for cancer patients who are resistant to current
therapies [69].

Precision glycocalyx editing with antibody-sialidase conjugates has also been reported and is
a promising avenue for cancer immune therapy. Here, an antibody directs sialidase to selectively
remove sialic acid from tumour cells and enable immune cells to kill the desialylated cancer cells [84].
The EAGLE platform (that delivers a targeted sialidase enzyme to the tumours) has shown great
promise in pre-clinical models and is about to enter clinical trials for breast cancer [70]. Other potential
strategies to target sialic acid glycans in cancer immunotherapies include anti-glycan vaccines, blocking
cancer-associated glycan lectin interactions, and dendritic cell targeting [71].
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6. Conclusions and Future Perspectives

In the era of personalised medicine, there is a huge potential to develop new glycan-based
therapies to treat cancer. A key change in cancer glycosylation is an upregulation in the levels of
sialylation, as well as the expression of cancer-associated sialoglycans. Aberrant sialylation is integral
to tumour growth, survival, metastasis and immune evasion, and targeting abnormal sialylation will
likely be of high therapeutic value. New technologies to study glycosylation are bringing glycan
targeting strategies to the forefront of cancer therapeutics, particularly in the area of cancer immunology.
Moving forward, drugs targeting tumour glycans will likely be used synergistically with existing
chemotherapy and/or radiotherapy approaches to impact disease outcomes. As well as themselves
being drug targets, changes to glycans can likely also be exploited to predict sensitivity and resistance
to other treatment strategies and, ultimately, improve clinical outcome.

Author Contributions: J.M. and E.S. jointly wrote and edited the manuscript.

Funding: This work was supported by Prostate Cancer UK through a Research Innovation Award (RIA16-ST2-011).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tarbell, J.M.; Cancel, L.M. The glycocalyx and its significance in human medicine. J. Int. Med. 2016,
280, 97–113. [CrossRef]

2. Varki, A. Biological roles of glycans. Glycobiology 2017, 27, 3–49. [CrossRef] [PubMed]
3. Pinho, S.S.; Reis, C.A. Glycosylation in cancer: Mechanisms and clinical implications. Nat. Rev. Cancer 2015,

15, 540–555. [CrossRef] [PubMed]
4. Munkley, J.; Elliott, D.J. Hallmarks of glycosylation in cancer. Oncotarget 2016, 7, 35478–35489. [CrossRef]

[PubMed]
5. Munkley, J.; Mills, I.G.; Elliott, D.J. The role of glycans in the development and progression of prostate cancer.

Nat. Rev. Urol. 2016, 13, 324–333. [CrossRef] [PubMed]
6. Vajaria, B.N.; Patel, P.S. Glycosylation: A hallmark of cancer? Glycoconj. J. 2017, 34, 147–156. [CrossRef]

[PubMed]
7. Hudak, J.E.; Bertozzi, C.R. Glycotherapy: New advances inspire a reemergence of glycans in medicine.

Chem. Biol. 2014, 21, 16–37. [CrossRef]
8. Munkley, J. The Role of Sialyl-Tn in Cancer. Int. J. Mol. Sci. 2016, 17, 275. [CrossRef]
9. Munkley, J. The glycosylation landscape of pancreatic cancer. Oncol. Lett. 2019, 17, 2569–2575. [CrossRef]
10. Bull, C.; Boltje, T.J.; Balneger, N.; Weischer, S.M.; Wassink, M.; van Gemst, J.J.; den Brok, M.H. Sialic Acid

Blockade Suppresses Tumor Growth by Enhancing T-cell-Mediated Tumor Immunity. Cancer Res. 2018,
78, 3574–3588. [CrossRef]

11. Garnham, R.; Scott, E.; Livermore, K.; Munkley, J. ST6GAL1: A key player in cancer (Review). Oncol. Lett.
2019, 18, 983–989. [CrossRef] [PubMed]

12. Schultz, M.J.; Swindall, A.F.; Bellis, S.L. Regulation of the metastatic cell phenotype by sialylated glycans.
Cancer Metastas. Rev. 2012, 31, 501–518. [CrossRef] [PubMed]

13. Bull, C.; Stoel, M.A.; den Brok, M.H.; Adema, G.J. Sialic acids sweeten a tumor’s life. Cancer Res. 2014,
74, 3199–3204. [CrossRef] [PubMed]

