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Abstract: The broad utilisation of neonicotinoids in agriculture has led to the unplanned contam-
ination of adjacent terrestrial and aquatic systems around the world. Environmental monitoring
regularly detects neonicotinoids at concentrations that may cause negative impacts on molluscs. The
toxicity of neonicotinoids to some non-target invertebrates has been established; however, informa-
tion on mollusc species is limited. Molluscs are likely to be exposed to various concentrations of
neonicotinoids in the soil, food and water, which could increase their vulnerability to other sources
of mortality and cause accidental exposure of other organisms higher in the food chain. This review
examines the impacts of various concentrations of neonicotinoids on molluscs, including behavioural,
physiological and biochemical responses. The review also identifies knowledge gaps and provides
recommendations for future studies, to ensure a more comprehensive understanding of impacts from
neonicotinoid exposure to molluscs.

Keywords: non-target species; toxicity; biomarker; pesticide; bivalve; gastropod; cephalopod;
environmental concentration

1. Introduction

Rapid population growth, in combination with concerns regarding food security for
humans, has led to an increase in the production and utilisation of pesticides [1,2] to
control damaging insects in agriculture and improve food production [3]. While this has
been successful based on primary intentions, the increasing use of pesticides has caused
several deleterious effects on non-target organisms in the environment [4], threatening
their survival and existence, especially when interacting with other natural environmental
stressors. For this reason, in the future, food production will either require alternatives
to pesticides, the use of pesticides that are extremely selective at low doses, and effective
management of all the stages of agricultural production to ensure that non-target species
in the environment are not directly or indirectly affected by pesticides [4,5].

Several insecticides are used to control crop-damaging insects in agricultural programs
around the world, helping to minimise crop loss from pests and diseases [6]. Insecticide
contamination of terrestrial [7–9] and aquatic [10,11] ecosystems have been extensively
documented [12,13]. This has led to regulatory controls, including restricted use, revoking
approval and bans of certain pesticides in some countries, whilst the same pesticides are
actively used in many other countries [14,15].

Neonicotinoids are a group of neuroactive insecticides that were first registered for
agricultural use in the 1990s and just two decades later they were among the most widely
used insecticides in the world [16], accounting for one-third of the global market for in-
secticides [17]. However, at the time neonicotinoids were introduced into the pesticide
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market, the risk assessment protocols were not sufficient to detect some of the environ-
mental risks associated with these chemicals [17]. Following a moratorium on the use of
three neonicotinoids in the European Union in 2013 [18], they have been banned for use in
open-field crops in the EU since 2018 [19] and Canada since 2019 [20]. In 2019, the Fijian
government voted for a ban on the importation and use of a neonicotinoid (imidacloprid)
which took effect from January 2020 [21]. The restricted use was largely due to well docu-
mented negative impacts on pollinating insects. However, residues of these neonicotinoid
compounds are increasingly being detected in receiving environments within agricultural
catchments [11,22,23], triggering further monitoring and the assessment of risks to aquatic
invertebrates [20]. The temporal and spatial scale of risks associated with pesticide use
needs to be considered across both terrestrial and aquatic environments, with high efficacy
and systemicity, long persistence and high mobility identified as the key risks associated
with neonicotinoid exposure [17].

The most common pathways for offsite contamination by neonicotinoids are leaching,
soil and water run-off [24], foliar deposition [25] and mechanical methods, for instance,
spray-drift. Bonmatin et al. [26] conducted a survey of the levels of neonicotinoids residues
along a gradient from treated crop fields to adjacent fields and then into aquatic ecosystems.
The results showed varying concentrations of neonicotinoids residues in all the environ-
mental samples, with higher concentrations detected closer to the treated zones. Similarly,
a concentration of up to 320 µg/L was reported in natural water in the Netherlands [27].
Furthermore, Morrissey et al. [28] reviewed the reported concentrations of neonicotinoids
in aquatic systems in nine countries and found these to exceed the interim short-term
(0.2 µg/L) and long-term (0.035 µg/L) water quality threshold at some locations [28].
These studies indicate that non-target invertebrates (e.g., molluscs) could be exposed to
various concentrations of neonicotinoid insecticides, with the likelihood of detrimental
impacts [4,28].

Due to the habitat and method of feeding, molluscs could be exposed to various
concentrations of neonicotinoids in the environment, with potential negative impacts on
the exposed species and the ecosystem structure in general. In fact, neonicotinoids cause
stress to terrestrial molluscs [29] and build up in the tissues at concentrations that could
cause mortality in mollusc-eating arthropods [29]. Exposure of filter-feeding bivalves to
neonicotinoids also led to a build-up of residues in the tissues [30,31] at concentrations that
could impact consumers like crabs, crayfish [32,33] and humans [34]. Exposure of Sydney
rock oysters to various concentrations (0.01–2 mg/L) caused a wide range of behavioural,
biochemical and physiological impacts [30,31,35]. This means that contamination of aquatic
systems by neonicotinoids could have significant implications for commercial molluscs
(e.g., oysters, scallops, mussels and clams), threatening productivity.

Shellfish reefs provide important services globally with an economic value of more
than US$ 40 billion annually [36]. However, over 80% of shellfish reefs have been func-
tionally lost on a global scale [37]. Because of this, billions of dollars are currently being
spent on shellfish reef restoration to improve ecosystem services. The full causes for the
loss of previously expansive shellfish reefs are unclear; however, water quality is often
regarded as an important factor [38,39]. Therefore, this review focuses on the impacts of
neonicotinoids exposure on mollusc species. The aim is to highlight what is already known
about the response of molluscs to neonicotinoids and to identify knowledge gaps, and on
how they can be addressed in future studies.

2. Neonicotinoids
2.1. Chemical Properties, Registration, Use and Efficacy

A defining characteristic of commercially available neonicotinoids is the presence
of at least one sp3 nitrogen, either as part of a heterocyclic ring or an acyclic moiety
(Figure 1). This sp3 nitrogen, in association with a conjugated electron-withdrawing group,
led to the definition for “neonicotinoid” [40], and remains central to the neonicotinoid
pharmacophore [41].
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Figure 1. Structure of commercially available nitro- and cyano-neonicotinoids showing the amine groups (blue).

Neonicotinoids are found in many commercially available insecticide products, for
instance, Advocate, Confidor and Admire (imidacloprid), Actra, Endigo and Durivo (thi-
amethoxam) and Assil, Intruder and Saurus (acetamiprid) (Table 1) which are broadly used
to control agricultural and domestic insects [42–44]. Owing to their presumed low toxicity
to mammals compared to other pesticides and high potency against target insects [45],
these insecticides are registered in more than 120 nations [28,41]. Neonicotinoids are one of
the most effective pesticides available for the control of sucking insect pests, for example,
whiteflies, aphids, thrips, a number micro Lepidoptera, leaf- and plant-hoppers and some
beetles [41,46]. They are used for a variety of applications such as veterinary medicine
as ectoparasiticides, urban landscaping [41] and as agents for crop protection in many
agricultural systems [47]. Imidacloprid and thiamethoxam, for instance, can be applied by
numerous techniques including root drench to the soil, foliar sprays over ground plants,
or as trunk injection to trees; however, the majority of all neonicotinoids are conveyed as
seed/soil treatment in agricultural systems [41,47]. The application rate of neonicotinoids
depends on several factors, including the crop type, method of application and the specific
neonicotinoid and the country of used [48].

