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Abstract: Sargassum species-based extracts were used to carry out the synthesis of homogeneous
gold nanoparticles. Various techniques were used to determine the characteristics and composition
of the nanoparticles. The UV-Vis results showed that the 50% water/ethanol extract had the most
reducing agents and stabilizers. Therefore, this type of extract was used to synthesize nanoparticles
and for their subsequent characterization. Crystallinity and crystal size were evaluated using X-ray
diffraction. Size and morphology were analyzed using scanning electron microscopy, showing that
the gold nanoparticles were mostly spherical, with a size range of 15–30 nm. The catalytic activity
of the gold nanoparticles was evaluated through the degradation of organic dyes: methylene blue,
methyl orange, and methyl red. The degradation rates were different, depending on the nature of
each dye, the simplest to degrade was methylene blue and methyl red was the most difficult to
degrade. The results indicated that the use of Sargassum spp. for the synthesis of gold nanoparticles
has potential in the remediation of water that is contaminated with organic dyes. Moreover, given
the recent serious environmental and economic problems caused by the overpopulation of Sargassum
spp. in the Mexican Caribbean, the findings hold promise for their practical and sustainable use in
the synthesis of nanomaterials.

Keywords: gold nanoparticles; green synthesis; Sargassum spp.; organic dye; water treatment

1. Introduction

The pollution of water by organic dyes is a serious problem worldwide. These sub-
stances are widely used by the paper, textile, pharmaceutical, and cosmetic industries [1,2]
to provide color to a given material or object. However, the effluents from these industries
pass into rivers and lakes, and cause contamination of ecosystems, affecting many living
beings [3]. The removal of organic dyes is of great interest because they are highly toxic,
carcinogenic, and mutagenic compounds [4,5]. They are highly soluble in water and have
great stability, making removal difficult [6]. Various methods exist for their removal, includ-
ing absorption, filtration, osmosis, and flocculation [7], but these are expensive, complex,
and inefficient.

The degradation of these substances using nanoparticles has been reported as an effi-
cient and relatively simple process [8,9]. Silver, gold, copper, and platinum nanoparticles
have been shown to degrade organic dyes [6,10]. Gold nanoparticles (AuNPs) have been
evaluated for their excellent optical, chemical, and catalytic properties [11–13]. Many of
these properties are attributed to their high surface-to-volume ratio. In addition, their
compatibility and low toxicity make AuNPs a material with a wide range of applications
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in catalysis, sensing, and biomedicine [14]. AuNPs can be obtained by several chemical,
physical, and biological methods [15,16]. The biological approach has attracted special
interest when AuNPs are intended for use in areas such as biomedicine and the environ-
ment [17–19], as these methods are safe, non-toxic, and eco-friendly [20,21]. In biological
synthesis methods, also called biosynthesis or green synthesis, an organism is used to
reduce metal ions and subsequent stabilization of the nanoparticles [22,23]. Bacteria, fungi,
plants, and algae have been reported for these purposes [10,24,25]. The simplicity and low
cost of using algae makes it an attractive option.

In this work, the Sargassum spp. that exist in the Mexican Caribbean were used:
Fluitans and Natans [26]. These species have a high content of antioxidant compounds that
can synthesize nanoparticles [26,27]. In addition, since large quantities of Sargassum spp.
have recently been beached on the Mexican Caribbean, this work has the further attraction
of, hopefully, alleviating some of the serious environmental and economic problems this
causes [28–30]. The Sargassum spp. found on the sea surface obstruct the passage of light,
leading to alterations in the photosynthesis cycles of marine flora and fauna [28]. Economic
consequences of the influx include the significant reduction in tourism in the area and the
costs of collecting and processing these algae [28,31]. Thus, the characteristics, properties,
and compounds of Sargassum spp. are being exploited in various useful applications to
reduce its overpopulation [32,33].

This work examines the synthesis of AuNPs using extracts prepared with Sargassum
spp. from the Mexican Caribbean. The catalytic properties of the AuNPs obtained were
evaluated through the degradation of organic dyes dissolved in water.

