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Abstract: To understand changes in enzyme activity and gene expression as biomarkers of exposure
to methylmercury, we exposed loggerhead turtle erythrocytes (RBCs) to concentrations of 0, 1, and
5 mg L~! of MeHg and de novo transcriptome were assembled using RNA-seq. The analysis of
differentially expressed genes (DEGs) indicated that 79 unique genes were dysregulated (39 upregu-
lated and 44 downregulated genes). The results showed that MeHg altered gene expression patterns
as a response to the cellular stress produced, reflected in cell cycle regulation, lysosomal activity,
autophagy, calcium regulation, mitochondrial regulation, apoptosis, and regulation of transcription
and translation. The analysis of DEGs showed a low response of the antioxidant machinery to MeHg,
evidenced by the fact that genes of early response to oxidative stress were not dysregulated. The
RBCs maintained a constitutive expression of proteins that represented a good part of the defense
against reactive oxygen species (ROS) induced by MeHg.

Keywords: Caretta caretta; RNA-seq; differential expression; methylmercury; transcriptomics

1. Introduction

Mercury (Hg) represents one of the most serious environmental threats to wildlife
well-being [1,2]. It is among the most toxic and persistent pollutants released into marine
ecosystems [3]. Furthermore, it represents a greater problem in aquatic systems, where in-
organic Hg is transformed into organic Hg (methylmercury, MeHg), which is biomagnified
in the trophic chain [1,2,4].

In the sea, MeHg is a molecule of great concern to marine populations as it bioaccu-
mulates and biomagnifies in tissues, causing health damage [5]. MeHg makes up 75-99%
of the total mercury (Hg-T) detected in living organisms [6], and is much more toxic than
inorganic mercury [7].

MeHg is a weak electrophile with a strong affinity for sulthydryl groups (-SH) and
selenoles (-SeH), which are functional in proteins containing cysteines and selenocysteines
respectively, with consequences such as (i) inactivation of molecules related to electrophilic
forms, (ii) decrease in Se availability and, therefore, selenoprotein synthesis, and (iii)
increase in intracellular MeHg concentration [8,9].

Exposure to MeHg has been extensively studied and is well documented in mammals,
birds, and fish and includes neurotoxicity, impaired growth and development, reduced
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reproductive success, liver and kidney damage, and immunomodulation [2,10-14]. Among
other changes associated with exposure to MeHg are gene expression levels linked to ox-
idative stress, microtubule disruption, mitochondrial dysfunction, endoplasmic reticulum
stress, disruption of intracellular calcium levels, programmed cell death, dysregulation of
transcription and translation, expression of heat shock proteins, and production of reactive
oxygen species (ROS) [2,14-17]. However, the effects on reptiles remain poorly under-
stood [7,18-21]. Studying these early stages of mercury damage is the basis for identifying
metabolic pathways that are activated in response to mercury contamination.

Advances in next-generation sequencing technologies, such as massive RNA sequenc-
ing (RNA-seq), allow for the characterization of molecular responses to stimuli with
impressive sensitivity for non-model organisms, such as the loggerhead turtle [22-24]. The
comparison of genes that are differentially expressed in erythrocytes (RBCs) exposed to a
xenobiotic, such as methylmercury, allows for the identification of biomarkers for stress
and adaptive response [25]. It is very important to perform differential expression analysis
at very low levels of MeHg to identify possible “expression signatures”. These expression
signatures could be used as early markers of exposure to MeHg, before detecting physiolog-
ical or biochemical changes (Oliveira et al., 2020). Exposure of RBCs to low doses of MeHg
(1-5 ppm) for a short time (a few hours) provides the opportunity to detect a possible
compensatory hormonal mechanism, which can be interpreted as molecular responses that
result in cellular protection [26].

Studies carried out on the toxicity of MeHg in wild animals and humans using
next-generation sequencing (RNA-seq) have generated knowledge about the molecular
mechanisms of this compound produced in different tissues [26-31]. The cellular and
molecular mechanisms that produce MeHg-mediated toxicity are not yet fully understood,
and there are species for which very little is known (i.e., sea turtles) [4]. However, these
types of studies have not been performed in loggerhead turtles. These reptiles are long-
lived and carry out extensive migrations, characteristics that allow them to accumulate Hg
for a long time. For these reasons, they are sentinel species: bioindicators of pollution in
the marine environment [32]. These marine chelonians are in population decline due to
anthropic and environmental influences, appearing on the red list of threatened species of
the International Union for Conservation of Nature (IUCN, 2019-2) as critically endangered
(www.iucnredlist.org, accessed on 13 January 2021). For this reason, it is important to
propose alternative study methodologies that do not compromise the life of these animals
that are instrumental for the health of marine ecosystems [32]. Recently, cell cultures of
different tissues of sea turtles have been established to allow research in toxicology [33].
These cells are being used in in vitro tests, producing a frame of reference on the initial
response, with the effects of different xenobiotics evaluated [33-37]. The nucleated RBCs of
sea turtles represent a model for in vivo ecotoxicology research to reveal the effects of Hg
and other heavy metals and environmental pollutants [32].

In previous studies, we demonstrated that an increase in the enzymatic activity of
Glutathione S transferase and superoxide dismutase, as well as the production of malon-
aldehyde, was revealed when loggerhead turtle RBCs were exposed to 0, 1, and 5 mg L~!
of MeHg for 12 h. The observed response shows the increase in reactive oxygen species
in RBCs [32]. In this study, we set out to perform an analysis of the global transcriptional
profiles in RBCs of the loggerhead turtle, Caretta caretta, to identify cellular pathways
or biological processes affected by MeHg while preliminarily elucidating the molecular
mechanisms of toxicity used by this xenobiotic against this marine turtle.

2. Materials and Methods
2.1. Permits to Collect Samples
The samples and methods used in this study followed the ethical standards of Colom-

bian legislation and those of the ethics committee of the Jorge Tadeo Lozano University
(UJTL) (Project 340-07-10). The project had a permit to collect samples of Colombian bio-
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diversity, granted to the UJTL by the Ministry of the Environment (Resolution 1271 of
23 October 2014, IDB040I).

2.2. Study Area and Sample Collection

Peripheral blood was collected from five captive, pre-juvenile loggerhead turtles at
the El Rodadero Aquarium in Santa Marta (11°1301.09” N, 74°14013.75” W). The details of
blood sample collection and RBC isolation have been described previously [32]. In brief,
blood samples were extracted from the dorsal region of the cervical sinus. For the collection
of peripheral blood, we used 4 mL sterile syringes and 2 mL tubes with RNAlater (Ambion
Inc., Austin, TX, USA). The samples were transported on dry ice to the Molecular Biology
laboratory at the Jorge Tadeo Lozano University, Bogota.

2.3. Experimental Design

Aliquots of 2 x 10° RBCs/ml from five peripheral blood samples were isolated by cen-
trifugation and then resuspended in 1.5 mL Eppendorf tubes in MEM-S medium [32]. We
exposed the RBCs to doses of 0, 1, and 5 mg L.~! of methylmercury II chloride (CH;HgCl)
(Merck KGaA, Darmstadt, Germany) for 12 h at 30 °C. Each of the five samples was exposed
to the three concentrations of CH3zHgCl (MeHg), thus producing 15 samples altogether. As
a control, we used RBCs in a culture medium with sterile saline solution (used to dilute the
MeHgCl) (Figure 1).

——EXPERIMENTAL DESIGN

EXTRACTION SAMPLES

v v v v OF BLOOD

ISOLATION OF
ERYTHROCYTES
BIOASSAY

1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 Gc =0mgL‘: MeHg
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BGISEQ-500 SEQUENCING DISCARDED SAMPLES

Figure 1. Experimental design. Five steps were carried out prior to sequencing by RNA-seq: (1) samples were obtained
from five Caretta caretta turtles; (2) erythrocytes were isolated; (3) the bioassay was carried out; (4) RNA was extracted; and
(5) samples were selected for sequencing according to the RNA integrity number (RIN).