Neonicotinoids bind to the nicotinic acetylcholine receptors (nAChRs) in the cen-
tral nervous system (CNS) of animals. nAChRs are among the family of ligand-gated
ion channels in charge of quick excitatory cholinergic neurotransmission in CNS [41,49].
Neonicotinoids are thought to bind to the nAChRs of insects with much higher efficiency
than those of vertebrates [49,50]. In the insect CNS, acetylcholinesterase (AChE) breaks
down the normally occurring transmitter acetylcholine, and this ends nerve signalling
in the normal synaptic transmission between nerve cells [50]. However, neonicotinoids
which bind to AChR cannot be broken down by AChE, and this leads to overstimulation
of the sensory system of insects, paralysis and eventually death [49,51]. The selectivity of
neonicotinoids for CNS of insects has been credited to their binding to nAChRs, in which
the negatively charged nitro- or cyano-groups of neonicotinoids interact with a cationic
subsite within insect nAChRs [52]. Due to the mechanism of action of neonicotinoids and
conserved neurophysiology during the evolution of other animal phyla, some impacts of
neonicotinoids on other non-target invertebrates, including molluscs, are expected [53],
although at varying degrees among species [54]. Structural-binding analysis has demon-
strated the binding of neonicotinoids to acetylcholine binding proteins from two molluscs
species, Lymnaea stagnalis and Aplysia californica [55].
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Table 1. Summary of neonicotinoid insecticides showing their properties, release year and some common trade names.

Neonicotinoids Properties Imidacloprid Acetamiprid Nitenpyram Thiamethoxam Thiacloprid Clothianidin

Released year 1991 1995 1995 1998 2000 2002
Molecular formula C9H10ClN5O2 C10H11ClN4 C11H15ClN4O2 C8H10ClN5O3S C10H9ClN4S C6H8ClN5O2S

Molecular weight (g/mol) 255.7 222.67 270.72 291.71 252.72 249.68
Vapour Pressure (mm Hg) 1 × 10−07 4.5 × 10−05 8.2 × 10−12 6.6 × 10−06 6 × 10−12 1.3 × 10−07

Hydrolysis half-life at pH 7 (days) >2000 na na ≥572 10 to 63 na
Octanol-water coefficient (Kow) 3.7 6.27 −0.66 −0.13 1.26 5

Henry’s constant (atm m3/mole) 6.5 × 10−11 7.92 × 10−08 7.9 × 10−11 4.7 × 10−10 1.08 × 10−14 2.9 × 10−16

Melting point (◦C) 136.4 to 143.8 98.9 ~82.8 139.1 136 176.8
Anaerobic aquatic half-life (days) 27.1 45 ~3 35.5 >365 27

Aqueous photolysis half-life
(hours) 1 to 4 >34 ~4.4 ≥3.36 42 <24

Water solubility (mg/L at 20 ◦C) 510 to 610 4200 5.7 × 10+05 4100 185 327
Soil photolysis half-life (days) 38.9 25.1 1 to 15 47 to 54 na 34

Field dissipation half-life (days) 26.5–229 <18 <4 72 to 111 19 2 to 27
Soil adsorption coefficient (Kd) 0.956–4.18 <4.1 na 0.59 to 2.03 na 0.62 to 1.94

Trade names

Confidor
Merit

Gaucho
Admire Kohinor Prothor

Advantage Gaucho
Spectrum Premise

Winner

Assail Intruder Adjust
Rescate Tristar Saurus

Prize
Tristar Mosiplan Gazelle

Trivor

Capstar Bestguard

Actara
Cruiser
Helix

Platinum Centric
Maxide Meridian
Flashship Endigo
Optigard Durivo
Agri-flex Voliam

Calypso Biscaya
Viper Piranha

Aloft
Clutch
Arena

Votico Prosper Belay

na = not available. Data sources: [16,28,41,56,57].
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2.2. Environmental Fate

Over the last decade, concerns with respect to the fate and impacts of neonicotinoids
include persistence in the soil, water solubility and the likelihood of contaminating un-
treated zones within treated seed sowing areas, posing risks associated with the frequent
use of neonicotinoids [23]. Numerous studies have also shown that neonicotinoids are
highly persistent compounds (see reviews [58,59]), and residues of neonicotinoid insec-
ticides can be detected in agricultural fields for up to a year after applications (Table 1),
with the likelihood of contaminating other environmental compartments, including ad-
jacent lands [60] and aquatic ecosystems [23,57]. The persistence and the likelihood of
off-site contamination could expose non-target organisms to effective concentrations of
neonicotinoids.

Neonicotinoids vapour pressure, soil adsorption coefficient and Henry’s law constant
are very low (Table 1), an indication of low volatility and low air-borne particle disper-
sal [61,62]. This means that neonicotinoids will, in all probability, only be present in the
air for a brief period during spraying and these compounds are not usually detectable
in the air following applications by any currently available monitoring technique [63].
In air monitoring studies across four different counties in California, air samples were
collected before, during and immediately after foliar spray applications of a neonicotinoid
(imidacloprid) for the management of glassy-winged sharpshooter, Homalodisca coagulata.
The results confirmed that imidacloprid residues were not detected in air samples col-
lected in Santa Clara County [64], Solano County [65], Imperial County [66], and Butte
County [67]. However, neonicotinoids are capable of contaminating adjacent fields through
drift movement, or other mechanical methods (see review [59]). For example, planting
neonicotinoid-coated seeds with a machine can release residues of the insecticide con-
taminated particulate matter into the adjacent environment [68,69]. Greatti et al. [70] and
Krupke et al. [71] analysed plant and soil samples close to a field that was sown with
neonicotinoids-treated seed and found varying concentrations of imidacloprid, clothian-
idin, thiamethoxam and their metabolites. Similarly, Biocca et al. [72] reported varying
concentration (225–247 ng/m3) of clothianidin drifted from the planting of clothianidin-
treated seeds. These examples confirm the potential for neonicotinoids to contaminate the
environment beyond the immediate treatment area and highlight the need to follow best
agricultural practices [73].

The persistence of neonicotinoids in soil and water depends on several factors includ-
ing organic carbon content of the soil, temperature, pH (Table 1), frequency and quantity
of neonicotinoids used, microbial community composition and function, and exposure
to sunlight (Table 1). The mobility of neonicotinoids is lower in soil with high organic
matter, attributed through the binding of the functional groups of the insecticides to the
carboxylic acidic and phenolic hydroxyl groups of the soil organic matter [74]. Further-
more, the breakdown of plant materials that have been treated with neonicotinoids can
release residues back into the soil [75], and this could pose risks to detritivores, for instance,
terrestrial gastropods [76], in the environment.

The rate of degradation of neonicotinoids varies according to microbial community com-
position and function [77]. Using controlled experimental conditions in the laboratory, An-
halt et al. [78] reported that Leifsonia strain PC-21 degraded up to 58% from 25 mg/L imida-
cloprid within three weeks in trypsin solution containing 1 g/L succinate and D-glucose at
27 ◦C while the control (i.e., without Leifsonia strain PC-21) had no degradation of imidaclo-
prid. Other microorganisms, for instance, Pseudomonas sp. [79], Hymenobacter latericoloratus [80],
Sphingomonas sp. [81], Bacillus aerophilus and Bacillus alkalinitrilicus [82], have been reported to
degrade neonicotinoids.

The rate of degradation of neonicotinoids also increases with sunlight and tempera-
ture [83]. For instance, in research conducted by Tisler et al. [84], there was no variation
in the concentration of analytical grade imidacloprid in distilled water that was kept in
the dark at fridge temperatures (3 ± 2 ◦C) over 22 days, but samples kept in room light
at 21 ± 1 ◦C revealed decreasing concentrations over time. Furthermore, Lu et al. [85]
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reported that the rate of degradation of neonicotinoids (imidacloprid, acetamiprid, cloth-
ianidin, thiacloprid and thiamethoxam) in water was very fast in the presence of light
approximating full-spectrum sunlight and negligible when the light source was attenu-
ated [85], a situation that normally occurs in deeper waters and/or shallow waters with
particulate matter obstructing light penetration. This suggests that (except for other degra-
dation parameters) aquatic organisms inhabiting dark regions could be exposed to higher
concentrations of neonicotinoids for a considerably longer time compared to organisms
inhabiting the surface of aquatic systems.

