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Abstract: Exposure to chemicals is influenced by associations between the individual’s location and
activities as well as demographic and physiological characteristics. Currently, many exposure models
simulate individuals by drawing distributions from population-level data or use exposure factors for
single individuals. The Residential Population Generator (RPGen) binds US surveys of individuals
and households and combines the population with physiological characteristics to create a synthetic
population. In general, the model must be supported by internal consistency; i.e., values that could
have come from a single individual. In addition, intraindividual variation must be representative
of the variation present in the modeled population. This is performed by linking individuals and
similar households across income, location, family type, and house type. Physiological data are
generated by linking census data to National Health and Nutrition Examination Survey data with a
model of interindividual variation of parameters used in toxicokinetic modeling. The final modeled
population data parameters include characteristics of the individual’s community (region, state,
urban or rural), residence (size of property, size of home, number of rooms), demographics (age,
ethnicity, income, gender), and physiology (body weight, skin surface area, breathing rate, cardiac
output, blood volume, and volumes for body compartments and organs). RPGen output is used
to support user-developed chemical exposure models that estimate intraindividual exposure in
a desired population. By creating profiles and characteristics that determine exposure, synthetic
populations produced by RPGen increases the ability of modelers to identify subgroups potentially
vulnerable to chemical exposures. To demonstrate application, RPGen is used to estimate exposure
to Toluene in an exposure modeling case example.

Keywords: exposure assessment; National Health and Nutrition Examination Survey (NHANES);
exposome; probabilistic exposure model; vulnerable populations; Combined Human Exposure Model
(CHEM); Residential Population Generator (RPGen)

1. Introduction

Reliable exposure information and predictions are essential to risk assessments and
other tools used to support public and environmental health decisions. The likelihood and
extent of risk are governed by a person’s exposome [1–5], which reflects a person’s unique
biological makeup, behavior, and environmental exposures.
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The National Research Council (NRC) has provided guidance on ways to assess
risks of chemicals, including reports that highlighted the disparity between the rate of
deployment of new anthropogenic chemicals and assessment of their potential risks to
public health [6,7]. Central to these evolving recommendations has been the replacement
of animal-based characterization of chemical hazard and extrapolation to human health
with high-throughput in vitro tests, in silico models, and evaluations of efficacy at the
human population level. Noting that risk is a function of both hazard and exposure,
the NRC added recommendations for advancing the risk-based science that underpins
environmental and human health decision making [7,8].

Throughout most of its half-century of existence, the risk assessment community has
viewed pollutants from a “far-field” perspective. That is, a substance is released into the
environment, and exposure occurs later and at some distance from the source. In a far-field
scenario, exposure concentration is a function of the transport and transformation of the
chemical compound in time and space [9–13]. However, increasingly, the US and other
nations have recognized that for some chemicals and uses, far-field exposure accounts
for much less of the potential exposure likelihood and concentration than do exposures
in microenvironments [14,15]; e.g., time spent in residences. The emissions and contact
with consumer products, articles, and building materials can account for most of these
“near-field” exposures [16–21]. As evidence, the Toxic Substance Control Act and other
laws have authorized greater attention to “near-field” exposure scenarios [22]. A near-field
consumer exposure scenario is one in which exposure to a chemical occurs by humans who
use a product or by bystanders who are in the vicinity of the product use. The exposure
pathways particularly important in near-field scenarios are the inhalation of chemicals
released from products indoors, dermal uptake of substances from consumer products
and articles, and oral ingestion of compounds in food and beverages, as well as incidental
ingestion; i.e., oral intake of compounds by hand-to-mouth activities, which is known as
non-dietary ingestion [15,23]. The transition to an increased emphasis on near-field expo-
sure scenarios amplifies the need for reliable predictions of human activities in time and
space. In particular, modeling near-field exposures scenarios requires improved capabilities
to associate individuals with the residential environments in which exposures occur. This
recent emphasis is also enhancing the understanding of prioritization between near-field
and far-field exposure scenarios in the composition of total exposure estimates [10].

