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Abstract: Growing evidence suggests that maternal exposure to ambient fine particulate matter
(PM2.5) during pregnancy is associated with preterm birth; however, few studies have examined
critical windows of exposure, which can help elucidate underlying biologic mechanisms and inform
public health messaging for limiting exposure. Participants included 891 mother–newborn pairs en-
rolled in a U.S.-based pregnancy cohort study. Daily residential PM2.5 concentrations at a 1 × 1 km2

resolution were estimated using a satellite-based hybrid model. Gestational age at birth was ab-
stracted from electronic medical records and preterm birth (PTB) was defined as <37 completed
weeks of gestation. We used Critical Window Variable Selection to examine weekly PM2.5 exposure in
relation to the odds of PTB and examined sex-specific associations using stratified models. The mean
± standard deviation PM2.5 level averaged across pregnancy was 8.13 ± 1.10 µg/m3. PM2.5 exposure
was not associated with an increased odds of PTB during any gestational week. In sex-stratified mod-
els, we observed a marginal increase in the odds of PTB with exposure occurring during gestational
week 16 among female infants only. This study does not provide strong evidence supporting an
association between weekly exposure to PM2.5 and preterm birth.

Keywords: fine particulate matter; PM2.5; pregnancy; prenatal; preterm birth; fetal sex; air pollution

1. Introduction

In the United States, approximately 10% of newborns are born preterm, defined as
birth before 37 weeks of gestation [1]. Preterm birth (PTB) is associated with an increased
risk of infant mortality and a range of morbidities that can persist into adulthood with
potential lifelong consequences for health and wellbeing [2–5]. While the risk factors for
PTB remain incompletely understood, a growing body of research has linked maternal
exposure to fine ambient particulate matter (PM2.5) during pregnancy with this adverse
pregnancy outcome [6,7].

A notable feature of most prior studies examining PM2.5 in relation to birth outcomes
is a focus on average exposure across the course of pregnancy, which fails to account for
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the time-varying nature of ambient air pollution exposure and does not allow for more
discrete, etiological windows of susceptibility to be identified. Understanding these critical
windows can guide the implementation of additional protections for the fetus during
specific gestational periods and could help elucidate the biological mechanisms underlying
the pathophysiology of adverse health outcomes, such as PTB [8,9]. Furthermore, most
prior studies, including the few with temporally resolved exposure estimates, have relied
on birth registry data for ascertaining information on gestational length [10–12]. While
this design allows for a large sample to be aggregated, information on key covariates can
be limited and exposure estimates are often cursory at the census tract or zip code level.
Many prior studies have also relied on sparse networks of ground monitors to derive
PM2.5 estimates, which can lead to exposure misclassification, as well as selection bias if
the sample of participants residing near monitors is not representative of the population.
Finally, many prior studies have examined associations between PM2.5 and PTB in the
setting of relatively high exposure levels, which may not generalize to lower-level (i.e.,
below the U.S. EPA annual standard of 12 µg/m3) exposure that is typical across the United
States [13,14]. Understanding whether adverse health effects extend to lower exposure
ranges is important for evaluating whether current air quality standards are sufficient for
protecting the public’s health.

In the present study, we addressed several of the above noted limitations by examining
weekly exposure to lower-level PM2.5, estimated at a 1 × 1 km2 spatial resolution, in relation
to PTB using data from a prospective, ethnically diverse pre-birth cohort based in the
northeastern United States. We also explored differences by spontaneous versus iatrogenic
phenotypes of PTB, which are etiologically distinct. Finally, because the incidence of PTB
varies by fetal sex [15] and prior research has documented sex-specific associations between
PM2.5 and birth outcomes [16], we examined differences by infant sex.