3. A Literature Search of Neonicotinoids Studies on Molluscs

Using the Web of ScienceTM and Scopus® online databases, a detailed literature search
of review articles and journal articles in English from 1995 to 2020 (25 years) that have been
peer-reviewed was completed. The search terms included were pesticide, neonicotinoid,
insecticide, mollusc, toxicity, impact, effect, lethal, sublethal, EC50, LC50, aquatic, terrestrial.
This was structured as “Mollusc* OR mollusk AND neonicotinoid OR imidacloprid OR
thiamethoxam OR clothianidin OR acetamiprid OR thiacloprid OR nitenpyram”. The
search was repeated using the main classes, gastropod*, bivalv*, cephalopod*, scaphopod*,
polyplacoph* and monoplacophor*, in place of mollusc*. Articles that were eligible for
inclusion in this study were determined after a thorough review of their titles and abstracts.
Papers were only included in this review if they reported experimental or field studies
that documented the effects of neonicotinoids on at least one mollusc species or directly
investigated impacts of neonicotinoids on some aspect of molluscan biology. Additionally,
the reference lists in selected papers on neonicotinoids impacts on molluscs were searched,
and the relevant papers were included in this article.

Using these terms, a total list of 38 (33 journals and five reviews) articles of molluscs
that reported the impacts of either or both the active compound and a commercial formu-
lation of neonicotinoids were reviewed. The results show an increasing trend in studies,
with no study between 1995–2005 and the majority of the studies reported within the
last five years (2015–2020) (Figure 2). While there are five review papers that mention
neonicotinoids and molluscs, none to date have focused on molluscs and their responses to
neonicotinoids. Previous reviews on the risks of neonicotinoids to a range of invertebrates,
are dominated by studies on arthropods (e.g., [48,57]), but have concluded that molluscs
are comparatively less sensitive to neonicotinoids.
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4. Impacts of Neonicotinoids in Molluscs: What Do We Know

From the list of 33 journals articles recovered in our searches, 16 (48%) studies were
on gastropods and 17 (52%) on bivalves (Figure 3A). In terms of habitat, five (17%) studies
were on terrestrial molluscs and 24 (83%) in aquatic species; 10 (35%) in saltwater and
14 (48%) in freshwater (Figure 3B). Regarding the study type, 24 (77%) were lab-based
investigations, two (7%) field studies and five (16%) mesocosm/microcosm experiments
(Figure 3C). Grouping the studies based on specific neonicotinoids, there were 19 (54%)
studies on imidacloprid (making it the most widely tested among the neonicotinoids),
followed by thiamethoxam with 10 (29%) studies (Figure 3D) while six (17%) studies were
in other neonicotinoids. In all the molluscs studied, 14 were on commercial species (i.e.,
mostly oysters and mussels) (Table 2). Of these commercially important species, only two
investigated uptake and accumulation in the flesh of the exposed species, and these were
in lab-based experiments (Table 2).
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Most of the toxicity testing on the impacts of neonicotinoids on molluscs has focused
on imidacloprid, and model species of molluscs (Table 2). The reason for the relatively high
number of studies on imidacloprid toxicity to molluscs compared to other neonicotinoids
could be because imidacloprid was the first neonicotinoids to be released (Table 1) and it
is produced and used more than other neonicotinoids [86]. Some molluscs (oysters and
mussels) are recognised as sentinels for ecotoxicological laboratory studies and allow for
some comparison among other species of molluscs. However, this approach does not take
into account other factors that may influence outcomes, particularly in field situations.
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Evolutionary lines of species, the sensitivity of species, exposure conditions and inter-
species interactions are among the factors that could influence the results of toxicological
studies. Risk assessment is usually based on ecotoxicological studies of at least three to
five taxonomic groups, and species sensitivity distribution curves that are used to set
guideline values are stronger when they include more taxonomic representations. If risk
assessment relies on only a standard test species, we would misrepresent some sensitive
species. For example, the arthropod Daphnia magna, the most commonly used aquatic
animal representative for ecotoxicological tests is insensitive to neonicotinoids with 96 h
LC50 of ≥44 mg/L see review—[28]. Therefore, there is a need to include molluscs in the
species sensitivity distribution assessment process.

Historically, pesticide pollution studies were carried out by measuring concentrations
in abiotic matrices and comparing these with tissue concentrations in animal models. Al-
though this method is still useful for determining the concentration of pesticides in all
matrices, it does not evaluate the toxic effects of chemicals on the exposed organisms [87].
As a result, monitoring the response of organisms using various biological markers, for
instance, oxidative markers, is now being combined with the traditional method of con-
taminant monitoring [88]. Some of these oxidative stress markers, particularly antioxidant
systems, are induced after acute exposure of bivalves [35,89] and gastropods [90] to neon-
icotinoids. However, following exposure to higher concentrations to neonicotinoids, or
with a longer exposure time, the activities of antioxidant enzymes become inhibited in both
mussels [32] and oysters [31]. Incorporation of these sublethal biomarkers into monitoring
programs, along with traditional environmental concentration detection, could provide
an indicator of potential environmental stress, that could subsequently lead to adverse
health effects on populations of molluscs and other species if the stressor is not mitigated.
This type of monitoring could be applied in areas used for mollusc aquaculture to provide
an early warning system, so long as baseline data of healthy populations is available for
comparison. However, follow up manipulative experiments in the laboratory will still be
required to distinguish cause and effect, as well as for establishing effective doses that
induce oxidative stress under controlled environmental parameters.
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Table 2. Summary of previous journal articles that investigated neonicotinoids impact on molluscs species. * = life stage not reported, na = not available.

Species (Life Stage) Species Class
(Habitat) Location (Study Type) Neonicotinoids Dose (Duration of

Exposure) Findings Reference

Accumulation

Saccostrea glomerata
(adult) Bivalve (saltwater) Australia (lab-based)

Imidacloprid and a
formulation

(spectrum 200SC)

0.01, 0.05, 0.1, 1 and 2 mg/L
(2 weeks)

Accumulated in the gill
(0.40 µg/g at 0.01 mg/L and

4.6 µg/g at 2 mg/L exposures),
adductor muscle (0.41 µg/g at

0.01 mg/L and 7.14 µg/g at
2 mg/L exposures) and

digestive gland (0.22 µg/g at
0.01 mg/L and 4.39 µg/g at

2 mg/L exposures)

Ewere et al. [31]

Saccostrea glomerata
(adult) Bivalve (saltwater) Australia (lab-based) Imidacloprid 0.2 mg/L (1 to 3 days)

Accumulated in the gill
(0.7 µg/g), adductor muscle

(1.2 µg/g) and digestive gland
(0.4 µg/g).

Ewere et al. [30]

Deroceras reticulatum (*) Gastropod
(terrestrial)

USA (lab- and
field-based)

Thiamethoxam and a
formulation

(CruiserMaxx®)

0.08 and 0.15 mg/seed
(8 days)

Accumulated residues and up to
0.5 µg/g in field-collected

samples.
Douglas et al. [29]

Behaviour

Helix aspersa (adult) Gastropod
(terrestrial) Algeria (lab-based) Thiamethoxam 100 and 200 mg/L (1 week)

Significant inhibition of
locomotion and feeding at either

concentration
Hamlet et al. [91]

Crassostrea gigas (larvae) Bivalve (saltwater) France (lab-based) Imidacloprid 20 µg/L (24 h) No effect on locomotion Kuchovská et al. [92]

Deroceras reticulatum,
Arion distinctus and Milax

gagates (adults)

Gastropod
(terrestrial)

UK (lab- and
field-based)

Imidacloprid
formulation (Gaucho)

0.7, 1.4, 2.8 g/kg seed
(4 to 11 days)

Significant reduction in feeding
on winter wheat at ≥2.8 g/kg

(lab-based) and ≥0.7 g/kg
(field-based)

Simms et al. [93]

Corbicular fluminea
(larvae)

Bivalve
(freshwater) China (lab-based) Imidacloprid 0.02, 0.2 and 2 mg/L

(30 days)

Inhibition of feeding at 2 mg/L
and burrowing at 0.02 mg/L

exposures
Shan et al. [89]

Unio tumidus (adult) Bivalve (saltwater) Poland (lab-based) Thiacloprid 10 µg/L (168 h)
Reduction of shell opening level

and increase of shell
opening rate

Chmist et al. [94]

Saccostrea glomerata
(adult) Bivalve (saltwater) Australia (lab-based) Imidacloprid 0.125 to 2 mg/L (1 to 4 days)

Reduction of filtration rate at
2 mg/L (day 1) and 0.5 and

1 mg/L (day 4)
Ewere et al. [30]
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Table 2. Cont.