2. Materials and Methods
2.1. Materials

The Sargassum spp. used in this study was collected on the Mexican Caribbean coast in
June 2021 and cleaned on-site of epiphytes and sand. Then, at the laboratory, the Sargassum
was thoroughly washed with tap water and distilled water to remove litter and impurities,
then dried in the sun for 48 h to remove all moisture. After all the Sargassum was dried, it
was pulverized using a 1000 watts domestic blender and washed again with distilled water.
The water was then removed using Whatman #41 filter paper, and the Sargassum was
dried using an air oven at 40 ◦C. Finally, the powder was homogenized using a metallic
sieve of 150 µm and stored at room temperature in a dark dry place in sealed plastic bags
until it was used.

The precursor salt used was analytical grade HAuCl4, purchased from Sigma. The
methylene blue, methyl orange, and methyl red used to evaluate the catalytic properties
and the NaBH4 reagent, employed for catalytic evaluation, were also purchased from Sigma.
Finally, the different aqueous solutions and dilutions were prepared using distilled water.

2.2. Extract Preparation

The extracts were prepared by mixing 1 g of Sargassum spp. with 50 mL of solvent
(water, ethanol, or 50% water/ethanol) using magnetic stirring at 60 ◦C for 30 min. Subse-
quently, the liquid phase was recovered by filtration using Whatman #41 filter paper.

2.3. Synthesis of AuNPs

The AuNPs synthesis was carried out by mixing the Sargassum spp. extract with
an aqueous solution of HAuCl4 (5 mM). All the experiments were carried out at room
temperature and using magnetic stirring. The reduction capacity of Sargassum spp. extracts
obtained with different solvents were evaluated. In this case, 4 mL of HAuCl4 aqueous
solution were mixed with 2 mL of each extract. According to UV-Vis results, the most
efficient sample was selected for the experiments on the variation of extract/salt volumetric
ratio (1:3, 1:2, 1:1, 2:1, and 3:1). In all the experiments, the HAuCl4 aqueous solution was
added gradually, at a rate of 1 mL every 30 min. The sample with the best characteristics
was chosen for the subsequent characterization and the degradation of the organic dyes.
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2.4. Characterization of AuNPs

The synthesized nanoparticles were characterized using various techniques. The
synthesis and determination of the best parameters were evaluated by UV-Vis spectroscopy
using a METASH 5000M spectrometer. The samples were diluted at a ratio of 1:10, using
distilled water. The analyses were carried out in a wavelength range of 200 to 800 nm and
a step of 1 nm. All spectra were performed using quartz cells. The presence of gold and
its crystalline nature were determined by X-ray diffraction. The analysis was carried out
using a Rigaku Ultima IV diffractometer with Cu Kα radiation in a range of 20 to 80◦.

The size of the gold nanoparticles was determined by dynamic light scattering (DLS)
using a Litesizer 500 Anton Paar in automatic mode. A semiconductor laser diode
(λ = 658 nm) with a fixed side angle (90◦) and a disposable cell were used. The sam-
ple temperature was 25 ◦C and the measurement duration was 10 s. The colloidal stability
was evaluated with a zeta potential analysis using a Litesizer 500. The analysis was per-
formed at 25 ◦C using Anton Paar Univette reusable cuvettes. Aqueous solutions of 1 M
HNO3 or 1 M NH3OH were used to adjust the pH value. The samples were evaluated
in triplicate, and the average of the measurements was determined. The morphological
characterizations of the samples were carried out using a SEM/STEM Hitachi SU8230
cold-field emission scanning electron microscope (Hitachi High-Tech, Tokyo, Japan). The
samples were prepared by dispersing a solution of colloidal nanoparticles and dropping
this over the carbon-coated copper grids. The organic compounds involved in the synthesis
process were proposed by evaluating the functional groups determined by FTIR analysis,
recorded from 400 to 4000 cm−1, using a Perkin Elmer Spectrum Two FTIR spectrometer.
Finally, the concentration of AuNPs was determined by TGA analysis using a Mettler
Toledo TGA/DSC 2+ thermal analyzer. The temperature range employed was 30–700 ◦C
with a heating rate of 10 ◦C/min.