14. Hauselmann, I.; Borsig, L. Altered tumor-cell glycosylation promotes metastasis. Front. Oncol. 2014, 4, 28.
[CrossRef] [PubMed]

15. Amano, M.; Eriksson, H.; Manning, J.C.; Detjen, K.M.; Andre, S.; Nishimura, S.; Gabous, H.J. Tumour
suppressor p16(INK4a)-anoikis-favouring decrease in N/O-glycan/cell surface sialylation by down-regulation
of enzymes in sialic acid biosynthesis in tandem in a pancreatic carcinoma model. FEBS J. 2012, 279, 4062–4080.
[CrossRef]

16. Bos, P.D.; Zhang, X.H.; Nadal, C.; Shu, W.; Gomis, R.R.; Nguyen, D.X.; Massagué, J. Genes that mediate
breast cancer metastasis to the brain. Nature 2009, 459, 1005–1009. [CrossRef] [PubMed]

17. Scott, E.; Munkley, J. Glycans as Biomarkers in Prostate Cancer. Int. J. Mol. Sci. 2019, 20, 1389. [CrossRef]

http://dx.doi.org/10.1111/joim.12465
http://dx.doi.org/10.1093/glycob/cww086
http://www.ncbi.nlm.nih.gov/pubmed/27558841
http://dx.doi.org/10.1038/nrc3982
http://www.ncbi.nlm.nih.gov/pubmed/26289314
http://dx.doi.org/10.18632/oncotarget.8155
http://www.ncbi.nlm.nih.gov/pubmed/27007155
http://dx.doi.org/10.1038/nrurol.2016.65
http://www.ncbi.nlm.nih.gov/pubmed/27091662
http://dx.doi.org/10.1007/s10719-016-9755-2
http://www.ncbi.nlm.nih.gov/pubmed/27975160
http://dx.doi.org/10.1016/j.chembiol.2013.09.010
http://dx.doi.org/10.3390/ijms17030275
http://dx.doi.org/10.3892/ol.2019.9885
http://dx.doi.org/10.1158/0008-5472.CAN-17-3376
http://dx.doi.org/10.3892/ol.2019.10458
http://www.ncbi.nlm.nih.gov/pubmed/31423157
http://dx.doi.org/10.1007/s10555-012-9359-7
http://www.ncbi.nlm.nih.gov/pubmed/22699311
http://dx.doi.org/10.1158/0008-5472.CAN-14-0728
http://www.ncbi.nlm.nih.gov/pubmed/24830719
http://dx.doi.org/10.3389/fonc.2014.00028
http://www.ncbi.nlm.nih.gov/pubmed/24592356
http://dx.doi.org/10.1111/febs.12001
http://dx.doi.org/10.1038/nature08021
http://www.ncbi.nlm.nih.gov/pubmed/19421193
http://dx.doi.org/10.3390/ijms20061389


Medicines 2019, 6, 102 7 of 10

18. Gomes, C.; Osorio, H.; Pinto, M.T.; Campos, D.; Oliveira, M.J.; Reis, C.A. Expression of ST3GAL4 leads
to SLe(x) expression and induces c-Met activation and an invasive phenotype in gastric carcinoma cells.
PLoS ONE 2013, 8, e66737. [CrossRef]

19. Mereiter, S.; Magalhaes, A.; Adamczyk, B.; Jin, C.; Almeida, A.; Drici, L.; Santos, L.L. Glycomic analysis of
gastric carcinoma cells discloses glycans as modulators of RON receptor tyrosine kinase activation in cancer.
Biochim. Biophys. Acta 2016, 1860, 1795–1808. [CrossRef]

20. Jones, R.B.; Dorsett, K.A.; Hjelmeland, A.B.; Bellis, S.L. The ST6Gal-I sialyltransferase protects tumor cells
against hypoxia by enhancing HIF-1alpha signaling. J. Biol. Chem. 2018, 293, 5659–5667. [CrossRef]

21. Isaji, T.; Im, S.; Kameyama, A.; Wang, Y.Q.; Fukuda, T.; Gu, J.G. A complex between phosphatidylinositol
4-kinase II and integrin 31 is required for N-glycan sialylation in cancer cells. J. Biol. Chem. 2019,
294, 4425–4436. [CrossRef] [PubMed]