Species (Life Stage) Species Class
(Habitat) Location (Study Type) Neonicotinoids Dose (Duration of

Exposure) Findings Reference

Physiology
Immunity

Mytilus galloprovincialis
(adult) Bivalve (saltwater) Italy (lab-based)

Imidacloprid
formulation (Calypso

480 SC)

7.77 and 77.7 mg/L (96 h
and 20 days)

Increased hemocytes mortality
rate, and reduction in

hemolymph Cl− and Na+
Stara et al. [32]

Crassostrea gigas (larvae) Bivalve (saltwater) Australia (lab-based) Imidacloprid 0.001 mg/L (53 h) No increased susceptibility to
disease caused by OsHV-1 Oliver et al. [95]

Saccostrea glomerata
(adult) Bivalve (saltwater) Australia (lab-based) Imidacloprid 0.01 to 1 mg/L (96 h)

Increase in hemocyte counts and
decrease in hemocytes

aggregation at ≥0.1 mg/L
exposure, but no effect of

phagocytosis and hemocytes
different types

Ewere et al. [35]

Growth and morphology

Marisa cornuarietis
(embryo)

Gastropod
(freshwater) Germany (lab-based) Imidacloprid Up to 50 mg/L (9 days

No effect on the formation of
eye and tentacles, hatching, as
well as weight post-hatching

Sawasdee and
Köhler [96]

Crassostrea gigas (larvae) Bivalve (saltwater) France (lab-based) Imidacloprid 0.2–2000 µg/L (30 h) Increased in percentage of
abnormal larvae at ≥200 µg/L Kuchovská et al. [92]

Saccostrea glomerata
(adult) Bivalve (saltwater) Australia (lab-based)

Imidacloprid and a
formulation

(spectrum 200SC)
≤2 mg/L (2 weeks) No significant effect on the

condition index Ewere et al. [31]

Crassostrea virginica (*) Bivalve (saltwater) Canada (flow-through) Thiamethoxam 119 mg/L (96 h) No significant inhibition of
shell growth Finnegan et al. [97]

Planorbella pilsbryi
(juvenile) and Lampsilis

fasciola (juvenile)

Gastropod and
bivalve

(freshwater)
Canada (lab-based) Imidacloprid and

thiamethoxam 0.001 to 1 mg/L (28 days)

Significant reduction of growth
and biomass production at

≥21 µg/L (imidacloprid) and
≥24.8 µg/L (thiamethoxam)

Prosser et al. [98]

Histopathology

Helix aspersa (adult) Gastropod
(terrestrial) Algeria (lab-based) Thiamethoxam 10, 20 and 40 mg/L (20 days)

Degeneration of digestive
tubules and breakdown of
basement membrane in the

hepatopancreas in all
concentrations tested

Hamlet et al. [99]
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Table 2. Cont.

Species (Life Stage) Species Class
(Habitat) Location (Study Type) Neonicotinoids Dose (Duration of

Exposure) Findings Reference

Parreysia cylindrica Bivalve
(freshwater) Indian (lab-based) Thiamethoxam

14 mg/L (24 h, 96 h and
7 days) and 2.8 mg/L

(21 days)

hypertrophy and sloughing of
the epithelium, epithelial

necrosis, tubular hyperplasia
and rupture of the epithelial

layer ≥14 mg/L. After 21 days,
epithelial cells separated from

the basement membrane

Patil [100]

Mytilus galloprovincialis
(adult) Bivalve (saltwater) Italy (lab-based)

Imidacloprid
formulation

(Calypso 480 SC)

7.77 and 77.7 mg/L
(10 and 20 days)

Caused alteration in the gills
and digestive gland at the

concentrations tested
Stara et al. [32]

Corbicular fluminea
(larvae)

Bivalve
(freshwater) China (lab-based) Imidacloprid 0.02, 0.2 and 2 mg/L

(30 days)

Gill and digestive tissue damage
at ≥0.02 mg/L, with severe

damage at ≥2 mg/L
Shan et al. [89]

Helix aspersa (adult) Gastropod
(terrestrial) Algeria (lab-based) Thiamethoxam 25–200 mg/L (6 weeks)

Increase in the number of
excretory vacuoles, breakdown

of basement membrane and
degeneration of digestive cells

of the hepatopancreas at
≥25 mg/L

Hamlet et al. [91]

Biochemistry
Synaptic connection

Lymnaea stagnalis (larvae) Gastropod
(freshwater)

The Netherlands
(lab-based) Imidacloprid 0.001, 0.01 and 0.1 mg/L

(10 days)

Increase in choline and
acetylcholine turnover at

≥0.01 mg/L
Tufi et al. [101]

Lymnaea stagnalis Gastropod
(freshwater) Japan (lab-based Imidacloprid na

Significant low affinity to the
nicotinic acetylcholine receptor,
possibly due to the presence of
two orientation on the receptor

for imidacloprid binding

Tomizawa and
Casida [102]

Lymnaea stagnalis Gastropod
(freshwater) Hungary (lab-based)

Acetamiprid
formulations (Mospilan),

imidacloprid
formulation (Kohinor),
thiamethoxam (Actara)

and thiacloprid
(Calypso)

0.01 and 0.1 mg/mL (5 s)

Each of the neonicotinoids
inhibited the VD4-RPeD1.

Calypso block 90% of excitatory
postsynaptic potentials

Vehovszky et al.
[103]
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Table 2. Cont.

Species (Life Stage) Species Class
(Habitat) Location (Study Type) Neonicotinoids Dose (Duration of

Exposure) Findings Reference

Cholinesterase

Mytilus galloprovincialis
(adult) Bivalve (saltwater) Italy (lab-based) Imidacloprid and

thiacloprid 0.1, 1 and 10 mg/L (96 h)

Reduction of
acetylcholinesterase activity in

the gill at ≥0.1 mg/L
imidacloprid exposure and

thiacloprid caused induction of
acetylcholinesterase activity at

1 mg/L exposure and inhibition
at 0.1 and 10 mg/L exposure

Dondero et al. [104]

Helix aspersa (adult) Gastropod
(terrestrial) Algeria (lab-based) Thiamethoxam 25–200 mg/L (6 weeks)

Inhibition of
acetylcholinesterase activity at

≥25 mg/L, with higher
concentrations causing greater

inhibition

Smina et al. [90]

Saccostrea glomerata
(adult) Bivalve (saltwater) Australia (lab-based) Imidacloprid and

formulation
0.01, 0.05, 0.1, 1 and 2mg/L

(2 weeks)

Reduction of
acetylcholinesterase in the gill at

2 mg/L
Ewere et al. [31]

Biomphalaria straminea
(adult)

Gastropod
(freshwater) Argentina (lab-based)

Acetamiprid and a
formulation

(Assail 70® WP)
150 and 1500 µg/L (14 days) No effect on cholinesterase

activity Cossi et al. [105]

Saccostrea sp. (adult) Bivalve (saltwater) Colombia (lab-based)
Imidacloprid

formulation (Imidogen
350 SC)

0.1, 1, 10 and 100 mg/L
(96 h)

Reduction in total cholinesterase
and eserine-sensitive

cholinesterase activity in gill at
≥10 mg/L, and increase in

eserine-sensitive cholinesterase
activity in the digestive gland at

100 mg/L. Reduction of
eserine-resistance cholinesterase
activity in the adductor muscle

at 10 mg/L

Moncaleano-Niño
et al. [106]

Corbicular fluminea
(larvae)

Bivalve
(freshwater) China (lab-based) Imidacloprid 0.2, 0.2 and 2 mg/L (30 days)

Reduction of
acetylcholinesterase in the gill
2 mg/L and digestive gland at

≥0.2 mg/L

Shan et al. [89]
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Table 2. Cont.

