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Abstract: Mag@silica-Ag composite has a high sorption ability for I− in aqueous solution due to its
high surface area and strong affinity for the studied anion. The material adsorbed I− rapidly during
the initial contact time (in 45 min, η = 80%) and reached adsorption equilibrium after 2 h. Moreover,
mag@silica-Ag proved to selectively remove I− from a mixture of Cl−, NO3

− and I−. The adsorption
behavior fitted the Langmuir isotherm perfectly and the pseudo-second-order kinetic model. Based
on the Langmuir isotherm, the maximum adsorption capacity of mag@silica-Ag was 0.82 mmol/g,
which is significantly higher than previously developed adsorbents. This study introduces a practical
application of a high-capacity adsorbent in removing radioactive I− from wastewaters.

Keywords: iodine; radionuclide; radioactive liquid waste; mesoporous silica; adsorption

1. Introduction

Iodine, with only one stable isotope, is the rate limiting substance in the production
of thyroid hormones. It cannot be naturally produced by the human body, so it must
be obtained from food sources, such as fish, eggs, nuts, meat, and seaweed. However,
excessive accumulation of a radioactive iodine in the body leads to thyroid cancer, and
iodine poisoning causing mouth, throat, and stomach burns [1]. From all 36 radioactive
isotopes, iodine-131 is a major concern in any kind of radiation emissions released from a
nuclear accident because it is volatile and highly radioactive, having a half-life of 8 days. As
it is a beta and gamma emitter, it is highly carcinogenic. Iodine-131 can be easily absorbed
by plants, where its concentration can increase tenfold or even more compared to the
ground contamination [2]. The radioisotope is of further concern for the human body, as
the thyroid gland has a maximum uptake of iodine [3]. Therefore, studies focusing on the
removal of iodine from wastewaters are of crucial importance in order to prevent exposure
to radioactive iodine.

The movement of iodine radionuclides through the environment is complex, as it can
rapidly disperse. When reaching a water source, radioactive iodine changes into various
forms such as iodide, iodate, or organic iodide, impeding the water disinfection process [4].

There are various methods for adsorbing and removing I− in aqueous solutions. For
example, inorganic anion exchangers are used to adsorb chloride or iodide anions but some
of them are considered toxic and cannot be used to purify drinking water. Hence, metal
oxides and metal hydroxides play a crucial role in the adsorption of anions in underwater
systems. Several studies have demonstrated that iodine is successfully adsorbed by iron,
aluminum oxide, cuprous oxide, soil, minerals, silver-impregnated activated carbon, and
quartz under acidic conditions [5–7].

Nowadays, silica-based adsorbents are key materials for a plethora of applications
due to the unique properties of silica: high porosity, large inner surface area, and high
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adsorption properties [8]. For example, I− can be selectively adsorbed by impregnating a
silica structure with silver. The formation of silver iodide species (AgI) after adsorption
has already been reported in various studies [9–16].

In this context, the present study focuses on the removal of iodide ions from aqueous
solutions using silver-impregnated silica-based adsorbents. Besides the adsorbent efficiency,
a good material should be easily recovered from the aqueous media. Thus, magnetite
was attached to the silica-based adsorbent. Magnetite is biodegradable, biocompatible,
non-toxic, easy to synthesize, renewable, and readily isolated from solutions by applying
an external magnetic field [17–22]. The obtained material, denoted as mag@silica-Ag,
presented an adsorption capacity of 0.82 mmol/g, significantly higher than previously
developed adsorbents.