2.4. RNA Extraction, Library Construction and Sequencing

At 12 h of incubation, the RBCs exposed to MeHg were washed twice with 0.9% sterile
saline solution (Baxter Healthcare Corporation, Deerfield, IL, USA), then centrifuged at
2500 rpm at 22 °C, resuspended in 15 volumes of RNAlater® (Ambion, Inc., Austin, TX,
USA), and stored at 4 °C for one week.
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Before extraction, the RN Alater was removed and the RBCs were washed with 1 vol-
ume of 0.9% sterile saline solution (4 °C), then centrifuged at 5000 g for 10 min at 22 °C.
We extracted total RNA from each of the samples (~25 pL. RBCs/mL) using RNeasy® Mini
Extraction Kit, following the instructions of the manufacturer (Quiagen, Hilden, Germany).
The extracted RNAs were treated with DNase according to the instructions of the manufac-
turer (RNase-Free DNase Set, Cat No / ID: 79254) (Quiagen, Hiden, Germany) and diluted
in RNAsa-free MilliQ water. RNA was stored at —80 °C for subsequent evaluations.

The RNA was quantified and its quality analyzed by spectrophotometry, using a
Nanodrop-1000 (Thermo Scientific, Wilmington, DE, USA). The RNA was evaluated by
electrophoresis in 1% agarose gels (100 V, 30 min). Each of the total RNA preparations
was individually assessed for RNA quality based on the 285/18S ratio and the RNA in-
tegrity number (RIN) was measured by 4200 TapeStation capillary electrophoreses (Agilent
Technologies, Waldbronn, Germany) at the Research Center of the Colombian Agricultural
Research Corporation in Tibaitatd, Cundinamarca (Agrosavia, Bogota, Colombia). Sam-
ples with RIN > 8.5 were selected for further analysis (Figure S1). The Beijing Genomics
Institute (BGI, Shenzhen, China) carried out the fragmentation of mRNA, cDNA libraries
construction, and sequencing using the BGISEQ-500 platform, following the previously
published methodology [38].

2.5. Assembly of the Transcriptome

We evaluated the raw sequencing data using the FastQC tool [39]. Then, the adapters
and the low-quality reads were filtered with Trimomatic [40]. We used the Trinity pipeline
v2.0.6 to assemble each of the individual samples, the three experimental groups (0 = control;
1mgL~!=Gsland 5mg L~! = Gs5), and the union of all samples, using default parame-
ters [41]. We evaluated the assembled transcripts for their integrity and quality with the
Dogma v-3.4 program (Domain-Based General Measure for Transcriptome and Proteome
Quality Assessment) [42], comparing them to the conserved protein domains and domain
arrangements of eukaryotes and vertebrates.

2.6. Unigenes Prediction and Functional Annotation

We grouped the obtained transcripts in pairs according to the similarity of the se-
quences to produce longer and more complete consensus sequences using the TGICL
v2.0.6 program (a software system for fast clustering of large EST datasets) [43]. The
resulting sequences (unigenes) were classified into two groups: clusters (CL, transcript
groups with a similarity higher than 70%), and singletons. Clusters and singletons were
annotated with BlastN and BlastX v2.2.23 against the Nt, Nr, KOG, and KEGG databases
with default parameters, except for the E-value (modified to 1e~2) [44]. Later, the unigenes
were annotated to the GO database using SwissProt and the Blast2GO v2.5.0 program
with default parameters [45]. We used WEGO software v2.0 [46] to determine the GO
functional classifications and evaluate the distribution of functions of unigenes. Lastly, we
used InterProScan5 v5.11-51.0 with default parameters to predict protein families, domains,
and functional sites [47]. Unigenes were also used to predict the coding regions (CDS)
and open reading frames (ORFs) using the Transdecoder v3.0.1 program with default
parameters [48].

2.7. Identification and Annotation of Differentially Expressed Genes

We mapped the clean reads to the unigenes obtained previously using Bowtie2
v2.2.5 [49] and calculated the expression level of each of the genes using RSEM v1.2.12 [50].
The expression levels of the unigenes were measured in fragments per kilobase of exon per
million reads mapped (FPKM), which normalizes the paired transcript and reads counts
both for their length and for the total number of reads mapped in the sample [51]. We
identified differentially expressed genes using the DEseq2 program [52] (significant DEGs:
log2 fold change > 1 or log2 fold change < —1, and Adjusted p value < 0.05), which
normalizes the data taking into account the differences in the total number of reads per
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library. Further, we used PossionDis (significant DEGs: fold change > 1 or fold change <
—1,aFDR < 0.001).

DEGs were identified by comparing the control group (Gc) with each of the groups
exposed to MeHg (Gs1 and Gs5), and comparing the two exposed groups with each other
(Gs1 versus Gs5). Subsequently, the distribution of the expressed genes was graphed using
heat maps and MA plots with the heatmap and ggmaplot (DEseq2) functions, respectively.
In the heat maps, we divided the expression levels of the DEGs into orange and blue regions
that indicated high and low levels of relative expression, respectively. We compared the
set of differentially expressed genes shared between the different treatments with Venn
diagrams using the Venny 2.0 program [53].

Differentially expressed genes were mapped to GO terms and the KEGG database
to perform functional enrichment and metabolic pathway analyses, respectively. We then
calculated the false discovery rate for each p-value. Terms whose FDR was less than 0.01
were defined as having significant enrichment.

2.8. Statistical Analysis of the Correlation between the Relative Expression (FPKM) of the Genes
GST, Cu/Zinc-SOD, Mn-SOD, and Tbxas1 with the Enzymatic Activity of GST and SOD, and the
Amount of MDA (uM) Produced by Lipid Peroxidation

In a previous experiment, we used the same RBC samples [32] as in this study to
determine the activities of the Cu/Zinc-SOD, Mn-SOD, GST enzymes, and the amount of
MDA produced. To verify the correlation between the relative expression (FPKM) of the
GST, Cu/Zinc-SOD, Mn-SOD, and Tbxas1 genes and the enzymatic activities [32], we used
Pearson’s multiple correlation analysis using the StatR v.1.8 statistical packages designed
for Rwizard v.4.3 [54] The mapped read count measures the relative expression level of the
genes and statistical methods are then applied to test the significance of the differences
between groups [55]. This approach of using FPKM as a measure of relative expression has
been used previously [29,56-58].

As dependent variables in each of the analyses, the following were selected: GST
activity, Cu/Zinc-SOD activity, Mn-SOD, and MDA concentration (uM), respectively. As in-
dependent variables, the following were selected: relative expression (GST, SOD/Cu/Zinc,
Mn-SOD, and Tbxas1 (FPKM)), the initial total concentration of MeHg, and concentration
of MeHg added to each individual. The Tbxasl gene was correlated with the concentration
of MDA because this gene participates in the isomerization of the PGH2 prostaglandin,
transforming it into 12-hydroxy-5, 8, 10-heptatrienic acid (12-HHT), and malondialdehyde
(MDA).

2.9. Data Availability

All data are available at NCBI under project accession number PRJNA575050. The raw
sequences data of RNA-seq in FASTQ format were deposited at the NCBI in the Sequence
Read Archive Database (SRA) under the accession numbers: SRR10412101, SRR10412100,
SRR10412099, SRR10412098, SRR10412097, SRR10412096, SRR10412095, SRR10412094,
SRR10412093, SRR10412092, SRR1041209, and SRR10412090.

3. Results
3.1. Sequencing, Filtering of Readings, and Assembly

The sequences of the 12 libraries presented high quality according to the FASTQC
analysis (three samples, T13, T14, and T15 were removed as they presented a RIN less than
7,5). However, sequencing reads containing adapter contamination, and unknown bases
(N), were removed (they represented 1.8% of the total readings) (Table S1). We assembled
all individual transcripts (T1 to T12). Then, we assembled the transcriptomes of Gc (T1,
T4, T7, and T10), Gsl (T2, T5, T8, and T11), and Gs5 (T3, T6, T9, and T12). Lastly, we
assembled the composite transcriptome, which included the readings of all 12 individuals.
The metrics for each of the assemblies are presented in Table 1.
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Table 1. Metric and quality of each of the individual samples, the three experimental groups (Gc, Gs1, and Gsb5), and the
complete transcriptomes of the loggerhead sea turtle, Caretta caretta.