Species (Life Stage) Species Class
(Habitat) Location (Study Type) Neonicotinoids Dose (Duration of

Exposure) Findings Reference

Antioxidant activity

Corbicular fluminea
(larvae)

Bivalve
(freshwater) China (lab-based) Imidacloprid 0.02, 0.2 and 2 mg/L

(30 days)

Increase in glutathione
S-transferase, catalase and

superoxide dismutase activities
in the gill and digestive gland at

≥0.02 mg/L

Shan et al. [89]

Saccostrea glomerata
(adult) Bivalve (saltwater) Australia (lab-based) Imidacloprid 0.01, 0.1 and 1 mg/L (96 h)

Increase in hemolymph
glutathione S-transferase

activity at ≥0.1 mg/L
Ewere et al. [35]

Helix aspersa (adult) Gastropod
(terrestrial) Algeria (lab-based) Thiamethoxam 25–200 mg/L (6 weeks)

Induction of glutathione
S-transferase and catalase

activity at ≥25 mg/L, with
higher concentrations causing

greater induction

Smina et al. [90]

Biomphalaria straminea
(adult)

Gastropod
(freshwater) Argentina (lab-based)

Acetamiprid and a
formulation

(Assail 70® WP)
150 and 1500 µg/L (14 days)

Significant increase in
carboxylase activity, glutathione

S-transferase activity,
glutathione content, and

decrease/inhibition of catalase
activity, oxygen species levels
and superoxide dismutase at

both concentrations

Cossi et al. [105]

Mytilus galloprovincialis
(adult) Bivalve (saltwater) Italy (lab-based)

Imidacloprid
formulation

(Calypso 480 SC)
7.77 and 77.7 mg/L (20 days)

Significant reduction of
superoxide dismutase in the

digestive gland and reduction of
catalase activity in the gills at

both concentrations

Stara et al. [32]

Saccostrea glomerata
(adult) Bivalve (saltwater) Australia (lab-based)

Imidacloprid and
formulation

(spectrum 200SC)

0.01, 0.05, 0.1, 1 and 2mg/L
(2 weeks)

Reduction of catalase in the
digestive gland at 0.1 mg/L and

glutathione S-transferase
activities in the gill and

digestive gland at ≥0.01 mg/L

Ewere et al. [31]
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Table 2. Cont.

Species (Life Stage) Species Class
(Habitat) Location (Study Type) Neonicotinoids Dose (Duration of

Exposure) Findings Reference

Energy reserve

Helix aspersa (*) Gastropod
(terrestrial) Algeria (lab-based) Thiamethoxam 25–200 mg/L (6 weeks) Reduction of total lipid content

at ≥100 mg/L Hamlet et al. [91]

Saccostrea glomerata
(adult) Bivalve (saltwater) Australia (lab-based)

Imidacloprid and
formulation

(spectrum 200SC)

0.01, 0.05, 0.1, 1 and 2 mg/L
(2 weeks)

Altered the ratios and major
classes of fatty acids at

≥0.01 mg/L
Ewere et al. [31]

Lymnaea stagnalis (larvae) Gastropod
(freshwater)

The Netherlands
(lab-based) Imidacloprid 0.001, 0.01 and 0.1 mg/L

(10 days)

Decrease of fatty acids, possibly
due to a downregulation of fatty

acids biosynthesis. Exposure
also caused an upregulation of

lipids at ≥0.01 mg/L

Tufi et al. [101]

Helix aspersa (*) Gastropod
(terrestrial) Algeria (lab-based) Thiamethoxam 25–200 mg/L (6 weeks)

Reduction of tissue
carbohydrate and protein

contents at ≥100 mg/L
Hamlet et al. [91]

Omics

Mytilus galloprovincialis
(adult) Bivalve (saltwater) Italy (lab-based) Imidacloprid and

thiacloprid 2 mg/L (96 h)

Upregulation of heat shock
proteins gene, protein
translation genes, and

downregulation of chitinase,
endo-beta-glucanase, scavenger

receptor cysteine-rich partial
and profoldin subunit 4

Dondero et al. [104]

Corbicular fluminea
(larvae)

Bivalve
(freshwater) China (lab-based) Imidacloprid 0.02, 0.2 and 2 mg/L

(30 days)

Downregulation of
multixenobiotic resistance and

heat shock protein genes at
≥0.02 mg/L

Shan et al. [89]

Saccostrea glomerata
(adult) Bivalve (saltwater) Australia (lab-based) Imidacloprid 2mg/L (96 h)

Upregulation of cargo and
scavenger receptor

activity-related genes and
downregulation genes involved

in axoneme, cilium or
flagellum-dependent cell

motility, dephosphorylation and
phosphatase activity

Ewere et al. [30]
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Table 2. Cont.

Species (Life Stage) Species Class
(Habitat) Location (Study Type) Neonicotinoids Dose (Duration of

Exposure) Findings Reference

Crassostrea gigas (larvae) Bivalve (saltwater) France (lab-based) Imidacloprid 0.2–2000 µg/L (72 h)

Upregulation of SOD [Cu/Zn],
genes coding for two

metallothioneins (mt1 and mt2),
and downregulation of SOD

[Mn], genes linked with
apoptosis and cell cycle
regulation at ≥10 µg/L

Kuchovská et al. [92]

Saccostrea glomerata
(adult) Bivalve (saltwater) Australia (lab-based) Imidacloprid 0.01, 0.1 and 1mg/L (96 h)

Expression of several
hemolymph proteins, including
the upregulation of severin, heat

shock proteins, superoxide
dismutase and calmodulin, and
the downregulation of collagens,
actins, myosin heavy chain and

CEP209_CC5
domain-containing protein

≥0.01 mg/L

Ewere et al. [35]

Population dynamics
Marisa cornuarietis

(embryo)
Gastropod

(freshwater) Germany (lab-based) Imidacloprid 50 mg/L (9 days) No effect on mortality Sawasdee and
Köhler [96]

Melanoides tuberculatus
(adult), Melanoides

tuberculatus (juvenile),
Lamellidens marginalis*

and Viviparous
bengalensis*

Bivalve and
gastropod

(freshwater)

Bangladesh
(microcosm) Imidacloprid 0.003–3 µg/L (2–23 days) No effect on

mortality/population Sumon et al. [107]

Lampsilis fasciola and
Planorbella pilsbryi

(juvenile)

Bivalve and
gastropod

(freshwater)
Canada (lab-based)

Imidacloprid,
thiamethoxam,

clothianidin, acetamiprid
and thiacloprid

0.01–10 mg/L
(7 and 28 days)

No reduction in viability at low
concentrations. The estimated
7 days LC50 for the first three
neonicotinoids on the list was
≥4 mg/L, and the 28 days LC50

was ~182 µg/L

Prosser et al. [98]
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Table 2. Cont.