2. Materials and Methods
2.1. Materials

All the solutions were prepared using deionized (DI) water (18.3 MΩ cm) obtained using
a Barnstead E-pure Water Purification System (D4641, Barnstead, NH, USA). Iron(III) chloride
hexahydrate (FeCl3·6H2O, 97%, M.W = 270.29 g/mol), iron(II) sulfate (FeSO4·7H2O, 98.0%,
M.W = 278.02 g/mol), ethyl alcohol (C2H5OH, 94 vol.%, M.W = 46.07 g/mol), ammonia
(NH4OH, 30%, M.W = 35.04 g/mol), 1 N-hydrochloric acid (1 M) (HCl, M.W = 36.5 g/mol),
sodium chloride (NaCl, 99%, M.W = 58.44 g/mol), and sodium nitrate (NaNO3, 99%,
M.W = 85.00 g/mol) were supplied by Duksan Chemicals Co., Yongin, Korea. Tetraethyl or-
thosilicate (TEOS, C8H20O4Si, 98%, M.W = 208.33 g/mol), (3-(2-Aminoethylamino)propyl)
triethoxysilane (AAPTMS, C8H22N2O3Si, 80%), and hexadecyltrimethyl ammonium bro-
mide (CTAB, C19H42BrN, 99%) were purchased from Sigma-Aldrich Chemical Co. (Milwau-
kee, WI, USA). Silver nitrate (AgNO3, 99.8%, M.W = 169.87 g/mol) was purchased from
Daejung Chemicals Co., Daejeon, Korea. Potassium iodide standard solution (1000 ppm, KI)
used for the calibration curves was supplied by Accu Standard Co., New Haven, CT, USA.

2.2. Preparation of Silver Functionalized Magnetic Silica Adsorbents
2.2.1. Synthesis of Mag@silica Composites

In order to synthesis magnetite, 100 mL of 0.8 M FeCl3·6H2O was added to the same
volume of 0.4 M FeSO4·7H2O, keeping the molar concentration ratio of Fe ions to 2:1. The
precipitation was carried out at 298 K under vigorous stirring using aqueous NH3 solution.
The precipitate was heated for 30 min at 353 K in an N2 atmosphere, washed with DI water
several times, and dried in an oven at 333 K for a day [22].

The mesoporous silica-coated magnetite nanoparticles (mag@silica) were synthesized
using the following method. The magnetite nanoparticles (1.5 g) were dispersed in 200 mL
of ethanol using ultrasounds for 30 min. Subsequently, 4.5 g of CTAB, 1200 mL of DI
water, 1.5 g of ammonia solution, and 450 mL of ethanol were added to the dispersed
solution. The mixture was subjected to ultrasound treatment for another 15 min. The
silica precursors (6.45 mL of TEOS) and AAPTMS (3.9 mL) were added to the solution
under sonication for 2 h. The product was separated by centrifugation and washed several
times with ethanol and DI water. The sorbent in the 0.003 N HCl/ethanol was sonicated
for 30 min to remove the surfactant from the pores of the silica structure. The resulting
precipitate was separated by centrifugation and washed several times with DI water.

2.2.2. Synthesis of Mag@silica-Ag Composites

The silver-impregnated magnetite-silica (mag@silica-Ag) was synthesized as follows:
firstly, the mag@silica (1 g) was stirred in 100 mL of silver nitrate (0.1 M) until the pH
increased to above 9.5; the solution was stirred at 323 K for 20 h using a shaking incubator
(250 rpm). The product was separated by centrifugation and washed three times with DI
water. Finally, the resulting precipitate was dried in an oven at 333 K for 12 h. The overall
procedure is depicted in Figure 1.
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Figure 1. Synthesis of mag@silica-Ag.