Total Mapped Total Total Mean o
Number of Sample Total Reads Reads (I?,/f) Transcripts Unigens Length N50 GC (%)

T1 (Go) 109,774,604 97,540,538 (88.6) 81,393 58,734 994 2628 4591

T2 (Gs1) 110,446,772 100,239,446 (90.8) 61,223 45,142 840 1828 46.86

T3 (Gs5) 110,594,626 99,324,656 (89.8) 81,166 58,564 1007 2635 46.87

T4 (Go) 110,454,330 99,989,030 (90.5) 72,525 52,971 1029 2595 47.23

T5 (Gs1) 110,371,760 99,933,436 (90.5) 64,043 46,634 893 1996 46.81

T6 (Gs5) 110,372,546 99,562,082 (90.2) 77,553 56,342 1045 2676 46.7

T7 (Go) 95,337,750 86,401,432 (90.6) 67,865 50,433 945 2299 46.62

T8 (Gs1) 110,614,800 99,565,396 (90) 78,147 75,972 873 2086 46.76
T9 (Gs5) 110,518,910 98,688,182 (89.3) 85,833 53,625 878 2194 47

T10 (Gc) 110,441,524 96,624,438 (87.4) 108,057 75,428 820 2110 47.03

T11 (Gs1) 110,489,326 99,737,464 (90.3) 73,543 58,734 883 2129 47.13

T12 (Gs5) 110,350,196 96,400,760 (87.4) 108,082 45,142 800 2035 47.2
Gc (T1,T4,T7,T10) 120,987,098 95,049 136,902 95,226 1125 2629 47
Gs1 (T2,T5,T8,T11) 115,823,561 71,272 101,265 71,381 1025 2199 47
Gs5 (T3,T6,T9,T12) 123,812,263 99,625 148,032 99,809 1110 2616 47

T. Total (all) 165,092,512 _ 192,065 121,933 1444 3520 46.98

The de novo assembly of the twelve individuals produced a composite transcriptome
with 121,933 unigenes, with an average length of 1444 bp, N50 of 3520, and a GC percentage
of 46.98% (Table 2). The size of the unigenes ranged between 300 and 3000 bp (Figure S2).
The 12 samples had on average 72.2% of their transcripts matching with the composite
transcriptome, while the partial transcriptomes of Gc, Gsl1, and Gs5 showed 99.8% of
transcripts matching with the composite transcriptome (Table 1). We used the DOGMA web
server to evaluate the level of integrity of the transcriptome. We identified 76.6% and 96.8%
of the central assemblages of vertebrates and eukaryotes, respectively. These results support
the high quality and integrity of our composite loggerhead transcriptome. Furthermore,
these results are in agreement with those published in previous studies [59-61].

Table 2. Statistics of the annotation of the composite transcriptome of the loggerhead turtle, Caretta
caretta, with the number of transcripts that have at least one match with one of the evaluated databases.
Some transcripts had multiple annotation results.

Data Base Number Percentage
Nr 52,866 43.4
Nt 69,050 56.6
SwissProt 43,994 36.1
KEGG 44,768 36.7
KOG 39,733 32.6
InterPro 38,214 31.3
GO 15,540 12.7
In all databases 11,693 9.6
In five databases 32,467 44.8
General 72,700 59.6
BlastN (Caretta caretta) 110,846 90.9
BlastX (Testudines) 97,546 80.5
No annotation information 11,087 9.1
Match with at least one database 110,846 90.9
Total 121,933 100

3.2. Functional Annotation

We generated unigenes for each of the assembled transcriptomes. The composite
transcriptome annotation produced 72,700 (59.62%) unigenes with significant agreement
against at least one of the analyzed databases (Table 2). A total of 11,693 (9.6%) and 32,467
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(44.8%) unigenes were annotated to 7 and 5 databases respectively (Table 2, Figure 2). Our
composite transcriptome was also scored against Testudines proteomes (Chelonia mydas,
Pelodiscus sinensis, and Chrysemys picta belli), and against a previously published Caretta
caretta transcriptome (Genbank PRJNA560561), obtaining significant agreement against
97,546 proteins (80.5%) and 110,846 unigenes (90.9%), respectively.

Figure 2. Venn diagram showing the genes of the loggerhead turtle, Caretta caretta, annotated to the
databases Nr, KOG, KEGG, Swissprot, and Interpro.

3.3. Differential Gene Expression

To evaluate the expression characteristics of the mRNA, we estimated the relative
expression levels (FPKM) of each of the samples for each transcript (Figure 3). We classified
the expression of genes into three categories: (i) genes that presented low relative expression
levels (FPKM < 1), which represented the majority of genes (72%); (ii) genes that presented
medium relative expression levels (FPKM between 1-10), which represented a quarter of the
genes (24%); and (iii) genes that presented high levels of relative expression (FPKM > 10),
which represented a minority of the genes (4%).

On average, each of the 12 samples expressed 80,453 genes. No significant differences
were found between the number of genes expressed between Gc, Gs1, and Gs5 (Kruskal-
Wallis, p > 0.05). It is important to note that when Gs1 was compared to Gs5, it showed
a marked reduction in gene expression (5274, 3352, and 348 fewer genes respectively
expressed in categories i, ii, and iii described above) in all three categories (Figure 3).
On the contrary, when Gc was compared with Gs5, it presented smaller differences in
the expression of genes in the first two categories (2287 and 118 fewer genes than Gs5,
respectively), and in the third category, Gc expressed more genes than Gs5 (33 genes)
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(Figure 3). The results appear to show that low concentrations of MeHg (1 mg L™1)
generally decrease gene expression while higher concentrations increase it (5 mg L™1).

75,000 -|
e 99,307| 195,291/ 154,316 (64,085 | 51,233 51,273 159,720 58,824 | |58,795
g 57,539| 61,363| 164,450 FPKM < 1
—f— FPKM 1~10
= >
> FPKM 2 10
c
0
o

25,000~ |

20,997, |17,590| 18,270/ |24,394| 15,924 15,40J 18,206| 17,756 (19,370 [18.747| [19,562| 24,023

0- [3548] [sies [2847 srea) (2861 foco] saas] [2967] svas] 73] [soaa] oo

| S— — —~ - - - - - - —r B )
S1 S4 S7 S10 S2 s5 S8 S11 S3 S6 S9 S12
Gc Gs1 Gs5
Samples

Figure 3. Quantification of transcripts of the loggerhead turtle, Caretta caretta, for each of the samples
evaluated according to their high (FPKM > 10), medium (FPKM between 1-10), and low (FPKM < 1)
abundance.

The evaluation of dysregulation caused by MeHg to the RBCs showed that 83 genes
produced significant differential gene expression (log2 fold change > 1, or log2 fold
chance < —1, Padj < 0.05, and FDR < 0.001) between the Ge-Gs1, Ge-Gs5, and Gs1-Gs5
treatments. The group of upregulated genes under MeHg stress produced 39 matches and
the downregulated genes produced 44 matches. These differentially expressed genes were
annotated to the databases as follows: Nt (79 genes, 95.2%), Nr (80 genes, 96.3%), SwissProt
(78 genes, 94%), KEGG (74 genes, 89.1%), KOG (69 genes, 83.1%), InterPro (73 genes, 87.9%)
and GO (27 genes, 32.5%). In summary, only 80 genes produced significant matches and
were annotated to at least one database. The other three genes had no matches and could
not be annotated (NC). Of the 83 dysregulated genes, four genes were in more than one
comparison. This means we identified a total of 79 unique DEGs (Figures 4 and 5).

When the gene expression of the Gc and Gsl treatments were compared, we found
16 upregulated genes (between 1 and 7 fold) and 24 downregulated genes (between —1.7
and —5 fold) (Figure 4A,B) (Table S2). The comparison between the Gs1 and Gsb5 treat-
ments showed 15 upregulated genes (a fold change between one and more than five) and
15 downregulated genes (a fold change between —1.7 and more than —6) (Figure 4C,D)
(Table S3). Lastly, between Gc and Gs5 we found eight upregulated (between 1 and 5 fold)
and five downregulated (between —3 and —5 fold) genes (Figure 4E,F; Figure S3A-C,
Table S4).
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We found that none of the upregulated and downregulated genes were common to
all three established relationships (Figure 5). Of the 39 upregulated genes, 1 gene was
common between the Ge-Gs5 and Gs1-Gs5 comparisons. A total of 16, 14, and 7 genes
were unique in the Gc-Gsl, Gs1-Gs5, and Gc-Gs5 comparisons, respectively (Figure 5).
Of the 44 downregulated genes, two genes were common: one between the Ge-Gsl and
Gc—Gs5 comparisons, and one between the Gs1-Gs5 and Ge—Gs5 comparisons. A total of

23, 14, and 3 unigenes were unique among the comparisons Gc-Gs1, Gs1-Gs5 and Ge-Gs5,
respectively (Figure 5).
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Figure 4. MA plots and heat maps representing the differentially expressed genes in the transcriptome
of the loggerhead turtle, Caretta caretta. (A,B) Ge vs. Gsl, (C,D) Gsl vs. Gs5, (EF) Ge vs. Gs5.
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Figure 5. Venn diagrams indicating the number of genes differentially expressed in the transcriptome of the loggerhead
turtle, Caretta caretta. (A) Upregulated genes and (B) downregulated genes in erythrocytes exposed in vitro to doses of 0,
(Gce), 1 (Gsl), and 5 (Gsb) mg L !of MeHg for 12 h.