Species (Life Stage) Species Class
(Habitat) Location (Study Type) Neonicotinoids Dose (Duration of

Exposure) Findings Reference

Physella acuta* and
Sphaeriidae*

Bivalve and
gastropod

(freshwater)
Spain (mesocosm)

Imidacloprid and
neonicotinoids mixtures
(containing imidacloprid,
acetamiprid, thiacloprid,

clothianidin and
thiamethoxam)

0.2–250 µg/L (0–56 days)

Significant increase in the
number of Sphaeriidae
250 µg/L imidacloprid

treatment and a decrease of
Physella acuta 250 µg/L
neonicotinoids mixtures

Rico et al. [108]

Physa sp.*, Lymnaea sp.*,
Planorbis sp.* and

Musculium lacustre*

Bivalve and
gastropod

(freshwater)
UK (mesocosm)

Thiamethoxam
formulation

(Actara® 25 WG)
1–100 µg/L (0–92 days) No effect on

mortality/abundance Finnegan et al. [109]

Lampsilis siliquoidea
(juvenile and adult) and

Villosa iris (glochidia)

Bivalve
(freshwater) Canada (lab-based)

Imidacloprid,
clothianidin and
thiamethoxam

0–21 mg/L (24 h for
glochidia and 28 days for

juvenile and adult))

Only 8% decrease in glochidia
viability at the maximum

concentration tested.
Clothianidin exposure at

>9 mg/L caused 22% mortality
in juvenile Lampsilis siliquoidea

Salerno et al. [110]

Biomphalaria straminea
(adult and juvenile)

Gastropod
(freshwater) Argentina (lab-based)

Acetamiprid and a
formulation

(Assail 70® WP)

150 and 1500 µg/L (14 days
for adult and 30 days

for juvenile)
No effect on mortality Cossi et al. [105]

Lymnaea stagnalis and
Radix peregra (*)

Gastropod
(freshwater) Canada (lab-based) Thiamethoxam 100 mg/L (48 h) No effects on mortality and

immobilisation Finnegan et al. [97]

Planorbella trivolvis and
Physella acuta (*)

Gastropod
(freshwater) USA (mesocosm) Clothianidin formulation

(Arena) 0.6, 5 and 352 µg/L (48 h) No significant effect Miles et al. [111]

Deroceras reticulatum (*) Gastropod
(terrestrial) USA (field-based)

Thiamethoxam and a
formulation

(CruiserMaxx®)

≥0.152 mg/seed (2 weeks
after seed emerge)

Increase in population density
due to reduction in predation or

predators density
Douglas et al. [29]

Radix sp. (*) Gastropod
(freshwater) Germany (microcosm) Imidacloprid 0.6–40 µg/L (7 weeks)

Increase in the population at
40 µg/L, probably due to a

decrease in competition from
other sensitive species

Colombo et al. [112]
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4.1. Neonicotinoids Accumulation

Studies on neonicotinoid accumulation within molluscs species, and the possibil-
ity of transmission to higher consumers along the food chain, due to consumption of
the exposed molluscs are inadequate (Table 2). The likelihood for a pesticide or other
environmental toxicants to accumulate in molluscs is dependent on the chemical proper-
ties of the toxicant [113,114], concentration in the environment, exposure duration [115],
the sensitivity of the species [116], metabolism in the tissues [117,118] and depuration
kinetics [119]. Various factors, including uptake and accumulation in specific tissues or
organs and surface adherence, facilitate the accumulation of environmental toxicants [120].
Neonicotinoids have low octanol-water partition coefficient (Table 2) and as such, are
not predicted to cross lipid bilayers. However, research has shown uptake and cellular
accumulation of neonicotinoids, possibly due to the interaction of neonicotinoids with
other macromolecules in cells [121]. For example, Douglas et al. [29] reported accumulation
of the neonicotinoid (thiamethoxam) in the tissue of field-collected and lab-exposed species
of Deroceras reticulatum. Using lab-based approaches, Ewere et al. [30] and Ewere et al. [31]
reported the accumulation of imidacloprid in different tissues of the commercially impor-
tant bivalve (Saccostrea glomerata) at concentrations that were higher than the regulatory
guideline for seafood (0.05 mg/kg) in Australia. This could have major implications for
food quality and safety because neonicotinoids and their metabolites have been shown to
cross the blood-brain barrier in birds [122] and mammals [123] with subsequent negative ef-
fects [122,124], including death in humans (see review [34]). This means that commercially
important molluscs could be devalued if chemical residues of neonicotinoids from up-
stream agricultural run-off and accumulate in bivalve growing area. These results suggest
that the exposed molluscs could be a risk to organisms that consume molluscs along the
food chain, including humans. Therefore, the level of neonicotinoids should be monitored
in the environment, particularly in waters where bivalves are produced commercially.

Bioaccumulation can also have ecological consequences, for example, using a lab-
based approach, Douglas et al. [29] reported that after the accumulation of thiamethoxam
in the tissue of the agricultural pest slug D. reticulatum, the concentrations transmitted to
the predaceous beetle impaired or killed more than half of the population of this beetle.
Furthermore, their results showed that field-collected samples had decreasing concen-
tration along the food chain (with primary consumers having higher concentrations of
neonicotinoids), but the concentrations detected in D. reticulatum was high enough to kill
all the insects that feed on the exposed slugs [29]. Neonicotinoids could also potentially
accumulate in the aquatic food webs. For instance, crayfish and crab feed on molluscs
and neonicotinoids have been reported to significantly cause stress and mortality to these
crustaceans [33,125].

While there no reported studies on the elimination time of neonicotinoids from the
tissue of terrestrial molluscs, these chemicals appear to be eliminated rapidly in aquatic
species [32]. This may be due to the high solubility of neonicotinoids (Table 1) and the
open circulatory system of mollusc species. Ewere et al. [30] reported the metabolism of
imidacloprid to hydroxyl-imidacloprid in the digestive system and gills and imidacloprid-
olefin in the gills of oysters. Their study also reported the elimination of imidacloprid from
the gills and adductor muscles of oysters after as little as four days in imidacloprid-free
water [30]. Fast elimination of neonicotinoids from bivalves, and potentially other aquatic
molluscs, could reduce the time the organism is internally impacted [32] after run-off
events, as well as reducing the potential for food chain transfer. However, elimination
of neonicotinoids in terrestrial molluscs could be slower, leading to a delayed recovery
post-neonicotinoid exposure, as reported in the land snail Theba pisana after exposure to
thiamethoxam [126]. Further studies are required to understand the uptake and elimination
(either through metabolism and/or depuration) of neonicotinoids in tissues of various
groups of molluscs, as well as the recovery of the exposed molluscs.
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4.2. Impact on Behaviour

Impact of neonicotinoids on the behaviour of molluscs has been inadequately studied
and is only described in five studies (two in gastropods and three in bivalves) (Table 2).
One of the observed effects of neonicotinoids on the behaviour of molluscs is the inhibition
of movement in mobile aquatic and terrestrial species, at environmentally relevant con-
centrations (Table 2). Inhibition of movement in molluscs is a response to a wide range of
stressors, including herbicides (e.g., [127]), pesticides (e.g., [128]) and other environmental
contaminants (e.g., [129,130]). In Algeria, Hamlet et al. [91] reported that a neonicotinoid
(thiamethoxam) significantly inhibited movement in the adult land snail Helix aspersa at
≥100 and 200 mg/L; concentrations that were lower than the application rate in Algeria.
Similarly, Shan et al. [89] demonstrated that imidacloprid caused a significant reduction
in burrowing of the bivalve Corbicular fluminea at concentrations as low as 0.02 mg/L.
C. fluminea naturally burrow to escape predators and resist environmental stressors; there-
fore, inhibition of burrowing behaviour in waters contaminated by neonicotinoids would
leave these clams more vulnerable to mortality. Impacts on movement can be impacted
in mollusc species after exposure to environmentally relevant concentrations of neoni-
cotinoids implies direct effects on the nervous system, and potentially a suite of other
impairments of tertiary function that have not yet been explored.

In some species of molluscs (e.g., squid), reduced movements not only increases
their exposure to predators but also reduces the ability to obtain food. Inhibition or
reduction of feeding activity in molluscs could result from exposure to neonicotinoids.
Hamlet et al. [91] reported that after exposure to 100 mg/L thiamethoxam the land snail
H. aspersa did not feed, due to the inability of the gastropod to move to a close-by food
source. Additionally, studying the destruction of winter wheat by slugs, Simms et al. [93]
reported that environmentally relevant concentrations of a formulation of imidacloprid
(Gaucho) caused a reduction in the feeding rate of Deroceras reticulatum, Arion distinctus and
Milax gagates. In bivalve molluscs, imidacloprid has been reported to inhibit the feeding
rate of Corbicular fluminea [89] and Saccostrea glomerata [30]. Overall, the limited data on
the behavioural response of molluscs to neonicotinoids (Table 2), as well as small numbers
of species of molluscs studied, suggests further research examining more behavioural
responses across a wide range of molluscs behaviours is essential for understanding the
extent of toxicity of neonicotinoids to molluscs.