2. Methods
2.1. Study Sample

Participants included mother-newborn pairs enrolled in the PRogramming of Inter-
generational Stress Mechanisms (PRISM) pregnancy cohort, which recruited from prenatal
clinics in Boston from 2011–2013 and New York City from 2013-present. Participants were
ineligible if they were younger than 18 years of age, HIV positive, pregnant with multiples,
non-English or -Spanish speaking, or if they drank more than seven alcoholic drinks per
week before pregnancy or any alcohol after pregnancy recognition. At the time of this
analysis, 1119 eligible, enrolled participants had delivered a live-born infant with no major
congenital anomalies noted during pregnancy or at birth that would impede continued
participation in the study. Of these participants, we excluded 137 whose addresses had
not yet been successfully geocoded and 78 with incomplete covariate data. We further
restricted the sample to births occurring after 32 weeks of gestation to allow for equal
exposure timing, resulting in a final analytic sample of 891 participants (Boston: n = 375,
New York City: n = 516; Supplemental Figure S1). Women included in the analytic dataset
were more likely to be white, non-Hispanic, to have more than a high school education and
to be non-smoke exposed compared to participants enrolled in the cohort, but excluded
from the analytic sample (Supplemental Table S1). These differences reflect the fact that
participants from the Boston study site were enrolled earlier and were more likely to
have geocoded address data available at the time of this analysis. In turn, participants
enrolled from Boston were more likely to be white, non-Hispanic, more highly educated
and non-smoke exposed compared to participants enrolled from New York City. Written
informed consent was obtained from women prior to study participation in their preferred
language. All study procedures were approved by the Institutional Review Boards at the
Brigham and Women’s Hospital in Boston and the Icahn School of Medicine at Mount Sinai
in New York City.
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2.2. Fine Particulate Matter Exposure

We geocoded maternal residential address during pregnancy, accounting for any resi-
dential moves, using ArcGIS software (Redlands, CA, USA) as previously described [17].
For each participant, we estimated PM2.5 exposure for each day of pregnancy using an
adaptation of a previously described satellite-based hybrid model (18). Inputs included
Aerosol Optical Depth (AOD) products from the two Moderate-Resolution Imaging Spec-
troradiometer (MODIS) instruments on the NASA Terra and Aqua satellites, in combination
with PM2.5 monitoring data and a series of spatiotemporal predictors (height of the plan-
etary boundary layer, percentage of developed area, air temperature, relative humidity,
and others) [18]. Using these inputs, we applied an extreme gradient boosting (XGBoost)
modeling approach to predict daily, residential PM2.5 and implemented a recursive feature
selection process to arrive at a parsimonious model. The model demonstrates excellent
predictions of withheld observations (RMSE of 2.10 µg/m3 and RMSE of 3.11 µg/m3 in
our spatial cross-validation). Similar to PM2.5 AOD products, daily land surface temper-
ature was obtained from the MODIS instruments [19]. These measures were calibrated
to the ambient air temperature at the reference height (2 m above ground) using ground
monitoring data derived from the National Climate Data Center, the Meteorological Assim-
ilation Data Ingest System of the National Oceanic and Atmospheric Administration, and a
large number of aggregated nongovernmental meteorologic stations. This calibration also
included a temporal smoothing algorithm to account for location, season, year, land-use
regression terms for greenness, elevation, and land use. Model performance was assessed
following the approach described for PM2.5 estimates. Daily measures of both PM2.5 and
temperature were measured at a 1 × 1 km2 or higher spatial resolution.

2.3. Gestational Age at Birth

For the majority of participants (95.7%), we determined gestational age at delivery
based on best obstetric estimate ascertained from review of electronic medical records. This
is derived from first-trimester ultrasound revision or confirmation of last menstrual period
dating and is determined by the participant’s obstetrician. If no obstetric estimate was avail-
able, we calculated gestational age using date of delivery and maternal-reported last men-
strual period (4%) or relied on maternal self-report (0.3%). According to American College
of Obstetricians and Gynecologist guidelines, we defined PTB as birth before 37 completed
weeks of gestation. We additionally categorized PTB into spontaneous (sPTB, for exam-
ple, preterm labor, spontaneous rupture of membranes) or iatrogenic (iPTB, for example,
clinician-initiated due to a maternal or fetal health condition, such as preeclampsia or
intrauterine growth restriction) as previously described using a standardized protocol [20].