Near-field exposures are strongly influenced by individual behavior and circum-
stances. For example, the use of a particular product in a residence may be dependent
upon the sex, age, and other demographic characteristics of a person. Thus, an important
challenge of estimating near-field exposure in a population is characterizing the underlying
variability of that population. A common approach to capture such variation in exposure
modeling is to sample individuals from a population of interest, based on the distribu-
tion of key parameters, including exposure-related behaviors [15,24–26]. For example, a
parameter describing the frequency that particular individuals (e.g., adult males) engage
in a particular activity (e.g., bathing) can be sampled from a distribution, influencing
exposure to the products (e.g., soap, shampoo) associated with that activity [21]. For such
modeling efforts, data describing exposure-related behaviors have been collected and
summarized [27] and are also estimated in the EPA Exposures Factors Handbook [28].
While these sources present data on the distributions of values between individuals, such
models often do not capture the correlations between demographics, physiology, residence,
and exposure factors. In addition, since data on interindividual variation are often collected
from a variety of sources, it is not clear if exposure estimates are representative of any
specific population. For example, the Stochastic Human Exposure Model (SHEDS-HT) [24]
utilizes demographic information to associate exposure behaviors based on age and gender,
but it integrates consumer product use data collected in aggregate surveys of both North
American and European populations to make exposure estimates. However, a population
used to capture intraindividual variation must be internally consistent (i.e., reflect data
that could come from a single individual), and the variation in the sets across individuals
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should be representative of variation in the modeled population. For example, physiologi-
cal characteristics such as the breathing rates and body weights of adults are expected to be
positively correlated (internally consistent), and the probability of owning an automobile
may differ for individuals living in rural lower-income households compared to individu-
als living in urban high-income residences (consistent across a population), both of which
inform exposure to chemicals.

Models used to predict exposure to chemical ingredients in products are based on
chemical properties, human activities, and product use [24]. By linking exposure estimates
to dose-dependent toxicity, exposure risks are estimated. As is typical for any modeling
process, various data inputs are required. Often, however, some of the more significant
areas of data paucity for exposure modeling lie in the characterization of residential and
populations aspects of exposure. For example, Huang and colleagues [29] recently demon-
strated that additional data on exposure factors are needed for population-scale, near-field
exposure assessments due to substantial variability in both the quantity (i.e., dose) and
context of exposures. The latter includes aspects that influence near-field exposure, includ-
ing within-building air flow, surface areas, the composition of articles, and the presence of
interior appliances. Thus, reliable exposure estimates and predictions need descriptions
of the physical structure, home contents, and other exposure factors. To this end, the U.S.
EPA developed the Residential Population Generator (RPGen) within the Combined Hu-
man Exposure Model (CHEM) framework [24,30]. This framework is designed within the
federal government’s open source policy [31], and it aims to model aggregate, longitudinal
exposure to chemicals of interest using the open source R software [32]. In addition, all
the modules within CHEM, including RPGen, were built to be interoperative. Therefore,
RPGen exists outside of any standalone model and can be imported by other models, tools,
and dashboards.

2. Methods

RPGen was initially developed in 2016 in conjunction with two other modules in
CHEM: Product Use Scheduler (PUS), and Source-to-Dose (S2D). PUS accepts the generated
population from RPGen and creates product use diaries depending on the characteristics of
the individual and household. Then, S2D uses product formulations and the use diaries to
create 1-year longitudinal estimates of exposure from chemicals in consumer products and
down-the-drain release of chemicals. The development and presentation [33] of RPGen is
ongoing, and updates to ease-of-use, transparency, and new data refreshes are catalogued
on GitHub in the Supplementary Materials.

RPGen is a collection of scripts and functions that assembles a synthetic, demographi-
cally representative population, which is suitable for estimating exposures to chemicals
of interest and provides descriptions of inputs for use in models of exposure and dose.
For example, RPGen supports models of far-field exposures by describing the variation in
residential and personal characteristics by region and community type (urban/rural) and
supports models of near-field exposures that occur in and around the home by defining
the variation in model inputs that describe the residence and presence of certain sources of
chemical exposures (e.g., garden, appliance, pool, car, etc.). In addition, RPGen provides in-
dividual physiological variables to support physiologically-based pharmacokinetic (PBPK)
models of internal dose. In brief, RPGen creates synthetic populations useful for exposure
modeling by sampling individuals included in the publicly available US population and
housing surveys. See Figure 1 for a conceptual overview of this process.
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Figure 1. Role and internal process of RPGen in exposure and dose models. Note: Figure references the Public Use
Microdata Survey (PUMS), the Residential Energy Consumption Survey (RECS), and the American Housing Survey (AHS).