22. Guo, H.B.; Lee, I.; Kamar, M.; Pierce, M. N-acetylglucosaminyltransferase V expression levels regulate
cadherin-associated homotypic cell-cell adhesion and intracellular signaling pathways. J. Biol. Chem. 2003,
278, 52412–52424. [CrossRef] [PubMed]

23. Ihara, S.; Miyoshi, E.; Ko, J.H.; Murata, K.; Nakahara, S.; Honke, K.; Taniguchi, N. Prometastatic effect of
N-acetylglucosaminyltransferase V is due to modification and stabilization of active matriptase by adding
beta 1-6 GlcNAc branching. J. Biol. Chem. 2002, 277, 16960–16967. [CrossRef] [PubMed]

24. Pinho, S.S.; Figueiredo, J.; Cabral, J.; Carvalho, S.; Dourado, J.; Magalhaes, A.; Gärtner, F.; Mendonfa, A.M.;
Isaji, T.; Gu, J.; et al. E-cadherin and adherens-junctions stability in gastric carcinoma: Functional implications
of glycosyltransferases involving N-glycan branching biosynthesis, N-acetylglucosaminyltransferases III
and V. Biochim. Biophys. Acta 2013, 1830, 2690–2700. [CrossRef]

25. Bull, C.; Boltje, T.J.; van Dinther, E.A.; Peters, T.; de Graaf, A.M.; Leusen, J.H.; Adema, G.J. Targeted delivery
of a sialic acid-blocking glycomimetic to cancer cells inhibits metastatic spread. ACS Nano 2015, 9, 733–745.
[CrossRef] [PubMed]

26. Bull, C.; Boltje, T.J.; Wassink, M.; de Graaf, A.M.; van Delft, F.L.; den Brok, M.H.; Adema, G.J. Targeting
aberrant sialylation in cancer cells using a fluorinated sialic acid analog impairs adhesion, migration, and
in vivo tumor growth. Mol. Cancer Ther. 2013, 12, 1935–1946. [CrossRef]

27. Munkley, J.; Vodak, D.; Livermore, K.E.; James, K.; Wilson, B.T.; Knight, B.; Leung, H.Y. Glycosylation is
an Androgen-Regulated Process Essential for Prostate Cancer Cell Viability. EBioMedicine 2016, 8, 103–116.
[CrossRef]

28. Vajaria, B.N.; Patel, K.R.; Begum, R.; Patel, P.S. Sialylation: An Avenue to Target Cancer Cells.
Pathol. Oncol. Res. 2016, 22, 443–447. [CrossRef]

29. Dall’Olio, F.; Malagolini, N.; Trinchera, M.; Chiricolo, M. Sialosignaling: Sialyltransferases as engines of
self-fueling loops in cancer progression. Biochim. Biophys. Acta 2014, 1840, 2752–2764. [CrossRef]

30. Carvalho, A.S.; Harduin-Lepers, A.; Magalhaes, A.; Machado, E.; Mendes, N.; Costa, L.T.; Reis, C.A.
Differential expression of alpha-2,3-sialyltransferases and alpha-1,3/4-fucosyltransferases regulates the levels
of sialyl Lewis a and sialyl Lewis x in gastrointestinal carcinoma cells. Int. J. Biochem. Cell Biol. 2010,
42, 80–89. [CrossRef]

31. Hsieh, C.C.; Shyr, Y.M.; Liao, W.Y.; Chen, T.H.; Wang, S.E.; Lu, P.C.; Hsiao, M. Elevation of β-galactoside
alpha2,6-sialyltransferase 1 in a fructoseresponsive manner promotes pancreatic cancer metastasis. Oncotarget
2017, 8, 7691–7709. [CrossRef] [PubMed]

32. Wei, A.; Fan, B.; Zhao, Y.; Zhang, H.; Wang, L.; Yu, X.; Wang, S. ST6Gal-I overexpression facilitates
prostate cancer progression via the PI3K/Akt/GSK-3beta/beta-catenin signaling pathway. Oncotarget 2016,
7, 65374–65388. [CrossRef] [PubMed]

33. Lu, J.; Isaji, T.; Im, S.; Fukuda, T.; Hashii, N.; Takakura, D.; Kawasaki, N.; Gu, J. beta-Galactoside
alpha2,6-sialyltranferase 1 promotes transforming growth factor-beta-mediated epithelial-mesenchymal
transition. J. Biol. Chem. 2014, 289, 34627–34641. [CrossRef] [PubMed]