2.3. Characterization

The surface morphology was studied using scanning electron microscopy (SEM,
SU8220, Hitachi, Tokyo, Japan) and elemental analysis was determined using SEM-EDS
(SU8220, Hitachi). The particle size was estimated using SEM. The specific surface area
was determined by N2 adsorption (BET, Quadrasorb evo, Quantachrome, Boynton Beach,
FL, USA). The pore size distribution was obtained using the Barret–Joynerv–Halenda (BJH)
method. The functional groups present on the surface of the adsorbent were analyzed
using Fourier-transform infrared spectroscopy (FT-IR, Frontier, PerkinElmer, Waltham,
MA, USA). X-Ray photoelectron spectroscopy (XPS, NEXSA, ThermoFisher, Waltham, MA,
USA) was used for surface composition analysis. The mag@silica and mag@silica-Ag
were characterized by powder X-ray diffraction (XRD, EMPYREAN, Panalytical, Malvern,
Worcestershire, UK). Using vibrating sample magnetometers (VSM, 7407-S, LakeShore,
Carson, CA, USA), the magnetic properties of mag@silica and mag@silica-Ag were mea-
sured. Thermogravimetric analysis (TGA, Discovery SDT 650, TA Instruments, New Castle,
DE, USA) was used to measure the thermal stability of the hybrid material. TGA analysis
monitored and recorded the mass change over a temperature range of 30–700 ◦C at a
heating rate of 10 ◦C min−1 under nitrogen flow.

2.4. Adsorption Experiments
2.4.1. Adsorption Isotherms

As non-radioactive iodine behaves similar to the radioactive one, the adsorption
experiments were conducted with non-radioactive I−. The I− adsorption isotherm was
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determined by measuring the concentration of I− left in the solution after the equilibrium
was reached. The experiments were carried out for 24 h, with a 10-mL NaI solution having
an I− concentration in the range of 1–200 ppm. Standard KI solution was used to prepare
the calibration curve (Figure 2). The concentrations before and after adsorption were
determined using IC (Ion Chromatography, ICS-5000, Dionex, Sunnyvale, CA, USA).
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Equilibrium adsorption capacity (qe) (mg/g) and removal efficiency (RI
−) were calcu-

lated using the following equation:

qe = (Co − Ce)×
V
m

(1)

RI− =
(Co − Ce)

Co
× 100 (2)

where, Co and Ce indicate the initial and equilibrium concentrations of I− in the aqueous
solution, respectively. V (mL) is the volume of I− solution, m (g) is the weight of the
adsorbent, and RI− is the removal efficiency.

The Langmuir adsorption model explains adsorption by assuming that the adsorbate
behaves as an ideal gas at isothermal conditions. The Langmuir isotherm accounts for the
surface coverage by balancing the relative rates of adsorption and desorption [23]. The
Langmuir equation can be written as follows (Equation (3)):

qe =
qmbCe

1 + bCe
(3)

where Ce (mmol/L) is the concentration of adsorbate at equilibrium, qe (mmol/g) is the
amount of adsorbate per gram of adsorbent, qm (mmol/g) is the maximum sorption
capacity, and b (L/mmol) is the Langmuir constant related to adsorption capacity.

The performance of the adsorbents can be compared by applying the Freundlich
equation, an empirical model widely used in environmental chemistry:

qe = KFCe
N (4)

where qe (mmol/g) is the amount of adsorbate per gram of adsorbent, Ce (mmol/L) is
the equilibrium concentration of the solute in an aqueous solution, and KF and N are
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Freundlich constants. KF represents the adsorption capacity of the solid phase at a specific
concentration of a solute in an aqueous solution, and the index N represents the magnitude
and non-uniformity of the energy during the adsorption process. When N < 1, adsorption
occurs at the adsorption site with high energy, and then adsorption occurs at the adsorption
site with low energy. When N > 1, the solute already adsorbed on the solid phase changes
the surface of the solid phase, increasing the amount of solute adsorption. When N = 1, it
represents a solute distribution phenomenon.

2.4.2. Adsorption Kinetics

The kinetic studies were done by placing 0.01 g of mag@silica-Ag adsorbent in 10 mL
of 50 ppm I− aqueous solution and stirring (250 rpm, 298 K) for 1, 2, 5, 10, 20, 45, and
60 min. The I− concentration was determined using IC analysis, as mentioned in the
previous section.

Two models were applied to analyze the kinetic data: a pseudo-first-order kinetic model
(PFOKM) and a pseudo-second-order kinetic model (PSOKM) (Equations (5) and (6), respec-
tively):

ln(qe − qt) = ln qe − k1t (5)

t
qt

=
1

k2qe2 +
1
qe

t (6)

where qe and qt are the amounts of adsorbed I− (mg/g) at equilibrium and t, the time,
respectively; k1 is the pseudo-first-order reaction rate constant (1/min), and k2 is the
pseudo-second-order reaction rate constant (g/mg·min) [24].

