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Abstract: It has been shown that the risk of developing obesity, a serious modern health problem,
increases with air pollution. However, the molecular links are yet to be fully elucidated. Herein,
we propose a hypothesis via which air pollution-induced DNA damage would be the mechanistic
link between air pollution and the enhanced risk of obesity and overweight. Indeed, whereas air
pollution leads to DNA damage, DNA damage results in inflammation, oxidative stress and metabolic
impairments that could be behind energy balance changes contributing to obesity. Such thoughts,
worth exploring, seems an important starting point to better understand the impact of air pollution
on obesity development independently from the two main energy balance pillars that are diet and
physical activity. This could possibly lead to new applications both for therapies as well as for policies
and regulations.
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Obesity represents one of the most challenging health problems for modern societies [1,2].
Its basic definition is an accumulation of extra energy intake resulting from a high food
intake and/or insufficient energy expenditure [3]. The pathogenesis and underlying
mechanisms are complex and involve neuroendocrine component [4], genetics [5], broken
energy balance [3], biochemical environment variations [6], among others. Obesity has
even been compared to cancer in terms of tissue distribution and development [7], and
it has also been considered as a disease [8,9]. The most serious issues about obesity are
those related to its health impacts. It represents a risk factor for a variety of diseases
and health problems [10–17]. Obesity also impairs regeneration [18,19]. Furthermore, in
the context of coronavirus disease-2019 (COVID-19) crisis, a spotlight has been put on
obesity by health experts since obesity is a risk factor for sever forms of COVID-19 and
the measures taken by health authorities to limit COVID-19 spread could have worsened
obesity pandemic [20–23].

Obesity research mainly focuses on two well-characterized key factors in obesity
development, which are, respectively, energy intake and energy expenditure. Both diet and
physical activity are at the center of obesity management [24]. Indeed, these two are the
factors the individual can control to a big extend by following a healthy lifestyle including
a balanced diet [25,26] and sufficient physical activity [27]. Other non-caloric factors that
also impact obesity development such as sleeping cycle and psychological status can be
managed as well.

However, there are factors that individuals cannot control. These factors can be internal
or external. While the most known internal factor is genetics, a good example of external
factors impacting obesity development is the air pollution. Indeed, among the interesting
external factors that has been shown as involved in obesity and that are also outside the
control of individuals is the air pollution. Links between pollution and obesity have been
studied and pointed air pollution as a cause of obesity [28] or as increasing the risk of both
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overweight and obesity [29]. Air pollution includes components such as nitrogen oxides,
ultrafine particles, ozone, carbon monoxide and polyaromatic hydrocarbons [28–31].

Herein, this piece of writing aims to provide a hypothesis to explain the mechanistic
links between pollution and obesity via the DNA damage. Strong evidence from the litera-
ture point that those pollutants induce DNA damage [31–37] and air pollution modulates
both DNA methylation and epigenetic mark [30]. For instance, in vivo studies showed that
nitrogen dioxide induces dose- and time-dependent DNA single-strand breaks [38] and
exposing animals to air pollution increases oxidized guanines in the lung [39]. It is worth
noting that, within this context, DNA damage-related measures have even been suggested
as biomarkers for air pollution impacts on health [33,35,40].

Knowing that obesity includes among its molecular markers epigenetic changes [41],
we come with the following theory to explain links between air pollutants and obesity
development. The DNA damage seen during obesity would not only be the consequence
of obesity, via oxidative stress and inflammation, [42] but also either contribute to obesity
development as previously described [43] or at least develop in parallel with obesity and
influence obesity-related patterns such as inflammation and diseases risk development [30].
Based on that, DNA damage could be the missing link in the mechanistic chain of events.
Indeed, air pollutant would lead to DNA damage which would contribute to develop
obesity or increase its risk (Figure 1). Such hypothesis is supported by the fact that air
pollution associated with DNA damage is also associated with metabolic alterations in-
cluding purine, pyrimidine and glycolysis/gluconeogenesis perturbed metabolism [37]
as well as disturbances in the biosynthesis of unsaturated fatty acids and metabolism of
glycerophospholipid, propanoate, sphingolipid, beta-alanine, glutathione and pyruvate
especially when the air pollution is combined with temperature [44,45].
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Figure 1. Air pollution increases obesity development risk hypothetically via the DNA damage that 
pollution induces. DNA damage-related metabolic impairments might also be involved. 