2.4. Covariates

Information on maternal age, race/ethnicity, highest level of education, and parity was
ascertained by questionnaire during a structured interview conducted during pregnancy.
Information on smoking and exposure to environmental tobacco smoke (ETS) was assessed
during pregnancy and again during the immediate post-partum period. Women were
considered smoke exposed if they reported ever smoking during pregnancy or exposure
to ETS for one hour or more per week during pregnancy. To minimize biases in estimates
of association, we identified potential confounders using directed acyclic graph (DAG)
analysis (Supplemental Figure S2) [21]. We based the conditional dependencies defined by
our DAG on review of previous literature and knowledge of factors influencing PTB and/or
PM2.5 exposure. We adjusted for education, used as an indicator of socioeconomic position,
race/ethnicity, which has been linked to PTB prevalence and may be a factor determining an
individual’s residential neighborhood and thus propensity for PM2.5 exposure, and surface
temperature, which is a predictor of seasonal trends in PM2.5 and may be independently
associated with PTB [22]. We additionally adjusted for maternal age, parity, and cigarette
smoke exposure, which we considered important precision variables linked with the risk of
PTB; adjusting for these factors did not open any backdoor paths as defined by our DAG.
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2.5. Statistical Analysis

We examined descriptive statistics for the PM2.5 data, gestational age data, and each co-
variate, and then visually inspected the distributions of each variable using histograms and
boxplots. We performed Critical Window Variable Selection (CWVS) to examine weekly
PM2.5 exposure during pregnancy in relation to the odds of PTB. CWVS is a recently devel-
oped Bayesian variable selection method for identifying critical windows of susceptibility
to a time-varying exposure. Briefly, during the selection and estimation process, temporal
smoothness is introduced using a flexible cross-covariance model based on the linear model
of coregionalization [23]. CWVS avoids the over smoothing that often occurs with the use
of Gaussian processes and has been shown to perform well with exposure data that have a
high temporal correlation, including in simulation studies of air pollution and PTB [23]. We
constructed weekly PM2.5 exposure matrices that spanned the period between the mother’s
LMP and 32 weeks of gestation. Because CWVS requires an equal exposure period for all
participants and to avoid bias introduced from participants who would leave the risk set,
we excluded 13 women who delivered before 32 weeks [10], as illustrated by the schematic
provided in Figure 1. We examined intercept-only models and models adjusted for ma-
ternal age, parity, race/ethnicity, education, cigarette smoke exposure during pregnancy,
and mean temperature during the first 32 gestational weeks. Continuous covariates were
centered and standardized to have a mean of zero and standard deviation of one. We fit
each model using 10,000 Markov Chain Monte-Carlo iterations, discarding the first 1000
as a burn in period, and assessed convergence through visual inspection of trace plots.
We considered sex differences using stratified models. In all models, effect estimates are
interpreted as the change in the odds of PTB for an interquartile range (IQR) increase in
PM2.5 exposure. We ran a parallel set of exploratory models to examine PM2.5 in relation to
the odds of sPTB or iPTB. In models examining sPTB, iPTBs were excluded and in models
examining iPTBs, sPTBs were excluded (i.e., they did not contribute to the reference group).
In both models, 11 women missing information on PTB phenotype were excluded. We
did not consider sex differences in models examining PTB phenotypes due to sample size
limitations. We also explored PTB models excluding participants diagnosed with gesta-
tional hypertension, pre-eclampsia/eclampsia, or gestational diabetes during pregnancy
(n = 138), as well as those missing information on these pregnancy-related complications
(n = 45). Finally, in two separate supplemental analyses (Supplementary Materials), we
examined our main CWVS models additionally adjusting for (1) season of maternal LMP
(spring: March-May, summer: June-August, fall: September-November, winter: December-
February), (2) year of birth (2011–2019), or (3) study site (Boston vs. New York City). All
statistical analyses were performed in R v3.6.2; CWVS was performed using the CWVS R
package, which can be accessed through GitHub (https://github.com/warrenjl/CWVS)
(accessed on 12 May 2021) [23].
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3. Results