RPGen is run by creating an input text file or entering the parameters directly into
the R console. Possible inputs are included in Table 1 below. RPGen populations are
generated based on parameters defining the individuals, such as min.age and max.age,
and location, such as states. The module output is a csv file, in which each row contains
information for one individual, and each column represents one of 126 variables associated
with the individual. RPGen handles blank inputs with inclusive defaults. For example,
in a run with states and regions left blank, RPGen would use all contiguous US Federal
Information Processing Standards (FIPS) codes. For more detailed information about
downloading, running, and using RPGen, the RPGen Technical Manual is available in the
GitHub repository, which is provided in the Supplementary Materials.

No single survey includes all the demographic, residential, and physiological infor-
mation needed for assessing individual chemical exposures. Thus, records from three
surveys are combined to create a synthetic population: The Residential Energy Consump-
tion Survey [34], the American Housing Survey (AHS) [35], and the 5-year versions of both
the Housing and Person Public Use Microdata Surveys (PUMS) [36] (Table 2). Exposure-
relevant housing information is provided by AHS and RECS, whereas PUMS is a sample
of the US census that contains individual-level records on exposure-relevant demographic
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factors, including gender, age, and ethnicity. Variables from AHS are characteristics of
households (bathrooms, bedrooms, water source), and variables from RECS are features
of the household that pertain to energy use (presence of a washing machine, number of
cooktops, fuel used). This information informs household exposures to chemicals from
cooking and cleaning activities. Some limited housing data are also imported from PUMS
and used to link individual records to the housing data found in AHS and RECS using
the process described in Section 2.3 below. The current version of RPGen uses the most
recent data available from PUMS, AHS, and RECS (Table 2). New PUMS data are released
annually, AHS data publication occurs biennially, and RECS data are published every
four years.

Table 1. User inputs to RPGen.

Variable Class Input Parameters Default

Run.name Character Name of output folder containing pophouse.csv User input required
Num.persons Numeric Number of individuals (rows) in output User input required

Min.age Numeric Number from 0 to 99 0
Max.age Numeric Number from 0 to 99 99
Gender Character M = Male F = Female MF

Ethnicity Comma separated characters N = non-Hispanic, M = Mexican-American, O = Other NMO
Regions Comma separated numerics 1 = West, 2 = Mid-West, 3 = South, 4 = North West 1234

Race Comma separated numerics
W = White, B = African American, N = Native American,

A = Asian American, P = Pacific Islander,
O = Other or Mixed

WBNAPO

States Comma seperated numerics FIPS Codes in RPGen User Guide (Available in
GitHub repository)

All contiguous US Codes
within specified regions.

Table 2. Data sets used in this version of the RPGen. Note: NHANES data derived from EPA’s httk.

Survey Source Date of Data Collection Number of Records

Residential Energy Consumption
Survey (RECS)

US Energy Information
Association: https:

//www.eia.gov/consumption/
residential/data/2015/

2015 5686

American Housing Survey (AHS)
US Census Bureau: https:

//www.census.gov/programs-
surveys/ahs/data.html

2017 57,972

Public Use Microdata Survey (PUMS)
US Census Bureau: https:

//www.census.gov/programs-
surveys/acs/data/pums.html

2014–2018 15,094,428

National Health and Nutrition
Examination Survey (NHANES)

US CDC: https://wwwn.cdc.gov/
nchs/nhanes/Default.aspx

2007–2008, 2009–2010,
2011–2012 24,546

Physiological data are estimated per individual using the R packagehttk [37,38], which
generates inputs for pharmacokinetic models using data from the National Health and
Nutrition Examination Survey (NHANES) dataset. RPGen does not import NHANES data,
instead calling httk to estimate physiologies using PUMS race, ethnicity, and age data.
RPGen also applies stochastic variation to the httk output to create unique physiologies
for similar individuals. In contrast to survey data from RECS, AHS, and PUMS, the
physiological variables are sampled from distributions.

To merge census and housing records between the three datasets, a common variable
pool was derived from a suite of 5 shared categorical variables. These variables included
setting, region, house type, family type, and income category. One designation from each
column is possible for each individual or household, resulting in 288 potential assignments
in the pool. RPGen selects individuals and households with matching pool values in each
survey to generate the synthetic population. Table 3 contains the variables that create
unique pool values that were used to link datasets. The pool variable (1–288) associated
with each member of an assembled population is also included in the RPGen output.

https://www.eia.gov/consumption/residential/data/2015/
https://www.eia.gov/consumption/residential/data/2015/
https://www.eia.gov/consumption/residential/data/2015/
https://www.census.gov/programs-surveys/ahs/data.html
https://www.census.gov/programs-surveys/ahs/data.html
https://www.census.gov/programs-surveys/ahs/data.html
https://www.census.gov/programs-surveys/acs/data/pums.html
https://www.census.gov/programs-surveys/acs/data/pums.html
https://www.census.gov/programs-surveys/acs/data/pums.html
https://wwwn.cdc.gov/nchs/nhanes/Default.aspx
https://wwwn.cdc.gov/nchs/nhanes/Default.aspx


Toxics 2021, 9, 303 6 of 17

Table 3. Assembly of 288 possible household bins.