4.3. Impacts on Physiology

Alteration to the physiology of molluscs has been acknowledged as a useful means
for evaluating sublethal impacts from pesticides exposure [131], including neonicotinoids
(Table 2). Neonicotinoids have been demonstrated to inhibit the cholinergic excitatory com-
ponent of the VD4-RPeD1 connection in the CNS of a pond snail (L. stagnalis) [103], which
could potentially lead to other physiological impacts. The growth of arthropods has been re-
ported to be impaired by acute neonicotinoids exposure at a concentration as low as 1 µg/L
(see review [132]). However, environmentally relevant concentrations of neonicotinoids
do not appear to acutely impact the growth and morphology of mollusc species (Table 2).
Exposure of up to 50,000 µg/L imidacloprid for nine days did not affect the weight, for-
mation of eyes and tentacle in the embryo of a ramshorn snail, Marisa cornuarietis [96].
However, chronic or higher concentrations of neonicotinoids exposure significantly impact
the growth and morphology of some molluscs. For example, 28 days exposure to imida-
cloprid (21 µg/L) and thiamethoxam (25 µg/L) caused a significant reduction in growth
and biomass of juveniles Planorbella pilsbryi and Lampsilis fasciola [98]. Because of the few
studies on the growth and morphological response of molluscs to neonicotinoids, more
studies are required in order to ascertain whether longer exposure durations would affect
the growth of other classes of molluscs.

The immune system is another sublethal indicator in molluscs that is very sensitive
to stressors (e.g., [133–135]), including pesticides [35,136]. Only three studies have exam-
ined the effects of neonicotinoids on the immune system response of molluscs (Table 2),
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and those both assessed bivalves. Acute exposure to ≥0.1 mg/L imidacloprid caused an
increase in hemocyte count and decreased hemocytes aggregation, but hemocyte phago-
cytosis was unaffected, in oyster S. glomerata [35]. Similarly, imidacloprid increased the
mortality rate of hemocytes and caused a reduction of hemolymph Cl− and Na+ in mussels
M. galloprovincialis [32] suggesting an impact on osmoregulation. No increased susceptibil-
ity to oyster herpes virus (OsHV-1) was found in the larvae of oyster Crassostrea gigas after
exposure to a very low concentration (1 µg/L) of imidacloprid for 53 h [95]. This suggests
that some immune parameters of molluscs can be affected by neonicotinoid exposure, but
because of the very limited data, additional studies are required to establish if neonicoti-
noids impact immune parameters and cause a reduction in the defence system of molluscs,
leading to increased vulnerability to other environmental stressors.

Histological studies help to establish the causal relationships between the various
biological processes in organisms and elevated contaminant exposure. They are sensitive
tools to directly link the effect of a pollutant to direct impacts on organisms because
exposure may induce lesions in the exposed tissue or organs of animals [137]. Both
lab- and field-based approaches have been utilised to test the histopathological effects
of neonicotinoids on mollusc species (Table 2). Hamlet et al. [91] and Hamlet et al. [99]
reported an increase in the excretory vacuole, breakdown of the basement membrane,
degeneration of digestive cells/tubules in the hepatopancreas of the land snail H. aspersa
after exposure to thiamethoxam at ≥10 mg/L. While this exposure concentration seems
high, it was within the application rate for this neonicotinoid in the country (Algeria). For
aquatic species of molluscs, gill and digestive tissue damage were found in the larvae
of C. fluminea after exposure to imidacloprid at concentrations as low as 0.02 mg/L [89],
which is within the range of concentrations found in aquatic systems around the world
(e.g., [11,28,57]). This means that exposure to low concentrations of neonicotinoids can
damage the tissues of molluscs.

Physiological response of molluscs to neonicotinoids appear to depend on several
factors, including the life stage of molluscs, the concentration of neonicotinoids, exposure
pathway, duration of exposure and species of mollusc (Table 2). Therefore, more work will
be needed to understand the physiological impact of neonicotinoids across a broad range
of molluscs under various environmental conditions.

4.4. Impact on Biochemistry

Owing to the mode of action of neonicotinoid insecticides, the biochemical response
of molluscs to neonicotinoids has been studied more than other endpoints (Table 2). There
is substantial data on cholinesterase activity as a biochemical indicator for the effects of
neonicotinoids in molluscs (Table 2), with significant inhibition of this enzyme depending
on several factors, including the tissue, the concentration of neonicotinoids and duration of
exposure (Table 2). While many mollusc species could potentially be exposed to effective
concentrations of neonicotinoids in aquatic and terrestrial ecosystems, information on
the cholinesterase response to neonicotinoids has been studied in only four bivalves
and two gastropods molluscs (Table 2). Significant inhibition of acetylcholinesterase at
≥0.1 mg/L imidacloprid exposure was reported in bivalves hemolymph [35], gill and
digestive gland [30,31,89,104], whereas the neonicotinoid (thiamethoxam) only inhibited
this enzyme in the gastropod H. aspersa at ≥25 mg/L [90]. The inhibition of cholinesterase
is similar to the effects of neonicotinoids reported in other invertebrates (see review [138]),
implying that these insecticides are not specific to the CNS of target insects, as previously
suggested [139]. Because the inhibition of this enzyme in molluscs can cause rapid spasms
in voluntary muscles leading to subsequent biochemical, physiological and behavioural
alteration and risk to predation [140], a wide range of biochemical endpoints should
be investigated to assess the full magnitude of the response to chronic exposure low
concentrations of neonicotinoids.

The oxidative stress response to neonicotinoids has been described in some molluscs,
including the activities of catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx),
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glutathione S-transferase (GST) and superoxide dismutase (SOD) (Table 2). The metabolic
and physiological status of molluscs after exposure to environmental stressors can be
assessed using these oxidative stress biomarkers (see review [141]). Exposure to low
concentrations (≥0.02 mg/L) of imidacloprid caused an increase in GST activity in the
hemolymph of S. glomerata after 96 h [35] and an increase in CAT, GST and SOD activities
in gills and digestive gland of C. fluminea [89]. During xenobiotic metabolism in molluscs,
there is an induction of these enzymes, which help to maintain homeostasis in the exposed
cells [142,143]. This is because xenobiotic metabolism generates reactive oxygen species
that can cause stress and apoptosis of cells [144]. The antioxidant enzymes have been
described as detoxifying ‘batteries’ in invertebrates that have evolved to provide some
protection [145]. However, prolonged or high concentrations of neonicotinoids caused the
inhibition of these enzymes in the gill and digestive gland of two bivalves (S. glomerata [31]
and M. galloprovincialis [32]). This suggests that neonicotinoids can overwhelm the oxidative
stress systems and the protection offered by these enzymes in molluscs, depending on the
concentration and the duration of exposure.

Significant inhibition of antioxidant enzymes could lead to a build-up of free radicals,
which can ‘steal’ electrons from unsaturated fatty acids. This causes lipid peroxidation
that can cause serious damage to the cell membrane [146]. When there is a significant
depletion of lipids, catabolism of carbohydrates and proteins provides an energy source for
the maintenance of metabolic needs [147]. Although there are no reported studies on the
relationships between neonicotinoids exposure and lipid peroxidation leading to depletion
of energy reserves, exposure to imidacloprid and thiamethoxam caused a reduction of
the lipid, carbohydrates and proteins contents of H. aspersa [91] and altered the ratios
and major classes of fatty acids in tissues of S. glomerata [31] and L. stagnalis [101]. There-
fore, more studies are required to understand the relationships between neonicotinoids
and antioxidant inhibition, especially those that lead to the depletion of energy reserved
in molluscs.