2.5. Evaluation of Photocatalytic Properties

The catalytic properties of the AuNPs were evaluated by means of the degradation of
methylene blue, methyl orange, and methyl red. The dyes were prepared in an aqueous
solution at 5 µg·mL−1. The degradation was carried out by mixing AuNPs with 1 mL of the
organic dye and 10 µL of NaBH4. The volume of the nanoparticles was varied at 10, 30, 50,
70, and 90 µL. The evolution of the degradation was monitored by UV-Vis, analyzing the
intensity of the absorbance signal of the evaluated dye, and relating this to the respective
concentration through a calibration curve previously constructed with a high correlation
coefficient (R2 > 0.95). The degradation capacity q (µg·mg−1) was determined using the
following equation:

q =
V
m
(C0 − C) (1)

where V is the volume of the organic dye used, in mL, m is the mass of the AuNPs used for
photocatalytic evaluation (this can be obtained from TGA data) in mg, and C0 and C are
the dye concentrations at the initial time, and at a given time, in µg·mL−1.

Kinetics Model for Photocatalytic Evaluation

Kinetics models can give important information regarding the adsorption pathway
and probable mechanism involved for dye degradation in the photocatalytic activity of
the AuNPs. Four models were used to identify the adsorption process, pseudo-first order
(PFO), pseudo-second order (PSO), Elovich model, and Weber’s intraparticle diffusion
(IPD). The kinetic constants of adsorption were calculated for the various models, and the
linear regression correlation coefficient (R2) values were compared to evaluate the best fit
model. The Lagergren pseudo-first order model (PFO) is represented by:

log(qe − qt) = log(qe)−
k1

2.303
t (2)
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where qe and qt (µg·mg−1) are the amounts adsorbed at equilibrium and at time t, respec-
tively; k1 is the equilibrium rate constant in the pseudo first-order model (min−1).

The Ho and McKay pseudo-second order model (PSO) follows the expression:

t
qt

=
1

k2q2
e
+

t
qe

with h = k2q2
e (3)

where h is the initial sorption rate, and k2 is the constant equilibrium rate of the pseudo
second-order model (mg·µg−1·min−1).

The Elovich kinetic model is expressed by the equation:

qt =
1
β

ln(αβ) +
1
β

ln(t) (4)

where α is the initial adsorption rate, and β is the desorption constant.
Finally, the intraparticle diffusion model (IPD) follows the equation:

qt = kit0.5 + Ci (5)

where ki is the intraparticle diffusion rate (µg·mg−1·min−1) and Ci is a constant (µg·mg−1).

3. Results

AuNPs are susceptible to surface plasmon resonance. They emit a signal, also called
the absorption peak or band, in the ultraviolet-visible spectrum. This signal appears
between 500–600 nm, depending on the physical characteristics of the nanoparticles, such
as size, shape, and concentration [20,34].

Figure 1a shows the UV-Vis analysis of the different solvents used to prepare the
Sargassum spp. extract. The ethanol extract shows no evidence of an absorption band,
meaning that there were no AuNPs in this sample. In the spectrum corresponding to
the synthesis using an aqueous extract, an absorption band at 585 nm was observed,
suggesting the presence of AuNPs. However, the signal is very weak and broad, meaning
the concentration of nanoparticles is low and the size distribution wide. Finally, the 50%
water/ethanol sample had the highest concentration of small AuNPs as seen in the high-
intensity absorption band on the spectrum, centered at 553 nm. As the concentration
and composition of the extracts depend directly on the solvents used, the solvent that
gives the greatest amount of reducing agents and stabilizers must be determined. It
has been reported that only tannins are obtained in aqueous extracts, while in various
alcoholic extracts phenols and glycosides are obtained [35]. Recent studies have also
demonstrated that when using a combination of H2O and acetone (30:70% v/v), phenolic
acids, monosaccharides, and glycosides are obtained from Sargassum spp. [36]. These
findings are consistent with the present results, since it was observed that a synergic effect
of using solvents with different polarities in the infusion extraction was required to obtain
adequate quantities of organic compounds that can reduce Au3+ to Au0 in comparison to
that using pure solvents. The 50% water/ethanol extract had the highest concentration
of organic compounds with reducing and stabilizing capacity, and the use of this extract
lead to the formation of a large concentration of AuNPs with homogeneous size and
morphology.