2.4.3. Effect of pH

To study the effect of pH upon the adsorption, 0.01 g of mag@silica-Ag were intro-
duced into a 10 mL of I− aqueous solution with a concentration of 50 ppm, stirred at
250 rpm, 298 K for 24 h. The pH was maintained between 1 and 11 using either HNO3
(0.1 M) or NaOH (0.1 M). The concentration of I− was determined as previously mentioned.

2.4.4. Effect of Co-Existing Ions

The effect of co-existing anions (Cl− and NO3
−) on iodide sorption onto the mag@silica-

Ag composites was investigated. The initial concentration of I− was maintained constant
at 100 ppm, while the concentrations of the co-existing ions was varied: 10, 50, 100, and
200 ppm. In a typical reaction, 0.01 g of mag@silica-Ag was introduced into the solution
containing just the I− and stirred at 250 rpm, at 298 K for 24 h. The material was separated
and reintroduced into solutions containing the co-existing ions, under the same conditions
as above. The I− concentration was determined as already mentioned. The distribution
coefficient, Kd (mL/g) of I− at different concentrations of NaCl and NaNO3 was determined
using the following equation:

Kd =
Co − Ce

Ce
× V

m
(7)

where Co and Ce are the initial and equilibrium concentrations (mg/g) of I− in each
solution, V the I− solution volume (L), and m the mass of sorbent (g). Several factors such
as the sorbent to solution ratio (V/m), initial concentration of the metal solution, solution
composition, and the preparation method of materials must be considered to compare Kd
values accurately.

3. Results and Discussion
3.1. Characterization of the Adsorbent

The SEM images of the mag@silica-Ag, mag@silica, and silica are shown in Figure 3. A
scanning electron microscopy (SEM) is useful for characterizing the morphological structure
and size of magnetic nanoparticles. The diameter of the silica-based resin was estimated to
be about 75–150 µm [25]. The shape of the conventional silica and the composite adsorbent
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in which silica is impregnated with magnetite and silver appeared completely different.
Although there is no striking difference between mag@silica-Ag and mag@silica, the shape
of mag@silica-Ag is more clustered than the parent material. Table 1 presents the results
obtained from EDS analysis for the mag@silica-Ag sample. As expected, oxygen is present
in the highest concentration followed by Fe, Si, N, and Ag. The presence of nitrogen is due
to the precursors, CTAB and AAPTMS, used in the synthesis of silica.
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Table 1. Component ratio of mag@silica-Ag by EDS.

Element Wt (%) Atomic (%)

N 5.84 11.10

O 34.30 57.07

Si 13.39 12.69

Fe 33.43 15.93

Ag 13.04 3.22

Total 100 100

The textural characterization of silica, mag@silica, and mag@silica-Ag composites
was determined by BET surface area, BJH pore volume and size analysis, and density
functional theory (DFT) curve (Figures 4 and 5 and Table 2). The samples were pre-treated
at a temperature of 423 K for an hour to remove any water present in the pores [26]. The
BET surface area of silica was found to be 768.127 m2/g, whereas that of the mag@silica
composite was 128.133 m2/g and mag@silica-Ag was 96.570 m2/g, respectively. The
adsorption-desorption isotherms (Figure 4) show hysteresis at high relative pressure values
where large pores are present. This type of hysteresis is specific to the macroporous-
mesoporous materials as the nanocomposite used in this study. The BJH model applied
to the desorption branch of the isotherm indicates that the powder is macroporous and
that the synthesis of mag@silica-Ag occurs with the reduction of the pore’s width [27].
According to the IUPAC guidelines regarding the hysteresis, the adsorbent developed in
this study has a macropore N2 adsorption structure [28,29]. Neither of the two materials
adsorbed in the micro and mesopores. As N2 adsorption and desorption are influences
by the pore structures, it can be safely concluded that mag@silica-Ag has a macropore
structure [30]. According to Figure 5a, the silver-impregnated composite presents more
smaller pores than the parent material.
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Table 2. Physical properties of the silica, mag@silica, and mag@silica-Ag.