34. Britain, C.M.; Holdbrooks, A.T.; Anderson, J.C.; Willey, C.D.; Bellis, S.L. Sialylation of EGFR by the ST6Gal-I
sialyltransferase promotes EGFR activation and resistance to gefitinib-mediated cell death. J. Ovarian Res.
2018, 11, 12. [CrossRef] [PubMed]

35. Mereiter, S.; Magalhaes, A.; Adamczyk, B.; Jin, C.; Almeida, A.; Drici, L.; Reis, C.A. Glycomic and
sialoproteomic data of gastric carcinoma cells overexpressing ST3GAL4. Data Brief 2016, 7, 814–833.
[CrossRef] [PubMed]

http://dx.doi.org/10.1371/journal.pone.0066737
http://dx.doi.org/10.1016/j.bbagen.2015.12.016
http://dx.doi.org/10.1074/jbc.RA117.001194
http://dx.doi.org/10.1074/jbc.RA118.005208
http://www.ncbi.nlm.nih.gov/pubmed/30659093
http://dx.doi.org/10.1074/jbc.M308837200
http://www.ncbi.nlm.nih.gov/pubmed/14561752
http://dx.doi.org/10.1074/jbc.M200673200
http://www.ncbi.nlm.nih.gov/pubmed/11864986
http://dx.doi.org/10.1016/j.bbagen.2012.10.021
http://dx.doi.org/10.1021/nn5061964
http://www.ncbi.nlm.nih.gov/pubmed/25575241
http://dx.doi.org/10.1158/1535-7163.MCT-13-0279
http://dx.doi.org/10.1016/j.ebiom.2016.04.018
http://dx.doi.org/10.1007/s12253-015-0033-6
http://dx.doi.org/10.1016/j.bbagen.2014.06.006
http://dx.doi.org/10.1016/j.biocel.2009.09.010
http://dx.doi.org/10.18632/oncotarget.13845
http://www.ncbi.nlm.nih.gov/pubmed/28032597
http://dx.doi.org/10.18632/oncotarget.11699
http://www.ncbi.nlm.nih.gov/pubmed/27588482
http://dx.doi.org/10.1074/jbc.M114.593392
http://www.ncbi.nlm.nih.gov/pubmed/25344606
http://dx.doi.org/10.1186/s13048-018-0385-0
http://www.ncbi.nlm.nih.gov/pubmed/29402301
http://dx.doi.org/10.1016/j.dib.2016.03.022
http://www.ncbi.nlm.nih.gov/pubmed/27077082


Medicines 2019, 6, 102 8 of 10

36. Glavey, S.V.; Manier, S.; Natoni, A.; Sacco, A.; Moschetta, M.; Reagan, M.R.; Zhang, Y. The sialyltransferase
ST3GAL6 influences homing and survival in multiple myeloma. Blood 2014, 124, 1765–1776. [CrossRef]
[PubMed]

37. Natoni, A.; Smith, T.A.G.; Keane, N.; McEllistrim, C.; Connolly, C.; Jha, A.; Kirkham-McCarthy, L. E-selectin
ligands recognised by HECA452 induce drug resistance in myeloma, which is overcome by the E-selectin
antagonist, GMI-1271. Leukemia 2017, 31, 2642–2651. [CrossRef]

38. Munkley, J.; Oltean, S.; Vodak, D.; Wilson, B.T.; Livermore, K.E.; Zhou, Y.; McCullagh, P. The androgen
receptor controls expression of the cancer-associated sTn antigen and cell adhesion through induction of
ST6GalNAc1 in prostate cancer. Oncotarget 2015, 6, 34358–34374. [CrossRef]

39. Munkley, J.; Elliott, D.J. Sugars and cell adhesion: The role of ST6GalNAc1 in prostate cancer progression.
Cancer Cell Microenviron. 2016, 3, e1174.