The synthesis reaction can be optimized by increasing the reducing agents, in this
case, the Sargassum spp. extract. Figure 1b shows the UV-Vis spectra obtained for various
extract/salt ratios. In the first three ratios (1:3, 1:2, and 1:1), as the volume of the extract
increased, higher absorption bands were observed, suggesting an increase in the concen-
tration of AuNPs. These spectra were centered at approximately the same wavelength
(553 nm), indicating a similar average size. When a 2:1 ratio of extract/salt was used, the
band of the greatest intensity, centered at 534 nm, was observed. The shift towards smaller
wavelengths indicates a decrease in average particle size, which is due to the increase in
the reducing and stabilizing agents available in the extract [37,38]. Finally, the spectrum
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corresponding to a 3:1 volumetric ratio showed an absorption band at the same wavelength
as the previous sample. However, its intensity was significantly less, suggesting a lower
concentration of AuNPs. According to several reports, this behavior is attributed to the
large number of organic compounds contained in the extracts, making the system more
complex and causing poor control of the synthesis reaction. [19,39]. Therefore, increasing
the amount of extract will not always lead to an improvement in nanoparticles synthesis.
Based on these results, it can be deduced that the AuNPs with the best characteristics are
obtained when using a 50% water/ethanol extract, with a 2:1 extract/salt ratio.
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Figure 1. UV-Vis analysis of AuNPs synthesized with varying extracts of Sargassum spp., (a) the
solvent employed for the extract preparation, and (b) the extract/precursor salt ratio.

Figure 2 shows the X-ray diffraction pattern corresponding to the AuNPs sample. Four
different reflections can be observed, at 38.22◦, 44.43◦, 64.64, and 77.63◦, which correspond
to the crystallographic planes (110), (111), (200), and (210), respectively. This diffractogram
was indexed with the card JCPDS 04-0784, corresponding to gold with a face-centered cubic
structure (FCC). The crystal size of each peak was analyzed using the Williamson–Hall
method, finding an average value of 14 nm. These results demonstrate the presence of
gold of a crystalline nature. Finally, the weak reflections that appear are attributed to the
organic compounds present in the sample, as was reported previously [13].
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Figure 2. X-Ray diffraction pattern of AuNPs synthesized with water/ethanol Sargassum spp. extract.

The main challenge in producing nanoparticles is reaching a homogeneous morphol-
ogy and good dispersion of them. Figure 3a shows the bright-field scanning/transmission
electron microscopy (BF-STEM) image of the green synthesized AuNPs. As can be ob-
served in the image, the AuNPs had a quasi-spherical shape with an average particle size
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of 23.96 ± 0.47 nm (Figure 3e). Homogeneous particle size distribution with no aggregates
or agglomeration were observable, indicating success in controlling the AuNPs size via
green synthesis using Sargassum spp. extracts. Figure 3b shows the annular dark-field
(ADF)-STEM image, in which the AuNPs appear to brightly contrast because of incoherent
scattering. It is important to mention that in the ADF-STEM (also called Z contrast) image,
the AuNPs have a higher atomic number than that of the C from organic compounds and
support, and they are shown as bright dots. To visualize the contrasting of the organic
compounds from the Sargassum spp., the BF-STEM image was colored to highlight subtle
variations in intensity, which may be difficult to discern in a grayscale image. Figure 3c
shows the color look-up table (CLUT), where it can be seen clearly that the AuNPs are
covered by an organic compound, which helps avoid agglomeration and aggregation. The
aggregation or agglomeration of nanoparticles reduces the potential of catalytic properties
due to the restriction of the interfacial area. Figure 3d shows the EDS analysis of the AuNPs
in which the elemental composition of the sample is appreciated. The presence of gold
confirms the composition of the nanoparticles, as the only metallic phase. The signals of
the other elements (Cu, Al, and Sn) come from the sample holder used. Elements from the
metallic salt and extract such as Cl, K, and As are not present in the spectrum, indicating
that the cleaning process of the AuNPs is efficient and the obtained results are the product
of the interaction of the nanoparticles with the dyes.
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The DLS technique was used to determine the particle size and size distribution profile
of the AuNPs. Figure 4a shows the DLS histogram of the AuNPs. As can be seen, the
average particle size was 22.27 nm, with a standard deviation of 3.4 nm. The polydispersity
index (PDI) indicates the breadth of the size distribution, where a value of 10% or less
implies that the sample is monodisperse. Here, the PDI calculated was 2.32%, indicating a
monodisperse size distribution. Zeta potential estimates the surface charge, which can be
employed to understand the physical stability of the AuNPs in colloidal solution. Figure 4b
shows the charge value against pH. High positive or negative zeta potentials suggest good
physical stability, where 30 mV is considered optimum, but between 20 and 40 mV provides
the system with stability and is less prone to form aggregates or increase the particle size.
Therefore, the AuNPs will tend to agglomerate more easily with an acid medium than with
an alkaline one. At a pH of over 10, the AuNPs are completely stable.
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Figure 4. (a) DLS histogram and (b) zeta potential analysis of AuNPs synthesized with water/ethanol
Sargassum spp. extract.

