Semi-synthesis and evaluation of sargahydroquinoic acid derivatives as potential antimalarial agents

Tatenda C. Munedzimwe ¹, Robyn L. van Zyl ², Donovan C. Heslop ², Adrienne L. Edkins ³ and Denzil R. Beukes ^{4*}

- ¹ Faculty of Pharmacy, Rhodes University, Grahamstown, 6139, South Africa; <u>tatendamunedzimwe@gmail.com</u>
- ² Pharmacology Division, Department of Pharmacy and Pharmacology; WITS Research Institute for Malaria (WRIM); MRC Collaborating Centre for Multidisciplinary Research on Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; <u>robyn.vanzyl@wits.ac.za</u>, <u>donoheslop@gmail.com</u>
- ³ Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6139, South Africa; <u>a.edkins@ru.ac.za</u>
- ⁴ School of Pharmacy, University of the Western Cape, Bellville, 7535, South Africa; dbeukes@uwc.ac.za

Supplementary data

Contents

Scheme S1. Isolation of compounds 1, 3, 7 and 9
Table S1. Comparison of ¹³ C NMR data for compounds 1, 3-9
Figure S1. ¹ H NMR spectrum of sargahydroquinoic acid (1) (400 MHz, CDCl ₃)5
Figure S2. ¹³ C NMR spectrum of sargahydroquinoic acid (1) (100 MHz, CDCl ₃)5
Figure S3. ¹ H NMR spectrum of sargaquinoic acid (3) (400 MHz, CDCl ₃)6
Figure S4. ¹³ C NMR spectrum of compound 3 (400 MHz, CDCl ₃)
Figure S5. ¹ H NMR spectrum of sargachromenol (7) (400 MHz, CDCl ₃)7
Figure S6. ¹³ C NMR spectrum of sargachromenol (7) (100 MHz, CDCl ₃)7
Figure S7. ¹ H NMR spectrum of 10' <i>E</i> -sargaquinal (9) (400 MHz, CDCl ₃)
Figure S8. ¹³ C NMR spectrum of 10' <i>E</i> -sargaquinal (9) (100 MHz, CDCl ₃)
Figure S9. ¹ H NMR spectrum of sarganaphthoquinoic acid (10) (400 MHz, CDCl ₃)9
Figure S10. ¹³ C NMR spectrum of sarganaphthoquinoic acid (10) (100 MHz, CDCl ₃)9
Figure S11. DEPT-135 NMR spectrum of sarganaphthoquinoic acid (10) (100 MHz, CDCl ₃)
Figure S12. COSY NMR spectrum of sarganaphthoquinoic acid (10) (CDCl ₃)10
Figure S13."HSQC NMR spectrum of sarganaphthoquinoic acid (10) (CDCl ₃)11
Figure S14. HMBC NMR spectrum of sarganaphthoquinoic acid (10) (CDCl ₃)11
Figure S15. ¹ H NMR spectrum of sargaquinoic acid methyl ester (5) (400 MHz, CDCl ₃)12
Figure S16. ¹³ C NMR spectrum of sargaquinoic acid methyl ester (5) (100 MHz)12

Figure S17. ¹ H NMR spectrum of sargahydroquinoic acid diacetate (2) (400 MHz, CDCl ₃)	13
Figure S18. ¹³ C NMR spectrum of sargahydroquinoic acid diacetate (2) (100 MHz, CDC	2l ₃) 13
Figure S19. ¹ H NMR spectrum of sargaquinol (6) (400 MHz, CDCl ₃)	14
Figure S20. ¹³ C NMR spectrum of sargaquinol (6) (100 MHz, CDCl ₃)	14
Figure S21. ¹ H NMR spectrum of sargachromendiol (8) (400 MHz, CDCl ₃)	15
Figure S22. ¹³ C NMR spectrum of sargachromendiol (8) (100 MHz, CDCl ₃)	15
Figure S23. ¹ H NMR spectrum of 10'Z-sargaquinal (4) (600 MHz, CDCl ₃)	16
Figure S24. ¹³ C NMR spectrum of 10'Z-sargaquinal (4) (100 MHz, CDCl ₃)	16

Conditions: a) i) MeOH extraction, ii) MeOH- CH_2Cl_2 (1:2) extraction, iii) combined extracts, collect CH_2Cl_2 , concentrate, b) 1,09 g extract, silica gel column chromatography (hexane-EtOAc gradient), c) silica gel column chromatography (hexane-EtOAc, 9:1), d) NP (Si) HPLC (hexane-EtOAc, 8:2), e) RP (C18) HPLC (MeOH-H2O, 9:1).