40. Genega, E.M.; Hutchinson, B.; Reuter, V.E.; Gaudin, P.B. Immunophenotype of high-grade prostatic
adenocarcinoma and urothelial carcinoma. Modern Pathol. 2000, 13, 1186–1191. [CrossRef]

41. Julien, S.; Adriaenssens, E.; Ottenberg, K.; Furlan, A.; Courtand, G.; Vercoutter-Edouart, A.S.; Le Bourhis, X.
ST6GalNAc I expression in MDA-MB-231 breast cancer cells greatly modifies their O-glycosylation pattern
and enhances their tumourigenicity. Glycobiology 2006, 16, 54–64. [CrossRef] [PubMed]

42. Munkley, J. Glycosylation is a global target for androgen control in prostate cancer cells. Endocr. Relat. Cancer
2017, 24, R49–R64. [CrossRef] [PubMed]

43. Tamura, F.; Sato, Y.; Hirakawa, M.; Yoshida, M.; Ono, M.; Osuga, T.; Kawano, Y. RNAi-mediated gene
silencing of ST6GalNAc I suppresses the metastatic potential in gastric cancer cells. Gastric Cancer 2014,
19, 85–97. [CrossRef] [PubMed]

44. Ferrer, C.M.; Reginato, M.J. Sticking to sugars at the metastatic site: Sialyltransferase ST6GalNAc2 acts as a
breast cancer metastasis suppressor. Cancer Discov. 2014, 4, 275–277. [CrossRef] [PubMed]

45. Murugaesu, N.; Iravani, M.; van Weverwijk, A.; Ivetic, A.; Johnson, D.A.; Antonopoulos, A.; Mitsopoulos, C.
An in vivo functional screen identifies ST6GalNAc2 sialyltransferase as a breast cancer metastasis suppressor.
Cancer Discov. 2014, 4, 304–317. [CrossRef] [PubMed]

46. Miyagi, T.; Yamaguchi, K. Mammalian sialidases: Physiological and pathological roles in cellular functions.
Glycobiology 2012, 22, 880–896. [CrossRef] [PubMed]

47. Forcella, M.; Mozzi, A.; Stefanini, F.M.; Riva, A.; Epistolio, S.; Molinari, F.; Frattini, M. Deregulation of
sialidases in human normal and tumor tissues. Cancer Biomark. 2018, 21, 591–601. [CrossRef]

48. Haxho, F.; Neufeld, R.J.; Szewczuk, M.R. Neuraminidase-1: A novel therapeutic target in multistage
tumorigenesis. Oncotarget 2016, 7, 40860–40881. [CrossRef]

49. Uemura, T.; Shiozaki, K.; Yamaguchi, K.; Miyazaki, S.; Satomi, S.; Kato, K.; Miyagi, T. Contribution of
sialidase NEU1 to suppression of metastasis of human colon cancer cells through desialylation of integrin
beta4. Oncogene 2009, 28, 1218–1229. [CrossRef]

50. Glanz, V.Y.; Myasoedova, V.A.; Grechko, A.V.; Orekhov, A.N. Sialidase activity in human pathologies.
Eur. J. Pharmacol. 2019, 842, 345–350. [CrossRef]

51. Nath, S.; Mandal, C.; Chatterjee, U.; Mandal, C. Association of cytosolic sialidase Neu2 with plasma
membrane enhances Fas-mediated apoptosis by impairing PI3K-Akt/mTOR-mediated pathway in pancreatic
cancer cells. Cell Death Dis. 2018, 9, 210. [CrossRef] [PubMed]

52. Mereiter, S.; Balmana, M.; Campos, D.; Gomes, J.; Reis, C.A. Glycosylation in the Era of Cancer-Targeted
Therapy: Where Are We Heading? Cancer Cell 2019, 36, 6–16. [CrossRef] [PubMed]

53. Natoni, A.; Macauley, M.S.; O’Dwyer, M.E. Targeting Selectins and Their Ligands in Cancer. Front. Oncol.
2016, 6, 93. [CrossRef] [PubMed]

54. Ernst, B.; Magnani, J.L. From carbohydrate leads to glycomimetic drugs. Nat. Rev. Drug Discov. 2009,
8, 661–677. [CrossRef] [PubMed]

55. Esposito, M.; Mondal, N.; Greco, T.M.; Wei, Y.; Spadazzi, C.; Lin, S.C.; Cristea, I.M. Bone vascular niche
E-selectin induces mesenchymal-epithelial transition and Wnt activation in cancer cells to promote bone
metastasis. Nat. Cell Biol. 2019, 21, 627–639. [CrossRef] [PubMed]