Concerning the catalytic activity, methylene blue is an alkaline dye, methyl orange is
almost neutral, while methyl red is considered acid. As the surface area of the nanoparticles
is greater in alkaline media, this suggests that the AuNPs will be more active against
methylene blue and less active against methyl red.

The organic compounds from the Sargassum spp. extract, involved in the reduction
and stabilization process, were determined using FTIR spectrometry.

The AuNPs and the Sargassum spp. spectra are shown in Figure 5. As can be seen, both
spectra are quite similar, suggesting that the surface of AuNPs is covered by functional
groups of Sargassum spp. extract. Nevertheless, the AuNPs spectrum shows a slight shift in
some absorbance bands, which suggests that those functional groups were involved in the
synthesis [40]. Looking at the results in detail, it is seen that both samples were composed
of hydroxyl compounds, which caused the characteristic broad absorption band between
3650 and 3250 cm−1. The absorption bands at 2935 and 2860 cm−1 can be attributed to long-
chain linear aliphatic compounds. Then, at lower wavenumbers, a small band centered at
1720 cm−1 was caused by simple carbonyl compounds.

Macroalgae, such as Sargassum spp., have a high content of aromatic polyphenol
complex or lignin-like materials [28]. In the FTIR spectrum corresponding to Sargassum spp.
extract, the absorption bands caused by aromatic rings are observed at 3150–3000 cm−1 [41].
However, this vibrational signal overlaps with the OH absorption band. Hence, the
presence of this kind of compound can be confirmed by the bands centered at 1600 and
1550 cm−1, corresponding to aromatic ring vibrations [41]. The sample also included
olefinic groups established by the absorption band between 1420–1410 cm−1 assigned to
vinyl C-H in-plane bend vibrations. The absorption band between 1270–1230 cm−1 was
due to the presence of aromatic ethers on the Sargassum spp. extract. Finally, the band at
1080 cm−1 was caused by the C-O stretch of primary alcohol. Accordingly, it is possible to
conclude that the polyphenolic groups are the main reducing agents in the biosynthesis
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of AuNPs. Other functional groups from biomolecules presented in the Sargassum spp.
extract are also confirmed for the stabilization of AuNPs.
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Figure 5. FTIR analysis of water/ethanol Sargassum spp. extract and AuNPs.

Determining the concentration of AuNPs present in the sample is very important
to evaluate any application. These data can be obtained by TGA analysis, which is a
progressive heating to high temperatures [42–44]. In this way, moisture is removed, and
organic compounds are calcined. Therefore, the mass corresponding to the AuNPs can be
estimated.

Figure 6 shows the TGA results of the Sargassum spp. extract and AuNPs dry samples.
A significant decrease in the percent weight of the sample was seen. At least two different
events can be observed; the first, between 120 and 200 ◦C, attributed to the evaporation
of moisture. The second event occurred between 270 and 330◦, corresponding to the
decomposition of other organic compounds present in the extract. The calcination then
continued with a linear behavior until reaching 500 ◦C. According to Elbagory et al., the
weight loss in this temperature range is attributed to the decomposition of resistant aromatic
compounds [45]. After 500 ◦C, there were no obvious changes in weight, indicating a
complete calcination of the extract. Similar thermal behavior has been reported in the
synthesis of nanoparticles by green attempts [44,46]. This analysis showed a weight
loss of 51%, meaning that the remaining 49% corresponds to the weight of carbon and
calcined products.