Setting Region House Type Family Category Income Category

Urban Northeast Stand Alone 1 Adult, 0 Children 1
Rural Midwest Multi Structure 2+ Adults, 0 Children 2

South Other 1 Adult, 1+ Children 3
West 2+ Adults, 1+ Children

2.1. Setting

Both RECS and AHS include variables for micropolitan and metropolitan statistical
areas, which were issued by the Office of Management and Budget (OMB) in 2010 [39].
Metropolitan areas have at least one urbanized area containing 50,000 or more individuals
and micropolitan areas contain a cluster of at least 10,000 but less than 50,000 individuals
and exist adjacent to a metropolitan statistical area. Other more rural delineations are
provided in the OMB’s standards but are not coded equally into AHS and RECS. As such,
all metropolitan statistical areas are coded as urban, and all other areas are considered rural.

PUMS does not currently provide an “urban/rural” statistical area designation, but
instead uses Public Use Microdata Areas (PUMAs) that contain approximately 100,000 peo-
ple and consist of complete census tracts. To link the urban/rural variable in AHS/RECS
with corresponding information in PUMS, population densities for each PUMA were de-
termined. The threshold for Urban PUMASs was set at >130 people per km2. This was
equivalent to the population density of Chapel Hill, North Carolina in 2016, which is a
relatively small city (approximately 70,000 people) largely surrounded by agricultural and
forested landcover. Under this threshold, a PUMA was classified as rural. Each input
dataset contains a region specification (North, South, Midwest, West), so the urban/rural
setting designation is combined with region to create eight geographic location possibilities.

2.2. Region

Both AHS and PUMS contain PUMA codes. However, RECS only contains a metropoli-
tan, micropolitan, or neither designation using Census Micropolitan Statistical Areas (CM-
BAs). This results in a loss of location granularity for households: as households drawn
from RECS can only be determined by region and CMBA, specificity at a county or state
level is not possible for households. Figure 2 shows the four regions available from which
a household can be designated as urban or rural. Location granularity for individuals
generated in RPGen is at the PUMA level, as the person is generated first within a state
and then assigned a household using the pool variable, but households are limited to eight
possible locations used to match individuals and residences.

2.3. Income

Income was split evenly into three bins: high, middle, and lower, which create the
income category variable. To account for location-bound variation in purchasing power,
income category was calculated by first splitting households into one of the eight possible
locations (e.g., urban, Midwest), and then calculating the income category. The income
category variable, inccat, is included in RPGen’s output, and a household income variable
income is carried from AHS to the final output.

2.4. House Type

House types were condensed into three common categories: standalone, multi-
structure, and other housing units. Houses and attached houses are considered standalone,
while apartments and condominiums are considered multi-structure units. The other
classification includes mobile homes and boats. PUMS has housing and person data for
individuals in group quarters, such as military bases, prisons, and homeless shelters. Since
these classifications are not included in AHS or RECS, RPGen excludes these house types.
Houses reported as empty in AHS were also discarded.
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2.5. Family Category

Families are categorized into 4 bins: single adults living alone, adults with no children,
single adults with children, and adults with children. In RPGen, adults are considered to
be 18 years of age and above. Although there were no households without adults recorded
in the PUMS 2014–2018 dataset, RPGen filters any households without at least one adult.
Individuals from outside of the contiguous US are also discarded, as RECS and AHS only
surveyed contiguous US households.