More recently, in bivalve toxicology, omics approaches have been used to gain a more
profound understanding of the mechanisms related to the physiological responses of mol-
luscs to environmental disturbances [104,148]. Transcriptomic and proteomic responses
of molluscs to neonicotinoids have been reported in just three studies (Table 2). Imida-
cloprid and thiacloprid caused the upregulation of several proteins, including heat shock
proteins and several antioxidant proteins in S. glomerata [35] and M. galloprovincialis [104].
Additionally, imidacloprid caused the downregulation of multixenobiotic resistance and
heat shock protein genes in C. fluminea [89] and several genes, including those involved
in the axoneme, cilium or flagellum-dependent cell motility in S. glomerata [30]. These
potential effects on cilia and flagella are of potential concern for digestion, sperm motility
and larval motility and feeding. Therefore, omics approaches should be combined with
traditional methods in order to have a deeper understanding of the physiological responses
of molluscs to neonicotinoids, especially vulnerable early life stages and in tissues where
pollutants accumulate or are metabolised.

4.5. Impacts on Population Dynamics

Neonicotinoids impacts on the population dynamics of molluscs have been studied in
a broader suite of ecologically important species compared to other endpoints, but do not
encompass any commercially important bivalve species. Field or microcosm studies have
even shown a significant increase in the population of Deroceras reticulatum after treatment
with thiamethoxam [29] and an increase in the population of Radix sp. after treatment with
imidacloprid [112]. These two studies concluded that the increase in the population of these
molluscs after neonicotinoids treatments was due to a significant reduction in competition
and predation from other neonicotinoids sensitive species [29,112]. The majority of studies
investigating the effects of neonicotinoids on population dynamics focus on early life
stages (Table 2). This could be related to perceptions that embryos, larvae and juveniles are
likely to be more vulnerable to field concentrations, whereas mortality in adult molluscs
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is not expected in comparison to other sensitive invertebrates (e.g., most arthropods) (see
review [132]). Impacts of neonicotinoids on molluscs have shown that environmentally
relevant concentrations of imidacloprid, clothianidin, thiacloprid and thiamethoxam under
laboratory conditions do not induce mortality in the embryos of Marisa cornuarietis [96],
or juveniles of Lampsilis fasciola and Planorbella pilsbryi [98,110]. While these studies have
shown no negative effects at some life stages of molluscs, none address the full lifecycle and
important metamorphic stages of molluscs that could be impacted by neonicotinoids. For
instance, some molluscs (e.g., bivalves and many gastropods) undergo external fertilisation
in which the gametes are released into the water column. There are currently no studies
examining the impacts of neonicotinoids on mollusc gametes, such as sperm viability,
membrane permeability, mitochondria polarisation and acrosomal membrane integrity
or on fertilisation or metamorphosis or settlement success. These parameters in molluscs
gametes are very sensitive to environmental stressors [149,150]. Therefore, furthers studies
examining potentially more sensitive life stages of molluscs to neonicotinoids are required.

5. Synthesis and What We Still Need to Know

The neuroactive insecticide group known as neonicotinoids are used to control damag-
ing insects in crops and improve food production. The increasing production and utilisation
of these compounds have led to the contamination of aquatic and terrestrial ecosystems,
thereby threatening productivity and survival of many non-target species, including mol-
luscs. Some data exists on the impacts of neonicotinoids on molluscs (Table 2, Figure 4). A
synthesis of biomarker responses of different species of molluscs to neonicotinoids pro-
vides some idea of the range of impacts that neonicotinoids can have on molluscs (Table 2).
However, due to the species-specific responses, it is not possible to predict a comprehen-
sive understanding of neonicotinoids toxicity to any particular mollusc species (Table 2).
Nevertheless, understanding of the breadth of neonicotinoids impacts on molluscs can
be achieved by comprehensive studies of certain species. For instance, Ewere et al. [30],
Ewere et al. [31] and Ewere et al. [35] demonstrated tissue absorption and distribution
of neonicotinoids in Syndey rock oysters, as well as a wide range of impacts on the
behavioural, biochemical and physiological parameters (Figure 4). This indicates the
complexity of effects that occur across different tissues in adults oysters exposed to imida-
cloprid. However, these studies did not evaluate neonicotinoid impacts on the early life
stages of the oysters. Therefore, because of the gaps in knowledge (Table 3), the full threat
that neonicotinoids pose to molluscs remains unclear. For this reason, more work is needed
to identify and describe molluscs responses to various concentrations of neonicotinoids
under different conditions and life stages (Table 3).

Table 3. What we need to know about the impacts of neonicotinoids to molluscs and the possible approaches to address them.

Knowledge Gap Further Research

No data on the impact of neonicotinoids on
gametes or fertilisation success of molluscs.

Acute studies to identify the impacts of neonicotinoids to gametes and
fertilisation success of molluscs, as well as acute and chronic trials on the
development processes and metamorphosis of early life stages.
For species that undergo external fertilisation (e.g., bivalves), there is also the
need for studies determining the toxicity of neonicotinoids to sperms under
natural environmental conditions.

Minimal data on the impacts of neonicotinoids on
the safety and nutritional quality of
edible molluscs.

Studies determining the acute and chronic effects of neonicotinoids on the
safety and nutritional quality of edible species of molluscs, especially
commercial species of gastropods and bivalves.

No data on the impacts of neonicotinoids on some
ecologically important classes of molluscs.

Studies to determine the lethal and sublethal impacts of neonicotinoids to all
the classes of molluscs, including classes that are not economically important.

Limited data on the impact of neonicotinoids
mixtures on molluscs

Studies to identify the possible synergistic or antagonistic impacts of
neonicotinoid mixtures as well as in combination with other chemicals
and/or other environmental stressors on molluscs.
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Table 3. Cont.

Knowledge Gap Further Research

Limited data on the accumulation and elimination
potential of neonicotinoids in molluscs.

More exposure experiments to determine the rate of accumulation,
metabolisms and depuration of neonicotinoids in molluscs, to understand
the risk of the possible exposure of other organisms higher along the
food chain.

Very limited data exist on the impacts of
neonicotinoids under stressful environmental
regimes in molluscs.

Studies determining the effects of neonicotinoids on molluscs under various
conditions, including salinity, temperature and pH.

Very limited data on the impacts of acute and
chronic neonicotinoids exposure in molluscs under
natural conditions

Mesocosms and field experiments to determine the impacts of neonicotinoids
exposure to molluscs under natural conditions.

Very limited data exists on the genetic changes and
regulatory mechanisms underlying molluscs
response to neonicotinoids

Transcriptomics, DNA methylation and targeted gene expression studies to
assess the physiological response of molluscs to neonicotinoids.

Limited data exist on the impacts of neonicotinoids
on the physiology and immune system of molluscs.

Controlled manipulative studies to establish the causal effects on
physiological and immunological responses of molluscs to neonicotinoids
and any consequent tertiary effects on disease resistance, growth and
mortality.

No data on the possible carry-over effects to the
offspring due to adult exposure to neonicotinoids

Manipulative experiments to determine transgenerational impacts or
resistance in offspring of molluscs that have been exposed to neonicotinoids.Toxics 2021, 9, x FOR PEER REVIEW 22 of 29 
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6. Conclusions

This review describes the current state of knowledge on the impacts of neonicotinoids
on molluscs. The possible exposure routes of neonicotinoid insecticides to molluscs were
identified including contaminated soil, food sources and water (for aquatic species). Acute
and chronic exposure to effective concentrations of neonicotinoids is likely to occur for
both aquatic and terrestrial molluscs, and evidence of accumulation in the tissue of mollusc
was confirmed in a few studies. This exposure could significantly affect the behaviour,
physiology, reproduction and productivity of mollusc species and data available indicate a
cause for concern. Additionally, for edible species, there is the potential for human exposure
through the consumption of neonicotinoids-exposed molluscs, and thus further studies
are required to investigate the risk in commercial species that are grown in agricultural
catchments. Rapid and reliable biomarkers include oxidative stress enzymes that can
establish the sublethal effects of neonicotinoids in a range of molluscs. However, more in-
depth studies across all scales, from genes to whole organism effects, encompassing all stage
of the life cycle are still required to ascertain the full risk of environmental contamination
by neonicotinoids to a broader range of commercial and ecologically important molluscs.
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