On the other hand, the TGA analysis of AuNPs was carried out using 5.03 mg obtained
by drying 10 mL of sample. A decrease in weight from 30 to 500 ◦C was observed, attributed
to the decomposition and calcination of the organic compounds present in the sample.
After this temperature, there were no significant changes in the weight of the sample, whose
loss was equivalent to 29%, corresponding to 1.46 mg. Therefore, the remaining weight
was equal to 3.57 mg, of which 1.75 mg (49%) corresponded to the organically calcined
products. That is, 1.82 mg of the sample corresponded to the uncalcined phase, which in
this case was AuNPs since, according to X-ray and EDS analysis, the only metallic phase
present in the sample was gold. Therefore, taking into account the volume of sample used,
it can be determined that the concentration of nanoparticles was equal to 0.182 mg/mL.

The results of the organic dye degradation expressed as the increased function of ad-
sorption capacity over time are seen in Figure 7a–c. It can be observed that the degradation
of the dyes was extremely fast, less than ten minutes, with methylene blue being the fastest
to degrade (~5 min) and methyl red the slowest (~9 min).
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Figure 7d shows the effect of varying the initial volume of AuNPs used for dye
degradation. As the volume increases, the equilibrium adsorption capacity (qe) is reduced,
indicating, the optimal concentration of AuNPs (for this case, 2.75 µg·mL−1) required
for the catalytic process. Consequently, beyond this, there will be an excess of nanoparti-
cles participating in the catalytic process, accelerating the reaction but at the expense of
underusing AuNPs.

It is also observed in Figure 7 that the AuNPs have a higher preference for methylene
blue degradation, compared to that for methyl orange and methyl red, confirming the
suggestion proposed from the zeta potential, that AuNPs will have higher catalytic activity
for cationic dyes since they have the highest surface area in alkaline media.

The characteristic parameters of each proposed model were obtained after the linear
plot of the equation described in the Experimental section, and their values with their
correlation coefficient are shown in Table 1.

Table 1. Characteristic parameters obtained for the degradation of the organic dyes with the different kinetic models.

Methylene Blue Methyl Orange Methyl Red

Kinetic
Model

Characteristic
Parameter R2 Characteristic

Parameter R2 Characteristic
Parameter R2

PFO
k1 1.3150

0.6339
k1 0.4776

0.7787
k1 0.3344

0.9198qe 1533.10 qe 226.05 qe 224.70

PSO
k2 0.0094

0.3937
k2 0.0003

0.1862
k2 0.0002

0.3453h 5.5036 h 8.1037 h 9.9900
qe −24.1546 qe −172.4138 qe −200

Elovich
model

α 194.1453
0.8460

α 37.7868
0.8148

α 49.4101
0.9098

β 0.0049 β 0.0226 β 0.0171

IPD
ki 1

1
ki 52.0833

0.9149
ki 64.6271

0.9768Ci 0 Ci −54.4762 Ci −65.3418

As observed from the correlation coefficient of the kinetics models, the best fit is from
de Weber’s intraparticle diffusion model (IDP), which is usually the third selection after
PFO and PSO for liquid degradation kinetics in environmental remediation. It is noticeable
that methylene blue degradation is controlled only by intraparticle diffusion since the
linear fit from the model passes through the origin (Ci = 0). Usually, the Ci value is related
to information about the thickness of the boundary layer. The larger C implies the more
significant effect of the boundary layer. This is important when negative intercepts are
obtained since boundary layer thickness related to surface reaction control is retarding IDP.