2.6. Population Assembly

Once pool is assigned for records in all three datasets, RPGen assembles a synthetic
population that is statistically representative of demographic patterns in the data based
on matching pool values. The 2014–2018 PUMS dataset consists of 15,094,428 randomly
sampled census records and thus serves as the basis of the sampling and assembly process.
Each individual in the PUMS dataset is assigned a statistical sampling weight, which
reflects the estimated number of similar individuals (based on a suite of demographic
characteristics) that live in the US according to the census data (US Census Bureau, 2020).
To utilize these sampling weights for sampling individuals from PUMS, RPGen uses a
two-step process similar to that developed for use in the USEPA Air Pollutants Exposure
Model [40]. First, a vector of random numbers between 0 and 1 is generated for the
desired number of samples. Next, the statistical sampling weights in the PUMS dataset are
assembled into a cumulatively summed vector that is divided by the maximum value of
that vector, resulting in a final vector that ranges from 0 to 1. The interval sizes between
values of this vector reflect the relative statistical sampling weights of each person in the
PUMS dataset. The random numbers are paired with the intervals in which they fall in
the PUMS weight vector. Then, the matched intervals are selected to become members of
RPGen. Since individuals with larger statistical weights result in proportionately larger
intervals than those with smaller weights, it is more likely that a random value will fall
into them. Thus, individuals are more or less likely to be included in RPGen based on their
weight in PUMS.

Following the selection of individuals from PUMS into RPGen, housing characteristics
are sequentially matched to each person based on their pool value using a similar process.
First, all the values in AHS or RECS that have matching pool values to an individual are
identified. Then, using statistical sampling weights specific to both RECS and AHS, the
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same two-step sampling process described above is employed. The completed output
is a synthetic population of people within households that reflect real underlying demo-
graphic variation, and it maintains the correlation structure between physiological and
demographic characteristics. In addition, the above approach is coupled with functions
specifying control over random-seed generation. This allows users to ensure the repro-
ducibility of sampled populations as well as facilitating sensitivity and uncertainty analyses
of the different datasets.

The PUMS record defines the age, gender, race, and ethnicity of the individual. RPGen
subsequently calls the R package httk, which generates physiological variables for each
individual from PUMS using ethnicity and age. As discussed by Pearce and colleagues [37],
httk provides data sets of internally consistent values for a set of individuals. The pack-
age generates the relevant data from NHANES used to calibrate equations that predict
internally consistent measurements of physical (height, weight) and physiological mea-
surements (e.g., cardiac output, organ size, serum creatinine, and hematocrit) based on
age, gender, and ethnicity that vary consistently with the US population [41]. RPGen calls
httk such that some individuals with a matching age and ethnicity will have matching
physiological output. Therefore, RPGen introduces variation by the jittering of variables,
which includes limits on height and weight of 225 cm and 160 kg. Although individuals
exist that exceed these values, the randomization elements added to RPGen are curtailed at
these extremes.

2.7. Role of RPGen

RPGen was written to assemble sample populations that represent underlying demo-
graphic patterns present in the US population for models of exposure. Most of the variables
in RPGen are categorical—determining whether a household or family has a washing
machine, for instance, informs use and exposure to related chemicals. Intraindividual
exposure from individuals of the same residence allows for increased granularity when
modeling the exposome. Furthermore, calculating exposures that may derive from other
household members (particularly important for children) maintains correlation structures
between people and aspects of households that influence exposure. To demonstrate the
breadth of RPGen, two example runs of the module with 5000 people representing all
genders, ethnicities, states, and regions were performed. The first file has an individual
age range of 0–99 and the second ranges from 0 to 21. RPGen output files for each run are
available in the Supplementary Materials.

2.8. Toluene Exposure for Homeowners and Non-Homeowners Case Example

To demonstrate the application of RPGen in a model, a case example for exposure
to toluene from household products was performed. In RPGen, the variable kownrent
describes if the individual is in a rented household, staying without rent, or owns a
household. In CHEM, the model component called the Product Use Scheduler (PUS)
accepts a population from RPGen as input and creates use diaries depending on the
characteristics of the individual and household. Therefore, product use categories often
associated with owning a household were set to be assigned only to owners of households
in the RPGen population. This suite of categories includes deep cleaners, stainers, caulking,
and sealant. A complete breakdown of product use categories and products containing
toluene in CHEM is available in the Supplementary Materials.

The guiding theory behind these rules is that owners are exposed to a unique subset
of products because of actions associated with a home. It is implied in PUS that individuals
that do not own a household do not partake in deep cleaning and repair projects that
owners would.