Samples BET Surface Area
(m2g−1)

Pore Size
(nm)

Pore Volume
(cm3g−1)

silica 768 5 0.7

mag@silica 128 4 0.4

mag@silica-Ag 97 4 0.3

As listed in Table 2, silica has a larger surface area, pore size, and pore volume than
mag@silica and mag@silica-Ag. The large surface area and the large pores are essential
in increasing the adsorption capacity of the adsorbents. Although the surface areas of



Toxics 2021, 9, 175 9 of 19

mag@silica and mag@silica-Ag decreased, their value is sufficiently large compared to any
other adsorbents [3,22,27,28,31]. Because the pore volume of mag@silica-Ag was lower
than the bare silica, it can be concluded that the silver was deposited inside the pores of
the material [32].

Figure 6 shows the FT-IR spectra of the silica, mag@silica, and mag@silica-Ag. For
the silica, mag@silica, and mag@silica-Ag samples, the vibrational bands at ~567 cm−1

originate from the v (Fe-O) lattice vibrations. The mag@silica presents bands at 1049 cm−1,
815 cm−1, and 966 cm−1 corresponding to the stretching vibrations of v (Si-O-Si), v (Si-OH),
and v (Si-O-Fe), respectively. The vibrational bands at ~580 cm−1 observed for mag@silica
and mag@silica-Ag are due to the ν (Fe-O) lattice vibrations [22,33,34].
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The TGA curves of the mag@silica and the mag@silica-Ag are shown in Figure 7.
Mag@silica presents a total weight loss of 11%, while the mag@silica-Ag a total loss of 15%.
In both cases, the weight loss takes place in two steps, prior to 600 ◦C: (i) below 210 ◦C,
due to the loss of water in the sample and (ii) between 210 and 550 ◦C due to the thermal
decomposition of the organic species found in the materials. The TGA curve above 600 ◦C
indicates that the organic species of the magnetic composite nanoparticles are completely
decomposed and the Fe3O4 nanoparticles remain [35].

XPS was employed to confirm that each step of the synthesis was successful and to
examine the chemical composition of the materials. Figure 8a,b present the XPS spectra
of silica and mag@silica, respectively. The presence of the Fe 2p peak in the mag@silica
spectrum demonstrates, once again, that magnetite is present in the material. Besides
the peaks due to the presence of Si, O, and Fe, the XPS spectrum of the mag@silica-Ag
composite presents the peak corresponding to Ag. The high C content observed in the
mag@silica and mag@silica-Ag might be due to the precursors used to synthesize silica
(CTAB (C19H42BrN), AAPTMS (C8H22N2O3Si), and TEOS (C8H2O4Si)).
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Table 3 presents the weight percent for each atom for mag@silica and mag@silica-Ag.
As the silver was impregnated, the mass ratio of C, O, and Si decreased. Additionally, the
Ag of mag@silica-Ag was 16.4%.

Table 3. The elemental ratio (Wt %) of mag@silica and mag@silica-Ag from XPS results.

Samples C O Si Fe Ag

mag@silica 21.2 41.0 32.1 5.7

mag@silica-Ag 16.8 35.0 25.1 6.7 16.4

Figure 9 displays the XRD patterns of the mag@silica and mag@silica-Ag composites.
Both spectra present a peak at 2θ = 21.8◦ corresponding to the mesoporous silica. The peaks
due to synthetic magnetite were identified from JCPDS (ref. code: 01-088-0315, Fe3O4) and
were present in both samples [22,33,36]. Besides the peaks due to silica and magnetite, the
mag@silica-Ag presented peaks at 2θ = 38.4117◦, 2θ = 44.278◦, and 2θ = 64.427◦ due to
silver, identified from JCPDS (ref. code: 00-044-0783, Ag) [37].