Scheme S1. Isolation of compounds 1, 3, 7 and 9

$C # \delta_c$										
	1	3	4	5	6	7	8	9		
1	146.4	188.0	187.96	187.92	188.0	145.6	-	187.96		
2	125.5	145.9	145.9	145.81	145.9	121.3	121.3	145.9		
3	115.4	133.1	132.27	133.1	133.1	110.3	126.3	132.3		
4	148.7	187.9	187.91	187.87	188.0	148.5	117.0	187.91		
5	113.9	132.2	132.12	132.11	132.2	117.1	148.6	132.1		
6	127.6	148.5	148.4	148.38	148.5	126.3	110.3	148.4		
7	16.1	17.7	15.99	16.07	17.7	15.7	15.9	16.0		
1′	29.9	27.5	27.33	27.48	27.5	122.9	124.1	27.3		
2′	121.7	117.9	118.2	117.97	118.1	130.7	-	118.2		
3′	138.2	139.8	139.9	139.78	139.7	77.8	77.8	139.9		
4′	39.5	39.6	39.5	39.56	39.8	40.8	40.7	39.5		
5′	26.0	26.3	26.4	26.37	26.2	22.6	22.6	26.4		
6′	124.2	124.5	125.5	124.39	124.7	124.9	124.7	125.5		
7′	134.7	134.6	133.6	134.6	135.0	134.3	134.8	133.6		
8′	39.0	39	39.38	39.09	39.5	39.1	39.8	39.4		
9′	28.3	28.2	27.54	27.95	26.3	28.1	27.0	27.5		
10′	145.5	145.4	145.9	142.06	-	144.9	145.0	154.9		
11′	130.5	130.6	132.1	131.36	131.2	130.5	130.6	132.1		
12′	34.5	34.5	27.33	34.66	35.2	34.5	35.1	27.3		
13′	27.8	27.9	27.45	27.82	27.1	27.9	26.1	25.7		
14′	123.4	123.4	123.6	123.46	124.2	123.4	122.9	123.6		
15′	132.3	132.2	133.2	133.1	133.7	132.3	131.8	133.2		
16′	25.7	25.6	25.15	25.61	25.6	25.7	25.7	25.2		
17′	17.7	16.1	17.72	17.59	16.1	17.7	17.7	17.7		
18′	172.4	172.7	190.9	168.42	62.8	172.9	60.3	205.4		
19′	16.0	16	16.04	15.93	16.1	15.5	15.5	16.0		
20′	16.1	16.1	16.1	15.84	16.0	25.9	25.9	16.1		
Me				51.03						

Table S1. Comparison of ¹³C NMR data for compounds 1, 3-9

Figure S1. ¹H NMR spectrum of sargahydroquinoic acid (1) (400 MHz, CDCl₃)

Figure S2. ¹³C NMR spectrum of sargahydroquinoic acid (1) (100 MHz, CDCl₃)

Figure S3. ¹H NMR spectrum of sargaquinoic acid (3) (400 MHz, CDCl₃)

Figure S4. ¹³C NMR spectrum of compound 3 (400 MHz, CDCl₃)

Figure S5. ¹H NMR spectrum of sargachromenol (7) (400 MHz, CDCl₃)

Figure S6. ¹³C NMR spectrum of sargachromenol (7) (100 MHz, CDCl₃)

Figure S7. ¹H NMR spectrum of 10'*E*-sargaquinal (9) (400 MHz, CDCl₃)

Figure S8. ¹³C NMR spectrum of 10'*E*-sargaquinal (9) (100 MHz, CDCl₃)

Figure S9. ¹H NMR spectrum of sarganaphthoquinoic acid (10) (400 MHz, CDCl₃)

Figure S10. ¹³C NMR spectrum of sarganaphthoquinoic acid (10) (100 MHz, CDCl₃)

Figure S11. DEPT-135 NMR spectrum of sarganaphthoquinoic acid (10) (100 MHz, CDCl₃)

Figure S12. COSY NMR spectrum of sarganaphthoquinoic acid (10) (CDCl₃)

Figure S13.-HSQC NMR spectrum of sarganaphthoquinoic acid (10) (CDCl₃)

Figure S14. HMBC NMR spectrum of sarganaphthoquinoic acid (10) (CDCl₃)

Figure S15. ¹H NMR spectrum of sargaquinoic acid methyl ester (5) (400 MHz, CDCl₃)

Figure S16. ¹³C NMR spectrum of sargaquinoic acid methyl ester (5) (100 MHz)

Figure S17. ¹H NMR spectrum of sargahydroquinoic acid diacetate (2) (400 MHz, CDCl₃)

Figure S18. ¹³C NMR spectrum of sargahydroquinoic acid diacetate (2) (100 MHz, CDCl₃)

Figure S19. ¹H NMR spectrum of sargaquinol (6) (400 MHz, CDCl₃)

Figure S20. ¹³C NMR spectrum of sargaquinol (6) (100 MHz, CDCl₃)

Figure S21. ¹H NMR spectrum of sargachromendiol (8) (400 MHz, CDCl₃)

Figure S22. ¹³C NMR spectrum of sargachromendiol (8) (100 MHz, CDCl₃)

Figure S23. ¹H NMR spectrum of 10'Z-sargaquinal (4) (600 MHz, CDCl₃)

Figure S24. ¹³C NMR spectrum of 10'Z-sargaquinal (4) (100 MHz, CDCl₃)