Once PUS has determined product use diaries for each individual and co-inhabitants
in RPGen, the diaries are passed to the Source-to-Dose (S2D) module, which estimates
exposure and down-the-drain using product formulations and route-specific exposure
equations. In this manuscript, the mean daily total exposure, or sum of direct and indirect
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exposure across inhalation, ingestion, and dermal pathways over a year is compared with
SHEDS-HT, which is a one-day cross-sectional model. The population in SHEDS-HT
(v0.1.8) [42] was generated using default consumer product use patterns. In SHEDS-
HT, these default patterns (e.g., mass used, population prevalence, and frequency) are
explicitly defined by age and gender cohort based on the available literature and reasonable
assumptions. However, these cohort differences are usually quite crude, as few have
enough data to allow for refined stratification; most differences are quantified for males
versus females (e.g., for cosmetics) or for adults versus children (e.g., for direct use of home
maintenance or auto products).The quantitative weight fraction data used to generate the
chemical-specific SHEDS inputs for each product category were identical to those used
in the CHEM run (reformatted for the SHEDS format), which is the CHEM default data
derived from the 2019 release of EPA’s Chemicals and Products Database (CPDat). All
other SHEDS input files were the default versions.

Given the increased population granularity in RPGen, the CHEM run is split into
exposures for owners (own the household) and non-owners (rent or stay without rent),
which is a capability not included in SHEDS-HT. Given long processing times, a run
of 1000 individuals from RPGen was used in CHEM compared to 10,000 in SHED-HT.
Default population characteristics were used: no restrictions were placed on location,
ethnicity, or age of the individuals in RPGen. The same consumer products lists and
product formulations were used for both SHEDS-HT and CHEM. In addition, to enhance
the case example, RPGen was also ran with only the Product Use Categories (PUCS) [24]
pertaining to home ownership to evaluate the contribution of home ownership to total
exposure estimates. In total, three runs were performed: CHEM, SHEDS-HT, and CHEM
with homeowner-only PUCS. Further analyses were performed by subsetting the output of
the models.

3. Results
3.1. RPGen Capabilities

RPGen output variables assist in the prediction of whether individuals will use certain
types of consumer products. For example, if an individual resides in a household that has
a swimming pool, the occupants are at a greater likelihood of exposure to pool cleaners
than individuals living in a household without a pool. Output variables inform exposure
by building the general external environment that informs behavior and habits. Addition-
ally, the assembly of households allows for the modeling of interindividual exposure or
exposure between people. The family category, used to link survey datasets, describes the
composition of a household. As presented in Table 3, the family category has four possibili-
ties: single adults living alone, adults with no children, single adults with children, and
multiple adults with children. Figure 3, generated from a sample run of all ages, demon-
strates how the family category is distributed among the number of rooms in a household.
In this run, adults with children tend to have homes with more rooms than adults without
children, and single adults occupy households with fewer rooms. Furthermore, there are
more households with children than without. Understanding household composition,
in conjunction with residence size, often characterizes the fugacity of chemicals in larger
spaces. Furthermore, demographics of occupants inform habits and product use in the
exposome: households with and without children and differing numbers of adults apply
different products and thus have different exposure profiles, or exposomes. By capturing
interindividual variation, RPGen reflects realistic underlying exposure considerations and
generates potentially useful parameters for models.
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In addition, when the number of rooms in a household is considered together with
household size and income category, we find that there is an overall positive relationship
between all three variables (Figure 4). The density of the jittered distribution also demon-
strates the prevalence of each household characterization: there are more residences at
1250 sq. ft and 5 rooms than 5000 sq. ft and 12 rooms. Additional determinants of air flow,
such as the number of ceiling fans, number of windows, and high ceilings are also included
in RPGen to provide inputs to air exchange rate models, as air flow within a household
will greatly influence indoor air chemical concentrations [43]. Furthermore, the inclusion
of income level and whether households have children or not likely influence both the
nature and extent of product purchase and use. When coupled with an exposure model,
these simple metrics may influence exposure estimates, but additional demographics, such
as income, may also indicate particularly at-risk subpopulations. Figures 3 and 4 are
generated from the same sample run of RPGen described in Section 2.7.

In addition to exposure factors associated with housing, interindividual physiology
critically influences exposure and subsequent toxicity. For example, exposure-relevant
physiological factors change quickly in adolescents, varying by age and gender [44]. By
leveraging the httk package, RPGen captures a suite of physiological information necessary
for estimating physiologically mediated exposure. The relationship between breathing rate,
an important physiologic important parameter in estimating exposure through inhalation,
with body weight is shown to vary by sex and age (Figure 5). The following nationwide
sample run was generated with max.age set to 21. The randomization and caps of the
physiological variables mentioned in Section 2.6 are visible: two generated males and
one female have been assigned the cap of 160 kg. Additionally, there is a visible positive
correlation between cardiac output for males and females through adolescence, with grown
males often having greater bodyweights and cardiac outputs at similar ages.
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3.2. Toluene Case Study Results

Residential exposure to toluene is compared across homeowners and non-owners
in CHEM and SHEDS-HT. In 659 individuals within owned homes in CHEM, 517 were
exposed to toluene: 78.5%. Across the 341 non-owners, 102, or 29.9% registered an exposure
to toluene. In SHEDS-HT, 9437, or 94.4% of 10,000 were exposed.