3.4. Functional Enrichment Analysis with GO Terms of Differentially Expressed Genes

The enrichment of GO terms of DEGs was carried out to identify the related biological
processes and the functions affected by MeHg in the RBCs. The GOs were assigned to the
three gene ontologies: biological processes, cellular components, and molecular function.
Of the 79 DEGs, only 27 were annotated against the GO database (11 upregulated genes
and 16 downregulated genes). When Gc was compared with Gs1, 113 unigenes were
classified into 28 GO functional group categories (14 in biological processes, 10 in cellular
components, and 4 in molecular function). When comparing Gs1 with Gs5, 103 unigenes
were classified into 27 GO functional group categories (13 in biological processes, 10 in
cellular components and 4 in molecular function), and finally, when comparing Gc with
Gs5, 17 unigenes were classified into 17 GO functional group categories (eight in biological
processes, six in cellular components and three in molecular function) (Figure 6).

To acquire an understanding of what may be happening at the cellular level between
Gc, Gsl, and Gs5, the annotation was completed manually using the Uniprot and Gene
Ontology databases. The differentially expressed unigenes in the three comparisons were
classified according to molecular function in the following categories: oxidative stress,
regulation of the cell cycle, signaling, regulation of transcription and translation, binding
to metal ions, autophagy, apoptotic processes, metabolic processes, membrane transport,
DNA repair, mitochondria, and miscellaneous. The results of the top 25 annotations are
presented in Table 3 (all annotation results are presented in Table S5).
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Table 3. Top 25 annotations for the gene ontology of differentially expressed unigenes in loggerhead turtle erythrocytes from the Ge-Gs1, Gs1-Gs5, and Gc—Gs5 comparisons. Upregulated
genes (>1 fold) and downregulated genes (<—1 fold, p-value < 0.01) are shown.

DE Cellular Functions Gen ID Ge-Gsl Process Log2FC p-value

Stress response, transcription regulator CL8320.Contig19_All SCK1 Stress response, regulation of DNA binding transcription, apoptosis 1.66 553 x 106
activity, apoptotic process inhibitor
Stress response, autophagy CL2170.Contig3_All ATG5 Nitrosative stress response, negaft(l)\rlren ze;g(;ﬁatlon of ROS, autophagic vesicle 717 983 x 10~
Stress response CL5255.Contig3_All GDP1 Oxidative stress 5.25 2.54 x 10712
Metabolic process CL180.Contig4_All HEX_A Degradation of GM2 gangliosides 4.92 1.72 x 1071
Metabolic process CL192.Contig4_All MAMB Beta-mannosidase activity 5.57 1.47 x 10714
Miscellaneous Unigenel3252_All AP4B1 Transport of proteins through vesicles to the golgi apparatus and lysosomes —4.29 244 x 1078
Ge-Gsl . . —— .

Metabolic process CL1354.Contigl7_All GALNS Production of an enzyme Cau'f;sZ;;eetg’lgalacwsamme 6-sulfatase in -5.35 1.08 x 10°13
Regulation of cell cycle CL860.Contigl4_All UHREF2 Positive regulation of cell cycle. Proteins marked for destruction 2.04 3.17 x 107°
Signaling Unigene60990_All ATP13A Cellular calcium homeostasis —4.78 4.05 x 10710
Regulation of cell cycle CL2504.Contigl_All MSTO1 Regulation of the assembly of mitotic use 1.82 1.75 x 1070
Transcription regulator activity CL6965.Contig4_All ZNF280D RNA polymerase II cis-regulatory region sequence-specific DNA binding —4.49 3.61 x 107°
Transcription regulator activity CL8179.Contig18_All PHF20L Regulator of transcription, gene silencing —3.37 3.08 x 107°

Transcription regulator activity CL439.Contig33_All ZC3H7A Posttranscriptional regulation osfiienrfifgpressmn, microRNAs and gene -3.77 0.00651
Transcription regulator activity CL7143.Contigl_All PIAS2 Gene silencing, transcriptional co-regulation in various cell pathways —5.36 2.14 x 10713
Transcription regulator activity CL919.Contigl15_All SOX6 Regulatory transcription, related to neurogenesis and chondrogenesis —5.19 1.61 x 10711
Stress response CL2659.Contig5_All MKNKk1 Response to environmental stress and cytokines 434 1.29 x 10710
Stress response CL1021.Contig3_All ZDHHC16 Response to stress caused by DNA damage 3.41 7.73 x 107°
Stress response CL3160.Contig8_All KPNA6 Positive regulation of Cytokmer ep;;;)glr?scetlon involved in inflammatory 349 6.59 x 10-6
Gs1-Gs5 Stress response CL2820.Contig3_All CEP250 Transition from G2/M during mitosis 1.12 3.83 x 107°
Metal ion binding CL4894.Contigl_All SLC38A9 Transmembrane amino acid transporter activity —3.45 1.71 x 107
DNA repair Unigene7038_All SPATAN1 DNA repair 3.31 7.75 x 107°
Mitochondria CL1658.Contigl6_All MFF Mitochondrial fission 3.71 9.16 x 1077
Transcription regulator CL7143.Contigl_All PIAS2 Gene silencing; transcriptional coregulator in various cellular pathways 3.68 1.59 x 107°
Ge-Gs5 Transcription regulator CL1836.Contigl_All CTBP1 Regulation of RNA polymerase II, transcription corepressor activity, binding 39 236 x 10-8

factor

Log2FC: log2 fold change, positive values represent upregulated genes; negative values represent downregulated genes.
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Figure 6. Distribution by categories of the GO classification of the 83 differentially expressed genes (DEGs). The number of
unigenes in each category is shown.

The DEGs between Gc and Gs1 presented 40 dysregulated unigenes which were
grouped into 11 GO categories according to their function. The most representative cate-
gories were: regulation of transcription (two upregulated and ten downregulated genes),
signaling (one upregulated and seven downregulated genes), oxidative stress (three up-
regulated and three downregulated genes), metabolic processes (three upregulated and
two downregulated genes), and binding to metal ions (four upregulated genes) (Table S2).
The DEGs between Gs1 and Gs5 presented 30 dysregulated unigenes which were grouped
into 11 GO categories according to their function. The most representative categories were:
regulation of transcription (three upregulated and four downregulated genes), signaling
(three upregulated and three downregulated genes), oxidative stress (three upregulated
and one downregulated gene(s)), transmembrane transport activity (two upregulated and
two downregulated genes), and binding to metal ions (three upregulated genes) (Table S3).
The DEGs between Gc and Gs5 presented 13 dysregulated unigenes, which were grouped
into six GO categories according to their function. The two most representative categories
were: regulation of transcription (three upregulated genes) and binding to metal ions (three
downregulated genes) (Table 54).

3.5. Analysis of Functional Enrichment of KEGG Pathways of Differentially Expressed Genes

The enrichment analysis of KEGG pathways carried out on differentially expressed
genes showed that, when comparing Gc to Gsl (Figure 7A), Gsl to Gs5 (Figure 7B),
and Gc to Gs5 (Figure 7C), the genes were associated with 20, 17, and 16 pathways,
respectively. In the comparison between Ge-Gs1 and Gs1-Gs5, we found that the pathways
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with the highest enrichment were the lysosome (four genes) and the Jak-STAT (three
genes) pathways, pathways that participate in the regulation of the response to oxidative
stress mediated by MeHg [62,63]. In the comparison between Gc-Gs1, Gs1-Gs5, and
Gc-Gs5, genes that participate in sphingolipid metabolism, autophagy, apoptosis, the HIF
signaling pathway, mTOR, and PI3K-Akt were also enriched, which have been reported to
be upregulated or downregulated by MeHg [64-67] (Figure 7).