Although an individual living in a polluted area cannot control the impact of air pol-
lution on obesity development, such theory—if further explored—would lead to a better 
understanding of how DNA damage leads to develop obesity. Most importantly, this the-
ory is towards developing more concrete measures of how deeply air pollutants impact 
obesity development and which pollutants have the deepest impacts. Within this context, 
and to complete the data linking air pollution to obesity within a population, in vitro stud-
ies and animal experiments can be conducted. It would consist of exposing animals as 
well as in vitro samples (cells cultures, tissues, etc.) to the different air pollutants with 
different pollutants combinations and concentrations. After such exposures, measures re-
lated to DNA damage will be completed to evaluate the impacts of the studied air pollu-
tants in the context of obesity development. A wider biological study can be performed to 
also explore other biological entities as well as the proteins, pathways and functions con-
trolled or interacting with genes impacted by the DNA damage in order to have a more 
panoramic view of the mechanistic pathways at the cellular and molecular levels, as illus-
trated by the air pollution-induced lipid oxidative damage [35]. In addition, exposing the 
animal models of obesity [49,50] to air pollutants could optimize these models toward a 
better mimicking of obesity development. 

Beyond developing our understanding of air pollution-obesity links, such studies 
will provide precise data for decisions makers and politicians. It is of a particular im-
portance when it comes—for instance—to decide where factories should be built. Whether 
industries should be hold responsible for the health impacts of the air pollutants they pro-
duce depending on the concentrations they produce (set legal emission limits) is another 
important application. 
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Figure 1. Air pollution increases obesity development risk hypothetically via the DNA damage that
pollution induces. DNA damage-related metabolic impairments might also be involved.

Such biochemical consequences of exposure to air pollutant could indicate a metabolism
towards a disturbed energy balance potentially contributing to obesity development. This
is not contradictory with the direct relation between obesity and DNA damage as shown in
mice in which weigh loss was accompanied by decrease in DNA damage [46]. Therefore,
our hypothesis does not say that obesity does not lead to DNA damage, but it says that
DNA damage might also occur before and during obesity development (as a result of
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exposure to air pollutants), contributes to obesity development and increases the health
risks associated with obesity in terms of cancer and metabolic disorders among other
health problems [47,48]. In addition, air pollutions also cause both inflammation and ox-
idative stress [32], which would further exacerbate the inflammation-related and oxidative
stress-related consequences of obesity.

Although an individual living in a polluted area cannot control the impact of air
pollution on obesity development, such theory—if further explored—would lead to a better
understanding of how DNA damage leads to develop obesity. Most importantly, this theory
is towards developing more concrete measures of how deeply air pollutants impact obesity
development and which pollutants have the deepest impacts. Within this context, and to
complete the data linking air pollution to obesity within a population, in vitro studies and
animal experiments can be conducted. It would consist of exposing animals as well as
in vitro samples (cells cultures, tissues, etc.) to the different air pollutants with different
pollutants combinations and concentrations. After such exposures, measures related to
DNA damage will be completed to evaluate the impacts of the studied air pollutants in
the context of obesity development. A wider biological study can be performed to also
explore other biological entities as well as the proteins, pathways and functions controlled
or interacting with genes impacted by the DNA damage in order to have a more panoramic
view of the mechanistic pathways at the cellular and molecular levels, as illustrated by the
air pollution-induced lipid oxidative damage [35]. In addition, exposing the animal models
of obesity [49,50] to air pollutants could optimize these models toward a better mimicking
of obesity development.

Beyond developing our understanding of air pollution-obesity links, such studies
will provide precise data for decisions makers and politicians. It is of a particular impor-
tance when it comes—for instance—to decide where factories should be built. Whether
industries should be hold responsible for the health impacts of the air pollutants they pro-
duce depending on the concentrations they produce (set legal emission limits) is another
important application.
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