56. Holmberg, L.A.; Sandmaier, B.M. Vaccination with Theratope (STn-KLH) as treatment for breast cancer.
Expert Rev. Vaccin. 2004, 3, 655–663. [CrossRef] [PubMed]

http://dx.doi.org/10.1182/blood-2014-03-560862
http://www.ncbi.nlm.nih.gov/pubmed/25061176
http://dx.doi.org/10.1038/leu.2017.123
http://dx.doi.org/10.18632/oncotarget.6024
http://dx.doi.org/10.1038/modpathol.3880220
http://dx.doi.org/10.1093/glycob/cwj033
http://www.ncbi.nlm.nih.gov/pubmed/16135558
http://dx.doi.org/10.1530/ERC-16-0569
http://www.ncbi.nlm.nih.gov/pubmed/28159857
http://dx.doi.org/10.1007/s10120-014-0454-z
http://www.ncbi.nlm.nih.gov/pubmed/25532910
http://dx.doi.org/10.1158/2159-8290.CD-14-0075
http://www.ncbi.nlm.nih.gov/pubmed/24596201
http://dx.doi.org/10.1158/2159-8290.CD-13-0287
http://www.ncbi.nlm.nih.gov/pubmed/24520024
http://dx.doi.org/10.1093/glycob/cws057
http://www.ncbi.nlm.nih.gov/pubmed/22377912
http://dx.doi.org/10.3233/CBM-170548
http://dx.doi.org/10.18632/oncotarget.8396
http://dx.doi.org/10.1038/onc.2008.471
http://dx.doi.org/10.1016/j.ejphar.2018.11.014
http://dx.doi.org/10.1038/s41419-017-0191-4
http://www.ncbi.nlm.nih.gov/pubmed/29434218
http://dx.doi.org/10.1016/j.ccell.2019.06.006
http://www.ncbi.nlm.nih.gov/pubmed/31287993
http://dx.doi.org/10.3389/fonc.2016.00093
http://www.ncbi.nlm.nih.gov/pubmed/27148485
http://dx.doi.org/10.1038/nrd2852
http://www.ncbi.nlm.nih.gov/pubmed/19629075
http://dx.doi.org/10.1038/s41556-019-0309-2
http://www.ncbi.nlm.nih.gov/pubmed/30988423
http://dx.doi.org/10.1586/14760584.3.6.655
http://www.ncbi.nlm.nih.gov/pubmed/15606349


Medicines 2019, 6, 102 9 of 10

57. Mayordomo, J.; Tres, A.; Miles, D.; Finke, L.; Jenkins, H. Long-term follow-up of patients concomitantly
treated with hormone therapy in a prospective controlled randomized multicenter clinical study comparing
STn-KLH vaccine with KLH control in stage IV breast cancer following first-line chemotherapy. J. Clin. Oncol.
2004, 22, 2603. [CrossRef]

58. Reddish, M.A.; MacLean, G.D.; Poppema, S.; Berg, A.; Longenecker, B.M. Pre-immunotherapy serum
CA27.29 (MUC-1) mucin level and CD69+ lymphocytes correlate with effects of Theratope sialyl-Tn-KLH
cancer vaccine in active specific immunotherapy. Cancer Immunol. Immunother. 1996, 42, 303–309. [CrossRef]

59. Groux-Degroote, S.; Rodriguez-Walker, M.; Dewald, J.H.; Daniotti, J.L.; Delannoy, P. Gangliosides in Cancer
Cell Signaling. Prog. Mol. Biol. Trans. Sci. 2018, 156, 197–227.

60. Cavdarli, S.; Dewald, J.H.; Yamakawa, N.; Guerardel, Y.; Terme, M.; Le Doussal, J.M.; Groux-Degroote, S.
Identification of 9-O-acetyl-N-acetylneuraminic acid (Neu5,9Ac2) as main O-acetylated sialic acid species of
GD2 in breast cancer cells. Glycoconj. J. 2019, 36, 79–90. [CrossRef]

61. Ladenstein, R.; Potschger, U.; Valteau-Couanet, D.; Luksch, R.; Castel, V.; Yaniv, I.; Trahair, T. Interleukin
2 with anti-GD2 antibody ch14.18/CHO (dinutuximab beta) in patients with high-risk neuroblastoma
(HR-NBL1/SIOPEN): A multicentre, randomised, phase 3 trial. Lancet Oncol. 2018, 19, 1617–1629. [CrossRef]

62. Barkal, A.A.; Brewer, R.E.; Markovic, M.; Kowarsky, M.; Barkal, S.A.; Zaro, B.W.; Weissman, I.L. CD24
signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature 2019, 572, 392–396.
[CrossRef] [PubMed]