3.6. Correlation between the Relative Expression (FPKM) of the GST, SOD, and Tbxas1 Genes
(RNA-seq Data) with the Enzymatic Activity of GST, SOD, and the Amount of MDA (uM)
Produced

We found, based on the multiple correlation analyses carried out on the Cu/Zinc-SOD,
Mn-SOD, and GST activities and the concentration of MDA, that in the three cases the
activity of these enzymes (SOD and GST) and the concentration of MDA were directly
correlated with the relative expression of the Cu/Zinc-SOD, Mn-SOD, GST, and Tbxas1
genes (R =0.92, 0.75, 0.94 and 0.89, respectively) (p < 0.001) (Figure 8A-D). Additionally,
we observed that the activity of the Mn-SOD enzyme and its relative expression were
correlated with the concentration of added MeHg, R = 0.75 (p = 0.005) and R = 0.67
(p = 0.016), respectively (Figure S4A-D).
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Figure 7. KEGG pathway functional enrichment of DEGs. The x-axis shows the enrichment factor. The y-axis shows
pathway name. Point size indicates DEG number (the bigger dots refer to larger amounts); the larger the value, the more
significant the enrichment. The color represents the g-value (high: white, low: blue), a lower g-value indicates a more
significant enrichment. (A) Comparison between Gc and Gsl, (B) comparison between Gsl and Gs5, (C) comparison
between Gc and Gs5.
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Figure 8. Correlation between the enzymatic activity of GST, SOD, and the concentration of MDA
(uM) produced by lipid peroxidation with the relative expression (FPKM) of the genes in the log-
gerhead turtle, exposed to MeHg. (A) TBXAS1 with MDA (uM), (B) GST with GST activity, (C)
Cu/Zn-SOD with Cu/Zn-SOD activity, (D) Mn-SOD with Mn-SOD activity.

4. Discussion

The results of our study provide information on the differential expression of genes
in loggerhead sea turtle RBCs exposed to MeHg. It should be noted that the information
available on non-model organisms is scarce and, therefore, requires development. We
highlight that only 59% of the unigenes were annotated in at least one of the seven databases
used, and of the 79 unique DEGs identified, only 27 were annotated against GO. This
result shows the knowledge gap on the subject. Furthermore, several genes that were
matched against databases were genes with unknown functions, and few studies have been
conducted using transcriptomics to evaluate gene dysregulation caused by MeHg. Clearly,
the lack of functional annotation of transcriptomes from non-model organisms is limiting
the development of the mechanistic understanding of complex traits [67]. However, the
proteomes of three turtles (Chelonia mydas, Pelodiscus sinensis, and Chrysemys Picta belli) have
already been published, and there are 37 turtle genomes in the process of assembly, 10 of
which also have been published, representing important progress for the understanding of
these chelonians.

For these reasons, our study represents an important advance of DEGs analysis in the
understanding of the toxicity mechanisms by which MeHg affects cellular homeostasis
and of the adaptive response of loggerhead sea turtle RBCs. Adaptive responses to MeHg
toxicity appear to involve complex polygenic processes. Our findings were consistent with
this and reveal that several functionally distinct genes were dysregulated in response to
stress produced by MeHg.

In the comparisons made to determine the differential expression of genes between
Gc-Gsl, Gs1-Gs5, and Ge—Gs5, the greatest dysregulation occurred in downregulated
genes (44 genes) related to the response to cellular stress, signaling, transcription, calcium
metabolism, and transport across the membrane, and in upregulated genes (39 genes)
involved in the response to stress, lysosomes, mitochondria, regulation of the cell cycle,
metabolic processes, and transcription and translation (Table S5).

These results demonstrate that RBCs in Gs1 generally expressed fewer genes, but
their response to MeHg was more pronounced (40 dysregulated genes) than RBCs in Gs5
(12 dysregulated genes). The identification of changes in gene transcription can contribute
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to the identification of molecular events that are in the process of initiation or to the
identification of the sequence of molecular events that can lead to cellular dysfunctions,
as well as the identification of toxicity markers [29,68]. Studies are needed at lower and
higher MeHg concentrations and longer and shorter exposure times.

4.1. Differential Expression of Oxidative Stress Indicator Genes

Oxidative stress produced by an increase in reactive oxygen species is one of the
earliest responses of RBCs to MeHg toxicity [32]. In this study, when comparing the DEGs
between Ge-Gs1, Gs1-Gs5, and Ge-Gs5, the dysregulation of 12 oxidative stress indicator
genes was observed: eight upregulated genes (Sgkl, GDP1, HEX_A, ATG5, MKNK1,
ZDHHC16, CEP250, and ITGAX) and four downregulated genes (BRD1, DCUN1D2,
KPNAS®6, and SAMD?Y) (Table 3). These 12 DEGs demonstrate oxidative stress.

The Sgkl and MkNKk1 (Table 3) genes were upregulated. The proteins that these genes
encode are linked to various cellular processes, including survival and the response to
cellular stress. These proteins carry signals from the cell membrane to the nucleus and are
activated in response to environmental, osmotic, or oxidative stress and DNA damage [69].
Everything indicates that these genes in the RBCs are upregulated as a response to stress
produced by MeHg to counteract or minimize the toxicity. Overexpression of the Sgkl
gene has been reported to regulate nitric oxide production, protect cells against ROS, and
inhibit apoptosis [70]. Although the expression of Sgk1 was not high, its presence denotes
the appearance of ROS and, apparently, cellular damage. The significant overexpression of
the Atg5 gene supports our hypothesis, as this gene exerts a cytoprotective role in various
animal species, making the autophagy process more efficient and reducing oxidative stress
during exposure to MeHg [71].

In this study, we found that the expression of Atg5 shows that there is cellular damage
in RBCs and its overexpression produces compensation. In mice, the silencing of Atg5 in
cells exposed to acute oxidative stress has produced the overexpression of cytokines, which
generate inflammation and cellular apoptosis [72]. These findings support the important
role this gene plays in RBCs homeostasis. To counteract oxidative stress, the overexpression
of other anti-apoptotic genes has been identified, such as Sgkl and ZDHHC16 (Table 3).
The ZDHHC16 gene responds to the stress generated by DNA damage and participates in
palmitoylation, a post-translational modification of histone proteins in which the ZDHHC16
enzyme adds a palmitate moiety to specific cysteine residues in RBCs. Palmitoylation affects
chromatin remodeling, the structure of DNA, and eventually triggers the activation of
regulatory genes that contribute to DNA repair and, therefore, prevent its apoptosis [73,74].

Likewise, we identified the overexpression of the GPD1 gene. The enzyme encoded by
this gene reduces dihydroxy-acetone phosphate to glycerol-3-phosphate (G-3-P), reducing
in turn one mole of NAD to NADH [75]. Shen et al. [75] described how GDP1 deficiency,
under stress conditions, produces the loss of the ability to achieve NADH/NAD balance
and, therefore, a constitutively increased level of ROS. However, it is known that GPD1 is
involved in a mitochondrial redox shuttle, which serves as a link between the cytosol and
the mitochondria, and that a balanced cellular redox state is obtained due to this gene [76].
The overexpression of the GPD1 gene in RBCs is caused by high external osmolarity (MeHg
solute), which causes increased synthesis and intracellular accumulation of glycerol [77].
The GPD1 enzyme translocates G-3-P to the inner mitochondrial membrane, which serves
as a redox valve to eliminate excess reducing power. In this way, a high NADH/NAD
balance remains [76,78]. This response is fundamental for the cell, not only for the control
of the redox balance of metabolism, but also, and very importantly, for the preventive
management of oxidative stress [75].

Another downregulated gene in the RBCs that is also related to oxidative stress is
KPNAG®6, which is a transport adapter between the nucleus and the cytoplasm and is
related to the regulation of cytokine production involved in the inflammatory response
to stress [79]. Dysregulation of the KPNA6 gene has been reported to be closely related
to nuclear erythroid factor 2 (Nrf2), a skillful regulator of cellular redox homeostasis that
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regulates the expression of more than 200 genes involved in antioxidant defense [80,81]
and, with the Keap1 signaling pathway, promotes the transcription of a large number of
genes encoding antioxidant enzymes, detoxification, and xenobiotic transporters as an
adaptive response to oxidative stress [79,80].

Nrf2 activation is negatively regulated by Keap1, which exports the Nrf2 transcription
factor from the nucleus to the cytoplasm [79,82]. The upregulation of KPNAG6 generates the
nuclear entry of Keap1 and this neutralizes the signaling of Nrf2 transcription, while the
downregulation of the KPNA6 gene decreases the entry of Keapl1 to the nucleus and, in
this way, Nrf2 triggers adaptive transcription of genes that control oxidative stress [79,83].
We found that the KPNAG6 gene is downregulated in loggerhead turtle RBCs and, therefore,
Nrf2 activates the expression of the antioxidant enzymes of the cascade of the antioxidant
response element (ARE) [83]. This was observed when analyzing the relative expression of
the genes (in FPKM). The transcription factor Nrf2 presented a basal expression in all three
treatments (FPKM: Gc = 19.7, Gs1 = 18.2, and Gs5 = 17.6). These findings support the idea
that KPNA6-mediated nuclear import of Keapl plays an essential role in modulating the
Nrf2 /Keap1 pathway and maintaining cellular redox homeostasis [83].