For methyl orange and methyl red, the initial degradation rate (at very short times)
is governed by a surface reaction and then by IDP. A scheme for the photocatalytic dye
degradation process is presented in Figure 8. Taking into account the use of NaBH4,
the complete degradation mechanism can be explained as follows. First, BH4

− ions are
adsorbed on the AuNPs’ surface. Subsequently, the AuNPs reduce the kinetic barrier by
lowering the reaction activation energy while the dye molecules diffuse into their surface.
Thus, reductive degradation becomes thermodynamically and kinetically favorable. When
the kinetic barrier is overcome, the AuNPs act as a reservoir for the electrons, allowing the
excess electrons from the surface of the nanoparticles to transfer to the dye molecules and
reduce them [47,48].

Table 2 shows the turnover frequency (TOF) for the different dyes with the lowest
and highest concentrations of AuNPs used to degrade each dye. It is observed that TOF
has the same tendency as that of the adsorption capacity (q [µg·mg−1]); as the AuNPs
concentration increases, the value of TOF is reduced. Again, these TOF values for dye
degradation are consistent with values reported elsewhere for other nanoparticles [49,50].
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Table 2. Turnover frequency (TOF) for the dyes showing the lowest and highest concentrations of
AuNPs.

Dye AuNPs (µL) TOF (h−1)

Methylene Blue 10 3.60
90 1.07

Methyl Orange 10 4.98 × 10−1

90 6.18 × 10−2

Methyl Red 10 7.75 × 10−1

90 0.96 × 10−1

On the other hand, the percentage of degradation was obtained using 90 µL of AuNPs.
Efficiencies of 99.6, 98.2, and 94.9% were obtained to degrade methylene blue, methyl red, and
methyl orange, respectively. Table 3 shows a comparison of the degradation of organic dyes
using AuNPs synthesized by different routes. As can be seen, the results obtained in this work
show high efficiencies, comparable or even better than other reported results. In addition, it
should be noted that the synthesis of nanoparticles by green routes has certain advantages
over other synthesis techniques since they are simple, inexpensive, and non-toxic processes.
Comparing the results obtained with biosynthesized nanoparticles, the use of Sargassum
should be highlighted. The overpopulation of this alga has brought severe environmental and
economic problems, so this practical and sustainable use for the synthesis of AuNPs could
mean a decrease in the nuisance caused by Sargassum in the Mexican Caribbean.

To demonstrate that the catalytic activity is a combination of the properties of the AuNPs,
NaBH4, and the source of visible, ultraviolet light, UV-Vis analysis of the different blind tests
was carried out, see Figure 9. The following combinations were evaluated: (a) AuNPs with
dyes, (b) NaBH4 with dyes, and (c) AuNPs with NaBH4 and dyes but without a light source.
UV-Vis spectra were taken every 3 min and carried out in the dark. The behavior of the three
dyes was similar when mixed with a single reagent (NaBH4 or AuNPs); a very small decrease
in the absorption band of the dye was observed, meaning little degradation. A decrease in the
absorption band was observed when the degradation was carried out in the absence of the
UV-Vis source, corresponding to degradations between 10 and 20%, after 9 min. These results
demonstrate the ability of AuNPs with NaBH4 to degrade organic dyes, and that the reaction
rate can be increased by using a UV-Vis light source.
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Table 3. Comparison of the degradation of organic dyes using AuNPs synthesized by different routes.

Material Synthesis Method Organic Dye % Degradation Reference

AuNPs (This work) Green synthesis
Methylene blue 99.6
Methyl orange 98.2

Methyl red 94.9

AuNPs Chemical reduction
Methylene blue 99.4

[51]Methyl orange 91

AuNPs-zeolite Chemical reduction Methylene blue 50 [52]

AuNPs-MoS2 Chemical reduction
Methylene blue 94.3

[53]Methyl red 96.7

AuNPs Green synthesis Methylene blue 96.26 [37]

Au-Ag alloy NPs Green synthesis
Methylene blue 96.59

[54]Methyl orange 80.06
Methylene violet 86.88

AuNPs Green synthesis Methylene blue 84 [55]

Au-ZnO NPs Sol-gel Methylene blue 82.1 [56]

AuNPs Green synthesis
Acid Orange II 94.6

[38]Acid yellow II 92.7
Reactive red 95.3

AuNPs Green synthesis Methyl orange 83.25
[57]Rhodamine B 87.64

AuNPs Green synthesis Methylene violet 89.17 [58]