63. Stanczak, M.A.; Siddiqui, S.S.; Trefny, M.P.; Thommen, D.S.; Boligan, K.F.; von Gunten, S.; von
Bergwelt-Baildon, M. Self-associated molecular patterns mediate cancer immune evasion by engaging
Siglecs on T cells. J. Clin. Investig. 2018, 128, 4912–4923. [CrossRef] [PubMed]

64. Bull, C.; den Brok, M.H.; Adema, G.J. Sweet escape: Sialic acids in tumor immune evasion.
Biochim. Biophys. Acta 2014, 1846, 238–246. [CrossRef] [PubMed]

65. Pearce, O.M.; Laubli, H. Sialic acids in cancer biology and immunity. Glycobiology 2016, 26, 111–128.
[CrossRef] [PubMed]

66. Boligan, K.F.; Mesa, C.; Fernandez, L.E.; von Gunten, S. Cancer intelligence acquired (CIA): Tumor
glycosylation and sialylation codes dismantling antitumor defense. Cell. Mol. Life Sci. CMLS 2015,
72, 1231–1248. [CrossRef] [PubMed]

67. Fraschilla, I.; Pillai, S. Viewing Siglecs through the lens of tumor immunology. Immunol. Rev. 2017,
276, 178–191. [CrossRef]

68. Adams, O.J.; Stanczak, M.A.; von Gunten, S.; Laubli, H. Targeting sialic acid-Siglec interactions to reverse
immune suppression in cancer. Glycobiology 2018, 28, 640–647. [CrossRef]

69. Wang, J.; Sun, J.; Liu, L.N.; Flies, D.B.; Nie, X.; Toki, M.; Han, X. Siglec-15 as an immune suppressor and
potential target for normalization cancer immunotherapy. Nat. Med. 2019, 25, 656–666. [CrossRef]

70. Peng, L. A novel immunomodulatory strategy of targeting glyco-immune checkpoints with EAGLE
technology. Eur. J. Cancer 2018, 103, E77.

71. RodrIguez, E.; Schetters, S.T.T.; van Kooyk, Y. The tumour glyco-code as a novel immune checkpoint for
immunotherapy. Nat. Rev. Immunol. 2018, 18, 204–211. [CrossRef] [PubMed]

72. Sanford, B.H. An alteration in tumor histocompatibility induced by neuraminidase. Transplantation 1967,
5, 1273–1279. [CrossRef] [PubMed]

73. Sedlacek, H.H.; Seiler, F.R. Immunotherapy of Neoplastic Diseases with Neuraminidase–Contradictions,
New Aspects, and Revised Concepts. Cancer Immunol. Immun. 1978, 5, 153–163. [CrossRef]

74. Bagshawe, K.D.; Currie, G.A. Immunogenicity of L 1210 murine leukaemia cells after treatment with
neuraminidase. Nature 1968, 218, 1254–1255. [CrossRef] [PubMed]

75. Crocker, P.R.; Paulson, J.C.; Varki, A. Siglecs and their roles in the immune system. Nat. Rev. Immunol. 2007,
7, 255–266. [CrossRef] [PubMed]

76. Pillai, S.; Netravali, I.A.; Cariappa, A.; Mattoo, H. Siglecs and Immune Regulation. Annu. Rev. Immunol.
2012, 30, 357–392. [CrossRef] [PubMed]

77. Hudak, J.E.; Canham, S.M.; Bertozzi, C.R. Glycocalyx engineering reveals a Siglec-based mechanism for NK
cell immunoevasion. Nat. Chem. Biol. 2014, 10, 69. [CrossRef]

78. Beatson, R.; Tajadura-Ortega, V.; Achkova, D.; Picco, G.; Tsourouktsoglou, T.D.; Klausing, S.;
Taylor-Papadimitriou, J. The mucin MUC1 modulates the tumor immunological microenvironment through
engagement of the lectin Siglec-9. Nat. Immunol. 2016, 17, 1273–1281. [CrossRef]