The antioxidant defense systems are essential to neutralize high levels of ROS, which
can cause irreversible damage to cells. In this way, cells have antioxidant molecules and
detoxifying enzymes that can control free radicals. GSH is the most abundant antioxidant
small molecule. Detoxifying enzymes include SOD, GPx, glutathione-S-transferases (GSTs),
CAT, glutathione reductase, glutamate-cysteine ligase (GCL), NAD (P) H: quinone oxidore-
ductase (NQOL1), heme oxygenase-1 (HO-1), and other phase II detoxifying enzymes [2,13].
These molecules were not dysregulated, as they did not change in their expression levels.
However, the relative expression levels (FPKM) of these genes were much lower than those
presented by the HSP70 and ferritin genes (Gc: 10,421 and 5221, Gs1: 10,513 and 5151, and
Gsb: 8047 and 5281, respectively).

Heat shock proteins serve many functions as molecular chaperones and folding guide
proteins and by preventing protein build-up. During events such as oxidative stress,
the expression of heat shock proteins is known to increase considerably [84]. In general,
heat shock proteins are activated to stimulate a pro-survival response during oxidative
damage [85]. For its part, ferritin acts as a cytoprotective agent that inhibits oxidant-
mediated cytolysis in direct relation to its intracellular concentration [86,87]. This idea is
crucial to understanding the loggerheads’ response, as we will discuss later.

4.2. Lysosomes and Regulation of Autophagy

Low concentrations of MeHg induce autophagy [88], which is mainly due to the
association of Atg5 and p53 [89]. In addition to the dysregulation of Atg5 that was already
discussed above, in the lysosome and autophagy pathway we found five dysregulated
genes: HEX_A, MANB, AP-4, GALNS, and SLC38A9 (Table 3).

We identified the following upregulated genes: HEX_A, which catalyzes the degra-
dation of GM2 gangliosides to GM3 gangliosides in lysosomes [90], molecules which
are found in the plasma membrane [91]; MANB, a glycosyl hydrolase that degrades
polysaccharides [92]; GALNS, another lysosomal hydrolase that degrades proteins such as
glycosaminoglycans, keratan sulfate, and chondroitin-6-sulfate [93]; and AP4B1, which is
involved in the generation of vesicles and, in the charge selection, controls the vesicular
transport of proteins in different traffic pathways and contributes to the spatial control of
autophagy [94]. Apparently, the erythrocyte membrane generates lipids and carbohydrates
as a result of ROS-triggered events, such as lipid peroxidation. The dysregulation of the
HEX_A and MANB genes could be present in the RBCs, as these two hydrolases execute
their task of recycling these molecules through the lysosomal pathway. For their part, the
GALNS and AP4B1 genes are downregulated in RBCs and are not part of the response
against oxidative stress generated by MeHg.

We found that the SLC38A9 gene, which plays a role as an amino acid sensor upstream
of mTORCI for asparagine, arginine, glutamine, histidine, and lysine, was downregu-
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lated [95]. SLC38A9 regulates the activity of mTORC], an integrator of environmental and
hormonal signals, detecting the availability of amino acids, glucose, and cholesterol to
initiate growth. Nonetheless, its action mechanism is not clear [95]. Interestingly, SLC38A9
allows the activation of mTORC1 by cholesterol through the recruitment of the NPC1 pro-
tein, which is an inhibitor of mTORC1 in cholesterol deficiency [96]. When SLC38A09 fails to
activate mTORC1, the anabolic metabolism is suppressed and autophagy is activated [96].

It is clear that the RBCs in the culture medium in which the bioassay was carried
out did not have the necessary environmental and hormonal signals for growth. Thus,
the activity of the SLC38A9 gene was decreased and its signaling mechanism remained
inactive; therefore, RBCs did not reproduce, nor did mTORC1 activation occur [97]. It is
important to understand how the SLC38A9 protein identifies and transports amino acids,
how it activates or deactivates mMTORC1, and how it detects other environmental signals.
This topic represents an important area for future research.

4.3. Cytoskeletal Stability and Cell Cycle

The cytoskeleton is involved in cell movement and division and is one of the primary
targets of MeHg inside the cell. Specifically, it fragments microtubules, disrupting networks
that are necessary to perform important biological functions [98]. Vogel et al. [98] assembled
in vitro microtubules from the bovine brain and used raw microtubules from the brain
of rats. They found similar results in both models: at concentrations of 1 x 107> M of
MeHg, the depolymerization of the microtubules began, reaching the total inhibition
of polymerization at a concentration of 3 x 107> M MeHg. They also observed that
15 MeHg molecules had been attached to the 15 sulfthydryl groups that tubulin (proteins
that makeup microtubules) has. This response is what determines the fragmentation of
microtubules [98].

The stability of the cytoskeleton of cells is dependent on spectrins and RhoGTpases [99,100].
Spectrins are important proteins of the cytoskeleton because they help to maintain the
integrity of the membrane and its morphology, and they participate in the transport of
organelles, as well as in the establishment of polarity in RBCs [100]. RhoGTPases are
important regulators of the organization of the actin cytoskeleton and their activation is
necessary to maintain strong focal and cellular adhesion between cells [99].

We evidenced the upregulation of the spectrin SPTAN1 and the ARHGAP20 RhoGT-
Pase genes. It is highly probable that, as a primary toxicity effect, MeHg initiated an attack
on the cytoskeleton of the RBCs. This fact affects important functions, such as the mobi-
lization of secretion and excretion vesicles, displacement of organelles, and intracellular
transport of substances, as well as cell division (mitosis and meiosis) [101-103]. As an
adaptive response, the increased expression of the SPTAN1 and ARHGAP20 genes inhibits
microtubule fragmentation and stabilizes the plasma membrane of RBCs [104].

Other genes that regulate the cell cycle were also upregulated in the RBCs. This was
the case with CEP250, UHRF2, and CTBP1 (Table 3). The CEP250 gene is related to the
positive regulation of the G2/M transition of the mitotic cell cycle and participates in the
biogenesis of the centriole and its duplication, the assembly of the spindle-kinetochore,
the cell polarity, and the signaling mechanisms of the cell cycle checkpoint [105]. UHRF2,
an ubiquitin involved in epigenetics, is closely related to several cell cycle proteins, such
as cyclins (A2, B1, D1, and E1), CDK2, and pRb. Furthermore, UHREF?2 is involved in the
ubiquitination of the cyclins D1 and E1 [106]. UHRF2 is involved in epigenetic regulation
by associating with DNMT, G9a, HDAC1, H3K9me2/3, and hemimethylated DNA. The
protein encoded by the CTBP1 gene promotes cell cycle progression and has antiapoptotic
activity given by the regulation of p53 activity [106-108]. Both UHRF2 and CTBP1, as well
as Atgb, associate with p53 (tumor suppressor protein), but it is UHRF2 that produces the
ubiquitination of p53 in vivo and in vitro [106].

Given that UHRF2-CTBP1 and p53 are all involved in cell cycle regulation, the hy-
pothesis that this is a new signaling pathway in the cell must be studied [109,110]. Possible
adaptive reactions to MeHg toxicity in the RBCs can be deducted from the activities of
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UHRF2 and CTBP1, such as changes in DNA (epigenetic methylation), and from damage to
specific proteins of the cell cycle for which the final objective would be apoptosis. However,
the upregulation of UHRF2 and CTBP1 involves, on the one hand, protecting the cell from
errors in the folding of guide proteins and, on the other, preventing the accumulation of
proteins and apoptosis [109,110]. The ubiquitination of proteins for their recycling is an
important cellular adaptive response to regain homeostasis during the stress created by
ROS produced by MeHg.

Regarding the CEP250 gene, it showed a relatively low upregulation in the RBCs.
Probably, this was due to the fact that the RBCs did not have conditions for their reproduc-
tion in our bioassay. This adaptive response against MeHg demonstrates cellular damage
at this level.