The means of each model subset, including households that did not register exposures,
are 0.023 mg/kg-bw/day for SHEDS-HT, 0.067 mg/kg-bw/day for CHEM Owners, and
0.0041 mg/kg-bw/day for CHEM non-owners. The standard distributions are 0.404 for
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SHEDS-HT, 0.165 for CHEM owners, and 0.234 for CHEM non-owners. The distribution of
all three curves is lognormal. The disparity in these model estimates shows that different
outcomes are estimated by using a population with more granular descriptors. Figure 6
contains boxplots for each subset. Given the larger number of samples, SHEDS-HT has a
greater spread than CHEM outputs. Additionally, individuals without exposure are not
expressed in the boxplot, so a greater disparity between results is observed in the figure
than comparison of the means.
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An additional run for product use categories (PUCS) only pertaining to home owner-
ship was also performed. The mean daily intake of these households, among households
with registered exposures, was 0.71 mg/kg-bw/day, compared to 0.78 mg/kg-bw/day for
owners with all PUCS in the previous all-inclusive run. Given this, approximately 91% of
a homeowner’s toluene exposure is from PUCS pertaining to owning a home. However,
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non-homeowners have a mean exposure of 0.30 mg/kg-bw/day, so the relative contri-
bution to total exposure is not characterized by the delta of the all-inclusive homeowner
run and the homeowner PUCs only run. This is because PUS assigns other activities
that result in exposures for non-homeowners when homeowners would be performing
homeowner unique tasks. Rather, CHEM provides an estimated baseline of 0.30 mg/kg-
bw/day for non-homeowners, which increases to 0.78 mg/kg-bw/day for homeowners,
of which 91% is from ‘homeowner’ PUCS. More summary statistics are available in the
Supplementary Materials.

4. Discussion
4.1. Limitations
4.1.1. Geographic Resolution

As discussed, residences in RPGen are matched by eight location types: one of four
regions are selected, and setting is assigned as either urban or rural. This is due to
the lack of resolution in RECS: both AHS and PUMS contain PUMAs, but household
matching can only be determined by the location data provided in RECS. However, because
individual population profiles are from PUMS, the people generated from RPGen have
greater geographic resolution, and they are location bound by PUMAs, unlike the generated
residences, which are matched by region.

4.1.2. Exposure Pathways

Since RPGen was originally designed to operate within the CHEM framework, the
physiological parameters and exposure factors reflect a focus on modeling residential
exposure to consumer products. For example, the physiological parameters inhalation rate
(CO) and body surface area (BSA_adj) support inhalation and dermal modeling exposure
to products used and applied within a household. However, to characterize exposures to
chemicals by all pathways, including dietary and water ingestion, additional models and
data are required [45]. Future efforts are underway to add data to RPGen’s physiological
outputs that would support the generation of populations to assess exposures associated
with soil, dust, water, and diet.

4.1.3. Other Data Limitations

Income category is coded as 1, 2, or 3, with 1 representing the highest income category
and 3 as the lowest, with each category containing the same number of individuals. How-
ever, these bins could mischaracterize the distribution of wealth in US households [46].
Additionally, RPGen does not include individuals living in prisons, shelters, and military
bases, as there are no residence data available in RECS or AHS. Therefore, alternative
population generation approaches would likely be more appropriate in these situations.
Furthermore, due to the small sample sizes of 5686 and 57,972 respectively, RECS and AHS
input files do not contain households for every possible pool. This oftentimes occurs in the
case of a rural, high-income apartment. Therefore, an evaluation of assembled pools may
be necessary to assess RPGen’s application to particular questions. For more information
on the pool variability, the RPGen Technical Manual is available in the Supplementary
Materials. Additionally, RPGen provides no adjustments regarding time. For long-term
models involving diet and pharmacokinetics, the population generated by RPGen would
be expected to gradually change, introducing uncertainty into the model. RPGen is con-
structed to accept new data from RECS, AHS, and PUMS as released, but it does not have a
strict update schedule.