TiO2-AuNPs Chemical reduction/UV irradiation Methylene blue 90 [59]
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Figure 9. UV-Vis analysis of the blind tests for methylene blue, methyl orange, and methyl red
degradation.
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The organic dyes once degraded are colorless and non-toxic. The reaction products
emit absorption peaks in the UV-Vis spectrum in the range 200–300 nm. The Figure 10
shows the UV-Vis spectra in a wide wavelength range (200–700 nm), corresponding to the
degradation of the dyes using the highest volume of AuNPs (90 µL). Figure 10a corresponds
to the degradation of methylene blue. The characteristic signal of this dye was at 664 nm,
which decreased as time passed, signifying its gradual degradation. At the same time, a
signal at 257 nm increased in intensity. Some reports link this signal to the product formed,
that is, leuko methylene blue [60,61].
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Figure 10. UV-Vis analysis of the degradation of (a) methylene blue, (b) methyl orange, and (c) methyl red using AuNPs.

Similar behavior was observed for the degradation of methyl orange and methyl red
(Figure 10b,c). The absorption signals of methyl orange (464 nm) and methyl red (500 nm)
decreased as degradation occurred. However, a new signal, at 247 nm, began to increase
in intensity. This signal corresponds to organic compounds with amino groups (-NH2).
According to Sha et al., this band appears as a result of the degradation of the azo bond of
this type of organic dye [62].

Figure 11a–c show the scanning electron microscopy (SEM) images with their respec-
tive EDS spectrum of the AuNPs after the degradation of methylene blue, methyl orange,
and methyl red, respectively. As can be observed from the SEM images, agglomerates
and aggregates of AuNPs are not present, indicating a good particle size distribution.
With respect to the particle size, apparently the AuNPs particle size was preserved in the
samples after the degradation of methylene blue and methyl red. However, in the sample
after the degradation of methyl orange, two particle size distributions were observables,
the first one, AuNPs with a particle size similar to that observable in the samples after
the degradation of methylene blue and methyl red, and the second one, faceted AuNPs
of a larger size as a product of growth kinetics. On the other hand, the EDS spectra only
show Au elements from the nanoparticles, C and O are from the organic compound and
the support film of the grid, Cu, Al, Si, and Sn elements are from the holder and grid.
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Figure 11. SEM and EDS analysis of the AuNPs after degradation of (a) methylene blue, (b) methyl
orange, and (c) methyl red.

4. Conclusions

From the results of this work, it is seen that Sargassum spp. contains compounds
with antioxidant capacity that can reduce gold ions and subsequently stabilize nanosized
particles. The catalytic efficiency of metal nanoparticles increases as their surface-to-
volume ratio increases. Therefore, various parameters such as the solvent used to make the
Sargassum extract and the extract/precursor salt volume ratio were evaluated to optimize
the synthesis condition to obtain high yield, stable, small, and monodisperse nanoparticles.
The results showed that the highest concentration of antioxidant compounds is extracted
using a 50% water/ethanol mixture, leading to the synthesis of a higher concentration of
homogeneous AuNPs. The increase in the extract volume leads to a more efficient synthesis,
obtaining the best results from a 2:1 ratio of extract/precursor salt. In this condition,
nanoparticles are spherical and range in size from 15 to 30 nm, with results corroborated
by DLS and SEM. According to the FTIR results, the reduction and stabilization capacity is
attributed to the polyphenolic compounds from Sargassum spp.

Finally, the AuNPs were used for the reduction of toxic organic dyes. The results were
excellent in efficiency and degradation for methylene blue, methyl orange, and methyl red.
The kinetic study shows that the degradation of methylene blue is due to intra-particle
diffusion. In contrast, methyl orange and methyl red degradations were carried out in
two stages: first, by a superficial reaction, and second, by intraparticle diffusion. This
finding is important because it shows that the stabilizing agent does not compromise the
catalytic efficiency of AuNPs, making the use of Sargassum spp. promising for the synthesis
of gold nanoparticles. In this way, we can make use of the overpopulation of these algae
in the Mexican Caribbean and offer an excellent alternative for the degradation of toxic
substances, which can be applied in water treatment.
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