4.4. Alteration of Calcium Homeostasis and Mitochondria

One of the most widely documented effects produced by MeHg is related to glutamate-
facilitated excitotoxicity, a mechanism that causes excess intracellular Ca2* [111]. The
cytoplasmic Ca®* concentration is regulated in RBCs because calcium is a very important
element in metabolic and intracellular signaling regulation [111]. In primary cultures of
rat astrocytes exposed to concentrations of 1.5 and 10 uM, MeHg produced an increase in
the permeability of the mitochondrial membrane, alterations in the glutamine/glutamate
cycle, and increased ROS formation [112]. Atchison and Hare [113] reported that MeHg
induced the disruption of intracellular Ca?* regulation, blocking of voltage-dependent Ca?*
and Na* channels in the plasma membrane, ultrastructural changes, and accumulation
of MeHg within mitochondria. At the in vitro level, MeHg inhibits several mitochon-
drial enzymes and depolarizes the mitochondrial membrane, subsequently reducing ATP
production [113].

It has been established that in vitro cell exposure to MeHg generates a Ca®* overload
in the cytoplasm, mediated by excitatory amino acid receptors (N-methyl D-aspartate
(NMDA) and non-NMDA types) and by Ca?* channels [114,115]. The excess of intracellular
Ca?* is distributed between the mitochondria and the smooth endoplasmic reticulum (ER).
Mitochondria show low affinity and high capacity to transport Ca?*, while the ER has high
affinity and low capacity to transport Ca?* [116,117].

The RBCs presented three dysregulated genes: MFF, ATP13A1, and MSTO1. MFF
regulates the fission of mitochondria in association with Drp1 [118]. Everything seems to
indicate that the intracellular transport of Ca?*, when there is an imbalance increasing its
intracellular concentration, initially produces pressure for the ER and the mitochondria to
absorb part of the Ca?* and avoid apoptosis. However, this triggers the fragmentation of
the mitochondria via fission by MFF and the exit of cytochrome C from the mitochondria,
which generates greater fission and apoptosis [118]. On the other hand, ATP13A1 is
downregulated. Although little is known about its physiological function and properties,
it is located in the ER and its function has been linked to calcium homeostasis [119].

The MSTO1 gene is also poorly studied. A mitochondrial location is suggested where
mitochondrial morphology (via fusion) and distribution are regulated [120,121]. Fission
should cause mitochondrial fusion almost immediately [121]. It is possible to hypothe-
size that the poor transcription of the MSTO1 gene does not stabilize the mitochondria,
so fusion, which would eventually restore mitochondrial form and functions, does not
occur. Mitochondrial fission and fusion appear to be regulated by complex molecular
processes [120,121].

4.5. Regulation of Transcription

MeHg can cause DNA damage by oxidation and by its affinity with macromolecules [122].
Some studies have observed that MeHg produces DNA strand breakage, chromosomal
aberrations, micronuclei, and decreased DNA repair [123,124]. However, these conse-
quences are dose-dependent. It is important to note that mitochondrial DNA can also be
affected, accentuating the appearance of damage [125].
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In an interesting study, Wyatt et al. [125] exposed the C. elegans genome to low concen-
trations of MeHg and HgCl, (1 mM), observing minor DNA damage; suddenly, however, a
higher concentration of MeHg (5 mM) decreased the damage compared to controls. This
result is in agreement with our findings in this study, where Gsl expressed 11% fewer
genes than Gs5. In the same way, we found evidence of the dysregulation of a good number
of genes related to transcription and translation (22 and 4 genes respectively), with the
downregulated genes being of greater quantity than the upregulated genes (15 and 11 genes
respectively). It is important to note that the highest number of dysregulated genes was
present in the Gc-Gs1 comparison (14 genes) and the lowest in the Ge-Gs5 comparison
(three genes, less damage at higher concentration). Between Gs1 and Gs5, an intermediate
number of genes (11 genes) were dysregulated.

Four dysregulated genes related to the regulation of transcription and gene silencing
were detected [126]. Three of them were downregulated: the ZNF280D, PHF20L1, and
ZC3H7A genes. ZC3H7A has functions related to post-transcriptional regulation, which
could explain the decrease in gene expression [127]. MeHg has been found to induce
repression of the chromatin structure in the promoter region of genes by inhibiting its
expression [127], so the downregulation of these three genes, which also regulate the
expression of other genes, is not strange. ZNF280D, PHF20L1, and ZC3H7A genes are
downregulated at low concentrations of MeHg (Gs1) and, as observed at this concentration,
there was a significant reduction in gene expression (11% lower than in Gs5). This could
explain the decrease in the general expression of genes of Gs1.

In contrast, the PIAS2 gene was upregulated. The enzyme that encodes the PIAS2
gene contains two structural motifs (finger ring and SUMO binding) and one domain (SAP
domain) that activate or repress the Elk-1 transcription factor, which depends on the MAPK
pathway [128-130]. The Elk-1 transcription factor has been shown to bind to the promoters
of almost 1000 genes, including IE genes (genes for rapid response to growth factors and
other stimuli), genes encoding the basal transcription machinery, spliceosome components,
and ribosomal proteins [129]. PIAS2 is a transcriptional co-regulator that activates or
represses the transcription of at least 60 proteins. Among the transcription factors that
regulate PIAS?2 are Jak/STAT and NF-kB [131,132]. The expression of PIAS2, as is clear
from this information, is tremendously important in the response to oxidative stress. While
in Gsl the PIAS2 gene was downregulated, and therefore the genes of the Elk-1, Jak /STAT,
and NF-kB pathways were not expressed, in Gs5 the PIAS2 gene was upregulated and
the pathways were activated. This finding could explain, in part, the reduction in gene
expression in Gs1 compared to Gs5 and the difference between Gc and Gs5.

At the same time, the transcription factor gene SOX6 participates in pre-mRNA
splicing [132], stimulates cell proliferation, and facilitates the maturation of RBCs [133].
Repression of this transcription factor has been reported to increase globin levels [134,135].
The dysregulation of the SOX6 gene may explain why the RBCs of Gs1, where this gene was
downregulated, presented higher levels of alpha hemoglobins, compared to Gc and Gs5
(FPKM: 18.4, 13.6, and 15.1, respectively), as well as of beta hemoglobin (FPKM: 43.4, 14.2,
and 29.5, respectively). However, they did not present differential expression or significant
differences (Kruskal-Wallis Hb alpha p = 0.29 and Hb beta p = 0.24).

Ancora et al. [136] showed that Hg binds preferentially to the thiol groups of hemoglobin.
Working with dolphins, they exposed blood samples to 0.1 mM MeHg. After a few minutes,
98.1% of the MeHg was in the RBCs, 1.3% in the plasma, and 0.6% in the plasma membrane.
It is important to highlight that hemoglobin (Hb) interacts with the carbonic anhydrase-1
protein, the alpha hemoglobin stabilizing protein (AHSP), and Prdx2, with which it forms
high-molecular-weight complexes, attenuating the formation of ROS and, in this way,
protecting RBCs from oxidative stress [137]. Furthermore, the rate of thiols per hemoglobin
tetramer in turtles is as low as in humans (5.6 and 5.8 respectively) compared to crocodiles
(16), chondrichthyans (10), birds (9.2), and amphibians (7.2). Therefore, we hypothesize that,
as loggerhead turtle hemoglobins are not very reactive, destabilization of their structure by
mercuric ions is less possible.



Toxics 2021, 9, 70

20 of 29

We infer that, in Gs1, MeHg alters the expression of the alpha hemoglobin in the
RBCs due to the downregulation of the SOX6 gene, triggering the upregulation of the
alpha and beta hemoglobin, resulting in a greater production of ROS and, thus, reducing
the overall expression of genes. It is not clear why the SOX6 gene is upregulated in
Gs5 and downregulated in Gsl yet, the only difference between the two groups was the
concentration of MeHg.

4.6. Analysis of the Relative Expression (FPKM) of the Cysteines and Methionines, Glutathione,
Selenocompounds, and Peroxyredoxins Metabolic Pathways

MeHg is an electrophile that regularly attacks nucleophilic groups (thiols and se-
lenoles) [5]. Selenoproteins are the main target for mercury in thioredoxin, peroxiredoxin,
glutathione-glutaredoxin, and other selenoprotein (P, K, and T) systems [2]. Mercury binds
to selenocysteines in these proteins, inhibiting their function and altering their cellular re-
dox environment, resulting in glutathione excitotoxicity, alteration of calcium homeostasis,
damage to mitochondria, lipid peroxidation, deterioration in protein repair, and apopto-
sis [2,138]. Furthermore, mercury has high affinity for Se, which leads to the depletion of
its reserves and, therefore, to the inhibition of selenoprotein synthesis [138].