The field-dependent magnetization curves of the mag@silica and mag@silica-Ag com-
posites are shown in Figure 10. The magnetic properties of Fe3O4 samples were measured
on the VSM. As shown in Figure 10, the magnetic saturation value for the mag@silica is
about 26 emu/g and it decreases to 17 emu/g after the addition of silver. The gradual loss
of magnetization strength can be attributed to the shielding effect of the silver layer. How-
ever, this effect was not observed on the magnetic separability of the nanoparticles from the
bulk solution [38,39]. The saturation magnetization of the thiol-functionalized magnetic
sawdust is 7.28 emu/g [37] while the one for magnetic polyoxometalates-based adsorbent
is 8.19 emu/g [40]. Compared with the existing magnetic adsorbent values, the magnetite
saturation value of mag@silica-Ag is high enough to be used for magnetic separation.
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3.2. Adsorption Experiments
3.2.1. Adsorption Isotherm

The Langmuir and Freundlich sorption isotherms are presented in Figure 11, and the
isotherm parameters obtained by fitting the experimentally observed sorption equilibrium
data to the isotherm models are listed in Table 4. The amount of I− adsorbed onto the
synthetic sorbents increased with an increase in the initial I− concentration, which demon-
strates that the concentration gradient is the driving force of the sorption [41]. To test if
silica has any effect on the adsorption of I−, bare silica was also used in the experiments,
but no sorption was detected. The Langmuir model using mag@silica and mag@silica-Ag
provides an adequate fit (R2 > 0.83) to the experimental data for I− sorption onto the syn-
thetic sorbents. The maximum sorption capacity (qm) of mag@silica-Ag was 0.82 mmol/g;
this high adsorption is due to the presence of Ag. The good fitting of the experimental data
to the Langmuir isotherm model, demonstrates that the I− was adsorbed homogeneously
onto the surface of the mag@silica-Ag composite via a monolayer sorption and that the
silver was uniformly distributed throughout the surface. Moreover, the primary adsorption
mechanism was determined to be a physicochemical adsorption [42].

Table 4. Langmuir and Freundlich isotherm parameters for the adsorption of I− onto mag@silica and mag@silica-Ag.

Langmuir Model Freundlich Model

qm
(mmol/g)

b
(L/mmol) R2 SEE Kf N R2 SEE

mag@silica 0.13 7.57 0.83 0.1511 0.9735 0.38 0.76 0.1893

mag@silica-Ag 0.82 11.01 0.84 0.0260 0.1471 0.42 0.72 0.0337
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0.01 g, I− solution 10 mL, 24 h, 25 ◦C.

The standard error of estimate (SEE) measures the variation of an observation made
around the computed regression line. The SEE is the square root of sum of squared errors
(SSE). The SSE formula and SEE formula are shown below.

SSE = ∑(yi − ŷi)
2 (8)

where yi is the predicted value and ŷi is the actual value.

SEE =

√
SSE

n− k− 1
(9)

where k is the number of independent variables in the model, and n is the sample size. If
SEE is zero, all the points fall on the regression line.
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Table 5 lists the adsorption capacities of mag@silica-Ag and other adsorbents men-
tioned in the literature. Compared to the previously reported values, the material devel-
oped in the present study possesses a higher adsorption capacity and is expected to be
suitable for large scale removal of iodide [31].

Table 5. Comparison of maximum adsorption capacity with previously developed materials and
mag@silica-Ag.