4.2. Case Study Discussion

CHEM, and therefore RPGen, is best used for estimates of aggregate exposure across
products. For single-use products or chemicals that are present only in one product,
characteristics of the household do not enhance the exposure predictions. However, within
CHEM, toluene is in 229 products, 200 of which are influenced by the home ownership
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rules. Four other chemical exposures—benzyl butyl pthalate, diethylene glycol, dibutyl
pthalate, and naphthalene—were also simulated CHEM. However, these chemicals had
relatively low exposure counts over 1000 individuals and featured more frequently in
products not associated with the home ownership rules. Given that these chemicals are
found less broadly across PUCS and products, relationships between exposure outcomes
and homeownership are less clear than those for toluene. The results of these runs are
available in the Supplementary Materials. An additional concern of agent-based modeling
is the extended runtime. For five chemicals, 1000 households in CHEM exceed 100 h
runtime for a machine with 8 GB RAM, while 10,000 estimates in SHEDS-HT estimates
were generated in under 5 min. This is why different numbers of individuals were used
for the RPGen and SHEDS-HT runs and is a consideration when building and appending
models to CHEM.

4.3. Other Exposure Models

Computational models of exposure and dose are fundamental to risk assessment and
are only as effective as the least resolved component of the model [47]. To meet this end,
exposure model capabilities and frameworks continue to expand dramatically [48]. Similar
previous efforts to capture such population variability to model exposure include the afore-
mentioned SHEDS-HT and PopGen [21,49]. PopGen creates individuals for PBPK models
and was improved in the httk package with more detailed NHANES sampling and newer
data [41]. Meanwhile, in the field of epidemiology, the Framework for Reconstructing
Epidemic Dynamics (FRED) model uses PUMS data in an agent-based modeling approach
that captures demographic and geographic heterogeneities of the population, including
realistic household, school, and workplace social networks [50]. RPGen builds on these
other population generators by tying together specifics of the household and physiology at
the individual level. RPGen may also be applied to models of inhalation, as descriptions
of the household can be used as the basis for agent-based models. For example, exposure
models that measure exposure outcomes between time indoors and time outdoors may
be influenced by the presence of a vehicle, the structure of the household, number of
windows, and number of rooms [51]. When combined with downstream exposure models,
this approach can then effectively simulate the population with a high level of resolution.

5. Conclusions

RPGen creates synthetic populations of individuals with consistent demographic,
residential, and physiological characteristics. Output variables can be combined with
a wide range of user-developed chemical exposure scenarios to estimate intraindivid-
ual exposure in a desired population. While RPGen has been developed initially and
applied for use in probabilistic models of consumer product exposure, the tool can be
applied to consider a range of environmental health questions. By creating profiles and
characteristics that are primary determinants of exposure, RPGen enables the data-driven
development of hypotheses related to populations and groups who may be vulnerable to
chemical exposures.

Increasingly, the field of exposure science is shifting from a field of observation to a
field of prediction [52] and exposure models are quickly evolving to evaluate the complex
exposure scenarios presented by commerce [26,49,53]). The aim of RPGen is to inform
variability in probabilistic models of exposure by creating a sample population. The
benefits are twofold: first, chemical exposure predictions are informed by the correlated
physiological, demographic, and housing variables within RPGen. Grouping of these
variables into profiles improve the exposure estimates of individuals. Secondary benefit
comes from the same variables: age, ethnicity, income, and location allow for comparison
with dose outcomes to determine high-risk subpopulations and communities. By using a
population that represents the US in exposure models, RPGen better characterize exposure,
and in turn, provides demographics to inform policy decisions.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/toxics9110303/s1, Figure S1: Four Chemicals not used as principal case example for appli-
cation of RPGen: Benzyl Butyl Pthalate, Dibutyl Pthalate, Diethylene Glycol, Naphthalene daily
intakes compared to SHEDS-HT, Table S1: Percentage of Individuals Exposed Across Exposure
Model Scenario (Subset), Table S2: Summaries of Daily Intake (mg/kg-bw/day) across Expo-
sure Model Scenario (Subset), Table S3: Counts of Chemicals, Products, Case Example Chem-
icals, and Ownership Status by PUC ID in CHEM, Table S4: Counts of Products, PUCS, and
‘Homeowner PUCS’ by Chemical in CHEM.4. All code, data, and documentation for RPGen is
available at: https://github.com/HumanExposure/RPGen (accessed on 11 October 2021). Meta-
data: https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B91279B3B-
AD3D-476A-826A-A0FE0D78AECC%7D (accessed on 11 October 2021).
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