Table 1 provides sociodemographic characteristics for the study sample. On average,
women were 29 years old at enrollment and the majority self-identified as Black/Black-
Hispanic (43.2%) or white-Hispanic (35.6%), with the remainder identifying as white,
non-Hispanic (16.5%) or other race/ethnicity (4.7%). Approximately 20% of women had
less than a high school education, 66% were nulliparous and 11% reported exposure to
cigarette smoke during pregnancy. Average PM2.5 exposure across the first 32 weeks of
pregnancy was approximately normally distributed with a mean ± standard deviation
(SD) of 8.13 ± 1.10 µg/m3 and interquartile range (IQR) of 1.56 µg/m3. PM2.5 exposure did
not significantly vary between mothers who delivered preterm versus term (Supplemental
Figure S3). The mean ± SD for temperature was 12.10 ± 4.31C and the IQR was 7.74C.
The sample included 79 (8.9%) infants born preterm, which is slightly lower than the U.S.
incidence of 10%. Information on PTB subtype was not available for 11 participants; of the
remaining 68 PTBs, 33 (48.5%) were spontaneous and 35 (51.5%) were iatrogenic in nature.

Table 1. Participant characteristics by preterm (<37 weeks of gestation) and term (≥37 weeks) birth status. Values are
mean ± SD or n (%).

All
(n = 891, 100%)

Preterm
(n = 79, 8.9%)

Term
(n = 812, 91.1%)

Maternal age 29.1 ± 5.8 30.4 ± 6.0 28.9 ± 5.8

Race/ethnicity

White, non-Hispanic 147 (16.5) 9 (6.1) 138 (93.9)
White-Hispanic 317 (35.6) 33 (10.4) 284 (89.6)

Black/Black-Hispanic 385 (43.2) 35 (9.1) 350 (90.9)
Other 42 (4.7) 2 (4.8) 40 (95.2)

Education

<High school 183 (20.5) 20 (10.9) 163 (89.1)
High school degree 444 (49.8) 39 (8.8) 405 (91.2)

>High school 264 (29.6) 20 (7.6) 244 (92.4)

Parity

Nulliparous 303 (34.0) 16 (5.3) 287 (94.7)
Multiparous 588 (66.0) 63 (10.7) 525 (89.3)

Smoke exposure a

Yes 100 (11.2) 11 (11.0) 89 (89.0)
No 791 (88.8) 68 (8.6) 723 (91.4)

PM2.5 (µg/m3) b 8.13 (1.10) 8.12 (1.11) 8.13 (1.10)

Temperature (C) b 12.10 (4.31) 12.50 (4.16) 12.10 (4.33)
a Defined as active cigarette smoking or exposure to environmental tobacco smoke for 1 h or more during pregnancy. b Average exposure
across the first 32 weeks of gestation.

We detected no statistically significant associations between weekly exposure to
PM2.5 and PTB when considering the sample overall; however, we observed a marginal
decrease in the odds of PTB with exposure occurring during week 19 (Figure 2). The
results of intercept-only models did not substantially vary from models adjusted for
covariates (Supplemental Figure S4). In adjusted sex-stratified models, we observed a
marginal increase in the odds of PTB with exposure occurring during week 16 of gesta-
tion among female newborns only (Figure 2). Similar to main analyses, in exploratory
models considering PTB phenotypes, we did not detect any significant associations with
weekly PM2.5 exposure. The marginal protective association at week 19 was appar-
ent only among the subset of iPTBs (Supplemental Figure S5). Likewise, results from
models excluding participants with gestational hypertension, gestational diabetes, or
pre-eclampsia/eclampsia, were similar to main results, with no statistically significant
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associations detected (Supplemental Figure S6). Finally, supplemental models addition-
ally adjusting for season of maternal LMP (Supplemental Figure S7), child year of birth
(Supplemental Figure S8), or study enrollment site (Supplemental Figure S9) were not
meaningfully different from the results of primary analyses presented in Figure 2.
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4. Discussion