The analysis of DEGs carried out in this study found that the enzymes that represent
the first line of the antioxidant machinery in response to MeHg were not dysregulated. We
did not find dysregulation in genes that encode selenoproteins or thiol-proteins. However,
to find out which genes were being expressed, we analyzed metabolic pathways, and we
detected 397 metabolic pathways in which all unigenes participate. Among these, we
found the metabolisms of cysteines and methionines, glutathione, selenocompounds, and
peroxiredoxins. Figure 9 shows the relative expression (FPKM) of the enzymes that are
part of the metabolism of cysteines and methionines (Figure 9A). In this pathway, 30 genes
were expressed, within which spermine synthase (SMS) was the only gene that presented
significant differences (p < 0.05) between Gc and Gs1, showing higher relative expression
in Gc than in Gs5 and Gs1. SMS is a polyamine with antioxidant and anti-inflammatory
properties that have been reported to significantly inhibit the production of nitric oxide
(NO), prostaglandins, and cytosines [139], and reduce intracellular MDA levels. This
indicates that the RBCs have a constitutive expression of SMS, speD, and E3.3.1.1, all
expressed in the pathway of cysteines and methionines, that would play a role in the initial
response to oxidative stress generated by MeHg.

In glutathione metabolism (Figure 9B), the relative expression of 26 genes was identi-
fied, with high expressions (FPKM = between 100- and 300-fold) of PRDX6, GPX, GSTP,
and GST, important enzymes in the response to oxidative stress. However, no significant
differences were identified. In all these genes, the expression was always higher in Gsl
(Figure 9 B, green bar). A constitutive expression of these enzymes appears to be present
here as well. Reischl [140] found that the glutathione concentration in RBCs of the tortoise
Prynops hilarii was 1.9 = 0.2 mM. This result provides grounds to think that the high content
of -SH groups must be part of a redox buffer, an output antioxidant to counteract ROS and
oxidative stress.

In the metabolism of selenocompounds (Figure 9C), the relative expression of ten
genes was identified, without presenting significant differences. The MARS and SCLY
genes showed higher relative constitutive expressions (FPKM = between 8 and 10) than
the other enzymes of this pathway. Finally, we analyzed the relative expression of per-
oxiredoxins (Figure 9D), in which only the PRDX2 gene showed significant differences
between Gc (FPKM = 694.1) and Gs1 (FPKM = 938.2) (p < 0.05). Among the group of
peroxiredoxins, PRDX2 is the most efficient enzyme in the elimination of ROS and H,O;,
and the second most abundant protein in the RBCs after hemoglobin [119,120], where it
plays a fundamental role in the maintenance of the redox balance and its survival [141,142].
We found that Gs5 produced an intermediate relative expression (FPKM = 741.2). It seems
that higher concentrations of MeHg do not encourage the expression of PRDX2 but, on the
contrary, slow it down. In general, the genes that code for selenoproteins and that partici-
pate in the metabolism of selenocompounds, cysteine, methionine, and glutathione were
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not affected by in vitro exposure to MeHg. Dysregulation of these genes was not observed,
as expected. However, these metabolic pathways show genes with constitutive expressions
at high levels, as if turtles are always alert to the appearance of oxidative stress and, in
this way, respond adaptively to counteract the harmful effects of toxicity. Krivoruchko
and Storey [143], working with adult Trachemys scripta elegans turtles and Chrysemys picta
marginata hatchlings, identified genes that are constitutively upregulated in different organs
of these turtles, including: mitochondrial genes encoding electron transport chain proteins,
iron storage proteins, serine protease inhibitors, transmembrane solute carriers, receptor
proteins of transport and neurotransmission, chaperone proteins, and, most importantly,
antioxidant enzymes. These authors proposed “the maintenance of constitutive protection
mechanisms”. Turtles maintain a constitutive expression of many proteins that represent
the defense against oxidative stress, anoxia, aging, and disease. While expensive in terms
of energy consumption, it is very important to provide immediate protection against any

metabolic attack.
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4.7. Correlation between Level of Gene Expression and Enzyme Activity

We found a high statistical correlation between these variables (Figure 8). These
analyses have been previously described in other works in which different toxic substances
were evaluated in animal species.

In polychaetes (Perinereis nuntia), a correlation has been found between the GST gene
relative expression levels and GST activity after exposure to a 50 pug L.~! dose of copper
(Pearson’s correlation, r = 0.59-0.85, p = 0.001), which was given by the different GST
isoforms (GST-omega and GST-sigma) [144,145]. Another study [146] used Perinereis nuntia
individuals exposed to doses of 50 g L~! of Cd and found a high correlation between the
relative expression levels of the GST-sigma and GST-omega isoforms and the total GST
activity (Pearson correlation: » = 0.96, p < 0.01 and r = 0.93, p < 0.05, respectively).

Franco et al. [146] studied the effect of oxidative challenges in the relative expression
of genes encoding the antioxidant enzymes, Cu/Zn-SOD, Mn-SOD GPx, and CAT, in
in vitro muscle cells. They found that the treatment with pro-oxidant paraquat resulted in
increases in transcriptional levels of these enzymes and activities. The level of transcription
of GPx and CAT increased four- to fivefold and the activities of the enzymes increased
two- to threefold. A similar response was presented in the enzymes Cu/Zn-SOD and
Mn-SOD. More recently, Zhang et al. [147], working with planarians (Dugesia japonica),
exposed them to glyphosate and found a correlation between total SOD activity and the
relative expression levels of the enzyme Cu/Zn-SOD (Pearson r = 0.62).

The results obtained in this correlation show a high relationship between the activity
measurements made with classical biochemistry and the relative expression of the genes
measured in FPKM. It is important to note that the comparison of more genes could give
more robustness to this analysis.

5. Conclusions

The toxicology of sea turtles is a relatively new field of research, yet the inclusion of
RNAseq, together with bioinformatics and biochemical analyzes, represents a field of study
for the present and future of toxicological research for these threatened and endangered
animals. The threats posed by contamination by MeHg and other xenobiotics are imminent,
and the rigorous study of their action mechanisms is imperative.

We have identified DEGs that affected biological processes in loggerhead turtle RBCs
by exposure to MeHg. The downregulated genes were related to cell stress response,
signaling, transcription, calcium metabolism, and membrane transport. On the other
hand, the upregulated genes were involved in response to stress, lysosomes, mitochondria,
regulation of the cell cycle, metabolic processes, transcription, and translation.

At low MeHg concentrations, in Gsl, gene dysregulation was higher compared to
Gs5, producing a greater number of down- and upregulated genes. Furthermore, the total
number of genes expressed in Gs1 was also lower (—11%) compared to RBCs exposed to a
higher concentration of MeHg (Gs5). Everything seems to indicate that low concentrations
of MeHg produce greater dysregulation. This hypothesis must be studied in depth to be
corroborated.

We found that the RBCs in Gs1 evidenced a greater expression of alpha and beta
hemoglobin, which could be related to ROS generation at a higher rate than in Gs5, a fact
that could also explain greater dysregulation and lower total gene expression.

According to the analysis of DEGs, a low response of the antioxidant machinery of
the early reaction to the toxicity of MeHg can be noted, evidenced by the fact that these
genes were not dysregulated. Nonetheless, the expression analysis of the metabolism of
cysteines and methionines, glutathione, selenocompounds, and peroxiredoxin enzymes
showed a constitutive expression that could be related to “preparation for oxidative stress”,
a theory proposed by the biochemist Evaldo Reischl [148], who argued that turtles and
other animals have an early response strategy against oxidative stress.

The DEGs identified in this study provide a baseline for further studies on the impacts
of MeHg oxidative stress on loggerhead turtle RBCs. We analyzed metabolic pathways
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using all identified unigenes and detected 397 metabolic pathways in which unigenes par-
ticipate. This type of analysis has not been widely explored in Hg studies. Transcriptomics
and the great advance of bioinformatics support the development of studies in ecotoxi-
cogenomics, providing answers on the molecular mechanisms of toxicity used by MeHg
against this sea turtle. There are no previous in vitro or in vivo studies on differential gene
expression in RBCs or other tissues in loggerhead turtles. Therefore, it is important to
develop additional studies to elucidate the transcriptomic responses of RBCs and other
tissues of this turtle when exposed to MeHg.
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