http://dx.doi.org/10.1200/jco.2004.22.14_suppl.2603
http://dx.doi.org/10.1007/s002620050287
http://dx.doi.org/10.1007/s10719-018-09856-w
http://dx.doi.org/10.1016/S1470-2045(18)30578-3
http://dx.doi.org/10.1038/s41586-019-1456-0
http://www.ncbi.nlm.nih.gov/pubmed/31367043
http://dx.doi.org/10.1172/JCI120612
http://www.ncbi.nlm.nih.gov/pubmed/30130255
http://dx.doi.org/10.1016/j.bbcan.2014.07.005
http://www.ncbi.nlm.nih.gov/pubmed/25026312
http://dx.doi.org/10.1093/glycob/cwv097
http://www.ncbi.nlm.nih.gov/pubmed/26518624
http://dx.doi.org/10.1007/s00018-014-1799-5
http://www.ncbi.nlm.nih.gov/pubmed/25487607
http://dx.doi.org/10.1111/imr.12526
http://dx.doi.org/10.1093/glycob/cwx108
http://dx.doi.org/10.1038/s41591-019-0374-x
http://dx.doi.org/10.1038/nri.2018.3
http://www.ncbi.nlm.nih.gov/pubmed/29398707
http://dx.doi.org/10.1097/00007890-196709000-00005
http://www.ncbi.nlm.nih.gov/pubmed/6056941
http://dx.doi.org/10.1007/BF00199623
http://dx.doi.org/10.1038/2181254a0
http://www.ncbi.nlm.nih.gov/pubmed/5656653
http://dx.doi.org/10.1038/nri2056
http://www.ncbi.nlm.nih.gov/pubmed/17380156
http://dx.doi.org/10.1146/annurev-immunol-020711-075018
http://www.ncbi.nlm.nih.gov/pubmed/22224769
http://dx.doi.org/10.1038/nchembio.1388
http://dx.doi.org/10.1038/ni.3552


Medicines 2019, 6, 102 10 of 10

79. Laubli, H.; Pearce, O.M.T.; Schwarz, F.; Siddiqui, S.S.; Deng, L.Q.; Stanczak, M.A.; Schwartz, A.G. Engagement
of myelomonocytic Siglecs by tumor-associated ligands modulates the innate immune response to cancer.
Proc. Natl. Acad. Sci. USA 2014, 111, 14211–14216. [CrossRef]

80. Bhatia, R.; Gautam, S.K.; Cannon, A.; Thompson, C.; Hall, B.R.; Aithal, A.; Batra, S.K. Cancer-associated
mucins: Role in immune modulation and metastasis. Cancer Metastas. Rev. 2019, 38, 223–236. [CrossRef]

81. Jandus, C.; Boligan, K.F.; Chijioke, O.; Liu, H.; Dahlhaus, M.; Demoulins, T.; Simon, H.U. Interactions between
Siglec-7/9 receptors and ligands influence NK cell-dependent tumor immunosurveillance. J. Clin. Investig.
2014, 124, 1810–1820. [CrossRef] [PubMed]

82. Cagnoni, A.J.; Perez Saez, J.M.; Rabinovich, G.A.; Marino, K.V. Turning-Off Signaling by Siglecs, Selectins,
and Galectins: Chemical Inhibition of Glycan-Dependent Interactions in Cancer. Front. Oncol. 2016, 6, 109.
[CrossRef] [PubMed]

83. Hsu, J.M.; Li, C.W.; Lai, Y.J.; Hung, M.C. Posttranslational Modifications of PD-L1 and Their Applications in
Cancer Therapy. Cancer Res. 2018, 78, 6349–6353. [PubMed]

84. Xiao, H.; Woods, E.C.; Vukojicic, P.; Bertozzi, C.R. Precision glycocalyx editing as a strategy for cancer
immunotherapy. Proc. Natl. Acad. Sci. USA 2016, 113, 10304–10309. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1073/pnas.1409580111
http://dx.doi.org/10.1007/s10555-018-09775-0
http://dx.doi.org/10.1172/JCI65899
http://www.ncbi.nlm.nih.gov/pubmed/24569453
http://dx.doi.org/10.3389/fonc.2016.00109
http://www.ncbi.nlm.nih.gov/pubmed/27242953
http://www.ncbi.nlm.nih.gov/pubmed/30442814
http://dx.doi.org/10.1073/pnas.1608069113
http://www.ncbi.nlm.nih.gov/pubmed/27551071
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Tumour Growth and Metastasis 
	Glycosyltransferase and Glycosidase Enzymes 
	Cancer-Associated Sialyloglycans 
	Siglecs and Cancer Immunotherapy 
	Conclusions and Future Perspectives 
	References