Several studies have examined trimester-specific windows of exposure to PM2.5 in
relation to PTB with inconsistent results [24–29]. Notably, this design may be insufficient
to identify susceptible windows if the relevant biological responses do not align with
clinically defined trimesters. Our group has recently demonstrated that trimester-specific
models produce biased estimates and may identify inaccurate windows [8]. Exposure
levels may also be sensitive to the temporal scale of aggregation. For example, a recent
study demonstrated that PM2.5 averaged across pregnancy weeks 1–12 versus weeks 3–8
resulted in exposure reclassification by at least one quartile for 37% of the sample [30].
A few studies have alternatively employed time-series approaches to examine monthly
or weekly periods of exposure in relation to PTB. Similar to trimester-averaged exposure
models, these studies have reported inconsistent findings and no clear etiologically relevant
period of susceptibility has been identified. For example, studies have reported susceptible
windows during both early and late gestation [31], early gestation only [32], middle
gestation only [11], late gestation only [33], early and middle gestation [10], middle and
late gestation [34], or have failed to identify any susceptible window [35,36]. A notable
limitation of prior studies with high temporal resolution is that spatial resolution has been
limited, with PM2.5 exposure typically estimated at the zip code or county level using
ground monitoring data. This can result in exposure misclassification or selection bias if
participants included due to proximity to monitors are not representative of the sample
overall. In the present study, we addressed these limitations by estimating daily PM2.5
exposure at a 1 × 1 km2 resolution. We additionally applied the recently developed CWVS
method to identify critical windows of susceptibility, which accounts for the correlation in
exposure across pregnancy and has been shown in simulation studies to be less susceptible
to over smoothing during estimation of risk parameters compared to other time series
methods [12,23]. Using this approach, we did not detect an association between PM2.5
exposure during any gestational week and PTB. Although we had high spatial and temporal
resolution, it is notable that our sample size was small and exposure levels were relatively
low with somewhat limited variability, which together may have reduced our ability to
detect an association. We were also limited to assessing ambient exposure at the mother’s
residential address, which does not take into account time-activity patterns or exposure to
particulate air pollution in the indoor environment.

Unexpectedly, we found a marginal decrease in the odds of PTB with PM2.5 exposure
during gestational week 19, which remained only among the subset of iPTBs. A few
prior studies have documented similar inverse associations [24,37]; however, the reason
underlying this directionality is unclear. One prior study found that an inverse association
between PM2.5 and PTB was reversed when multipollutant models that included criteria
and traffic-related air pollutants were considered, suggesting that the effects of PM2.5 may
in part depend on the mixture of joint exposures it occurs with [38,39]. Why week 19
exposure appeared somewhat protective only among iPTBs, which include pregnancies
complicated by gestational diabetes, gestational hypertension and pre-eclampsia, also
remains unknown.

We did not identify meaningfully different associations by newborn sex, with the
exception that among females only there was a marginal positive association with PM2.5
exposure at gestational week 16 (early 2nd trimester). This finding is consistent with
recent murine research that demonstrated pregnant mice exposed to concentrated air
particles (150 µg/m3) during the late 1st trimester and 2nd trimester displayed significantly
reduced gestational length; however, sex differences were not considered in that study [40].
The placenta plays key roles in pregnancy maintenance and the onset of parturition.
Mechanistic research supports that PM2.5 affects several placental parameters, including
weight, vasculature, perfusion, and other indicators of functional morphology [41]. Recent
in vitro work has also shown that acute exposure of 1st trimester trophoblast cells to
PM2.5 results in decreased production of human chorionic gonadotropin (hCG), which
is critical for placental development and progression of a healthy pregnancy, as well
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as increased production of the pro-inflammatory cytokine interleukin-6 (IL-6), among
other changes [42]. This imbalance between downregulated reproductive hormones and
stimulated inflammation could set in motion a cascade of molecular changes ending in
preterm delivery [43]. Notably, a recent study of 610 pregnancies, found that increased
IL-6 and c-reactive protein between gestational weeks 12–20 was associated with decreased
gestational age and an increased odds of preterm delivery [44]. Unfortunately, the study
did not consider sex-specificity; however, placental cytokine levels and responses have
been shown to vary by fetal sex [45]. Alternatively, we acknowledge our finding of a
marginally increased odds of PTB among females could have been spurious given our
limited sample size.