Adsorbent Maximum Adsorption
Capacity (qmax) (mmol/g) Reference

mag@silica-Ag 0.82 This study

Cu/Cu2O hybrids 0.18 [32,43]

Cu2O/Cu-C 0.32 [44]

Mg-Al LDO/SiO2 0.55 [45]

LDH 0.41 [46]

T3NT 0.5

[3]T3NL 0.2

T3NF 0.1

Silver-impregnated activated carbon 0.097 [21,44]

Electric Arc Furnace Slag 0.34 [4]

Nanocomposite membranes 0.012 [31]

3.2.2. Adsorption Kinetics

The adsorption kinetics play an important role when studying the efficiency and the
cost for an actual application. In this context, the effect of contact time on the sorption of I−

on the mag@silica-Ag composite was examined. As shown in Figure 12, the mag@silica-Ag
composite adsorbed I− rapidly during the initial contact time (in 45 min, η = 80%) and
reached adsorption equilibrium after 2 h. The sorption kinetics data were analyzed by
PFOKM and PSOKM, and the predicted model parameters are listed in Table 6. Based on
the regression coefficients (R2), the sorption kinetics data fit PSOKM better than PFOKM.
Furthermore, the qm value calculated using PSOKM is in agreement with the adsorption
isotherm results.
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Table 6. Kinetic adsorption parameters obtained using PFOKM and PSOKM on the mag@silica-Ag
composite at 50 ppm of I−.

Concentration
of I− (mg/L) Kinetic Model Parameters

50

PFOKM qe (mg/g)
38.4637

k1 (min−1)
0.4518

R2

0.8319

PSOKM qe (mg/g)
41.3988

k2 (g/mg/min)
0.0158

R2

0.9048

3.2.3. Effect of pH

The I− sorption using mag@silica-Ag was studied at various pH values and it was
found to be pH dependent, as can be seen from Figure 13. Iodide uptake occurs over the
whole range of pH values studied, i.e., between 3 and 11. The uptake efficiency decreased
as the pH decreases, as expected for an anion sorption isotherm, and in agreement with
previous works [47]. The highest rate of iodide removal reached 95% at pH 11 while no
removal was observed at pH 1.
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As the pH decreases, the surface charge of the adsorbent decreases, thus it is expected
for the adsorption capacity to decrease [48].

3.2.4. Effect of Co-Existing Ions on I− Sorption

The I− uptake abilities of the mag@silica-Ag composite at different NaCl and NaNO3
concentrations expressed as distribution coefficient (Kd) are shown in Figure 14. The
distribution coefficient (Kd) was determined using the following equation

Kd =
Co − Ce

Co
× V

M
(10)

where Co and Ce represent the initial and equilibrium concentrations of I−, respectively.
In addition, V denotes the volume of iodide solution (10 mL), and M is the mass of the
adsorbent (mag@silica-Ag, 0.01 g). In the presence of 10–200 ppm NaCl or NaNO3, the
Kd values for I− on mag@silica-Ag composite were about 103. The NaCl and NaNO3
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concentrations had a negligible influence on the Kd values for I− of the mag@silica-Ag.
These high Kd values indicate that this material can be successfully applicable for the
selective removal of I−. At the same time, the adsorption rate of Cl− and NO3

− was
insignificant. The results demonstrate that, no matter the concentration of chloride and
nitrite ions present in the wastewater, the material will selectively adsorb iodide ions.
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4. Conclusions

In this study, mag@silica-Ag was synthesized for selective removal of I−, a by-product
produced by the decomposition of uranium atoms in radioactive liquid waste. Silver
was immobilized on the surface of mag@silica for the selective removal of I−, and the
corresponding reaction process can be described as follows: I− + Ag+ → AgI(s) . The
experimental results for the adsorption capacity of mag@silica-Ag, fit the Langmuir model
perfectly, and the mag@silica-Ag composite was found to have a maximum adsorption
capacity of 0.82 mmol/g. The Langmuir isotherm demonstrates that the I− was adsorbed
onto the homogeneous surface of mag@silica-Ag composite via a monolayer sorption.
Besides the extreme good sorption capability, the material can be easily recovered due
to the presence of magnetite. Last but not least, mag@silica-Ag proved to selectively
remove iodide ions from solutions containing Cl− and NO3

− alongside with I−. There-
fore, mag@silica-Ag can be successfully used in the treatment of large-scale radioactive
liquid wastewaters.
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