Overall, the inconsistencies across studies, including those examining weekly or
monthly exposure, may be attributable to several factors, including differences in study de-
signs, PM2.5 exposure modeling, PM2.5 level and chemical composition, and demographic
and lifestyle characteristics of different samples. This heterogeneity makes it difficult to
identify repeatable results and draw conclusions about susceptible windows of exposure.
Strengths of the present study include the diversity of the sample and rigorous charac-
terization of PTB, including iatrogenic and spontaneous phenotypes, based on review
of medical records. We estimated exposure levels on a daily basis, which allowed us to
investigate potential critical windows of exposure using the recently developed CWVS
approach. We also estimated PM2.5 and temperature at a 1 × 1 km2 grid using a robust
satellite-based hybrid model with bias correction. However, despite the high spatial and
temporal resolution, our estimates do not fully capture an individual’s immediate expo-
sure as a personal sampling device or biological marker would. As a consequence, our
estimates are susceptible to potential exposure misclassification. As previously noted, we
also did not have data on time-activity patterns, including information about time spent
outdoors, which could plausibly be non-differential by PTB status if risk factors for PTB
(e.g., hypertension, diabetes) relate to physical activity. Additionally, although individuals
are exposed to mixtures of ambient air pollutants in the environment, we were limited to
investigating only PM2.5 in this study. Future research examining ambient air pollution
mixtures will more accurately reflect true exposures in the community and will advance our
understanding of how co-exposures interact to affect health. Finally, while our prospective
birth cohort design allowed us to examine critical windows and control for individual-level
covariates, our sample size was limited.

In sum, we did not detect a critical window of PM2.5 exposure for the risk of PTB.
Future research with a large sample size in combination with highly spatially and tem-
porally resolved PM2.5 estimates may help to further elucidate gestational windows of
susceptibility to PM2.5.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/toxics9120352/s1, Figure S1: Diagram of analytic sample selection, Figure S2: Directed Acyclic
Graph describing assumed relationships between PM2.5, preterm birth, and covariates, Figure S3:
Distribution of PM2.5 by preterm birth status, Figure S4: Posterior mean and 95% credible intervals
from an intercept-only CWVS model examining an interquartile range increase in weekly PM2.5 in
relation to the odds of preterm birth, Figure S5: Posterior mean and 95% credible intervals from
adjusted CWVS models examining an interquartile range increase in weekly PM2.5 in relation to the
odds of preterm birth stratified by spontaneous versus iatrogenic preterm birth phenotype, Figure S6:
Posterior mean and 95% credible intervals from adjusted CWVS models examining an interquartile
range increase in weekly PM2.5 in relation to the odds of preterm birth excluding participants
diagnosed with gestational hypertension, pre-eclampsia/eclampsia, or gestational diabetes during
pregnancy (n = 138) and those missing information on these conditions (n = 45), Figure S7: Posterior
mean and 95% credible intervals from adjusted CWVS models examining an interquartile range
increase in weekly PM2.5 in relation to the odds of preterm birth additionally adjusted for season of
last menstrual period, Figure S8: Posterior mean and 95% credible intervals from adjusted CWVS
models examining an interquartile range increase in weekly PM2.5 in relation to the odds of preterm
birth additionally adjusted for year of birth, Figure S9: Posterior mean and 95% credible intervals
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from adjusted CWVS models examining an interquartile range increase in weekly PM2.5 in relation
to the odds of preterm birth additionally adjusted for study site (Boston vs. New York City). Table S1:
Participant characteristics for those included in the analytic sample compared to excluded from the
analytic sample as described in Figure S1.
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