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Abstract: Oral glucose tolerance tests, in which the concentration of glucose is monitored in the
circulation over 2 h after ingesting a bolus, probe diabetic or pre-diabetic conditions. The resulting
glucose curves inform about glucose turnover, insulin production and sensitivity, and other
parameters. However, extracting the relevant parameters from a single complex curve is not
straightforward. We propose a simple modeling method recapitulating the most salient features of
the role of insulin-secreting pancreatic β-cells and insulin sensitive tissues. This method implements
four ordinary differential equations with ten parameters describing the time-dependence of glucose
concentration, its removal rate, and the circulating and stored insulin concentrations. From the
initial parameter set adjusted to a reference condition, fitting is done by minimizing a weighted
least-square residual. In doing so, the sensitivity of β-cells to glucose was identified as the most
likely impacted function at weaning for the progeny of rats that were lightly exposed to cadmium in
the perigestational period. Later in life, after young rats received non-contaminated carbohydrate
enriched food, differences are more subtle, but modeling agrees with long-lasting perturbation of
glucose homeostasis.

Keywords: OGTT; minimal model; cadmium; glucose response mechanism

1. Introduction

The diagnostic and monitoring of diabetes mellitus rely on the experimental assessment of glucose
homeostasis. Various tests and indices have been developed over time with the aim of identifying the
sources of dysfunction among two main categories, deficient insulin secretion and insulin resistance.
The former reflects the failure of β-cells in pancreatic islets of Langerhans to respond to increased
glucose concentrations, whereas the latter corresponds to the increased inability of insulin-sensitive
tissues, such as liver, muscles, and adipose tissue, to internalize glucose upon insulin stimulation
together with deficient repression by insulin of hepatic glucose synthesis. Such conditions progressively
develop in pre-diabetic states, and they are the hallmark of diabetes. However, discriminating between
β-cells failure and insulin resistance is a challenge and involves invasive assays [1].

Among the environmental contributors to diabetes, particularly type 2 diabetes, exposure to the
widespread metal cadmium has been regularly proposed. Epidemiological data promoted the idea
at the beginning of the century [2], and, since then, conflicting results have bolstered debate on the
issue [3–10] without reaching any clear consensus. The same statement applies to epidemiological
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studies considering the influence of the cadmium burden of the mother on the glucose homeostasis of
both mother and child [11,12]. Besides, mechanistic investigations on the effects of cadmium on the
function of the β-cells often focused on large, short-term, exposure (see [13,14] for the latest examples
of such approaches) that bear little relevance to environmental conditions. Comparatively, very
few studies investigated the relationship between low-level cadmium burden and impaired glucose
homeostasis in relatively well defined conditions that can be implemented in the laboratory [15].

Among currently applied assays probing glucose homeostasis, oral glucose tolerance tests (OGTT)
gather several advantages such as low-end staff and patient burden, integrated physiological behavior
of the main contributors to glucose homeostasis, and clinically valuable information. In clinical practice,
many parameters, such as 1-h or 2-h post-load glucose values that are extracted during OGTT, fasting
glucose, or more indirect markers such as glycated haemoglobin, are considered in their ability to
provide sensitive and cheap ways to diagnose dysglycemia and predict the development of diabetes.
However, none gathers a consensus for application to all populations, or in the presence of the many
confounding conditions [16]. By contrast, in research settings as with laboratory animals, the high
information content of OGTT is more readily accessible since the kinetic data relative to blood glucose
increase after the bolus and glucose disposal up to 2–3 h can be obtained.

The OGTT include a wealth of quantitative information that cannot always be extracted by mere
examination of the curves presenting the variations of circulating glucose over time after a bolus,
or even integration in the form of the area under the curve. We propose here a simple modeling and
parameter analysis of such curves after cadmium exposure. The experimental data on which the
present work is based were all reported before [17,18] for groups of rat pups exposed to low-level
cadmium contamination through their mothers during gestation and lactation. All experimental
details are available in these [17,18] and other [19] publications. In our hands [18], one of the frequently
emphasized disadvantages of OGTT, namely its variability as compared to intravenous methods,
has not been encountered as witnessed by the narrow spreading of measured values observed within
experimental groups. This experimental advantage sets a strong basis for detailed analysis, which
should allow us to focus on the variations of different parameters of glucose homeostasis obtained for
these animals [18].

The purpose of the present study was to first build a simple kinetic model describing the evolution
of the glucose concentration in the context of OGTT. Then, numerical simulations were run on
previously obtained experimental results [17,18]. The process allowed us to test three groups of
hypothesis via the sensitivity of the associated parameters as a function of cadmium exposure at three
ages of pups post-weaning. These hypotheses were grouped as: (1) insulin sensitivity of glucose
withdrawing tissues such as liver and muscles; (2) insulin turnover; and (3) insulin secretion by β-cells.

2. Materials and Methods

2.1. Summary of the Animal Study on Which Modeling Was Applied

The model built in the present study was applied to previously published data on pups born
from cadmium-exposed dams [18]. The animal study was approved by the ethics committee
(224_LBFA-U1055, 7 April 2015) affiliated to the animal facility (D3842110001) and agreed by the French
Ministry of research (approval number 02397.02, 8 January 2018). A summary of the experimental
protocol is shown in Figure 1. Shortly, dams were separated into three different groups and offered
ad libitum doses of cadmium (CdCl2) in drinking water adjusted to 0, 50, and 500 µg·(kg body
mass)−1·day−1 above the diet baseline [19]. The groups were reorganized post hoc as ‘control’, Cd1,
and Cd2 according to the increasing Cd concentrations of the dam’s kidneys [18]. This way, the OGTT
measured for the respective pups are more representative of the cadmium exposure of the progeny via
their mothers. The oral glucose tolerance tests (OGTT) measure, after overnight fasting, the evolution
of plasma glucose concentration during the 2 h following force-feeding glucose intake at 2 mg per g of
body mass. The tests were performed on the pups 21 days after birth, i.e., at weaning at Post-Natal



Toxics 2020, 8, 30 3 of 16

Day 21 (PND21), at PND26, and at PND60. It has to be emphasized that the groups of pups were not
exposed to different cadmium concentrations after weaning (>PND21) as they were all put on the
same, not-intentionally cadmium-supplemented, diet. The population of the groups Control, Cd1 and
Cd2 at the time points PND21, PND26, and PND60 are recalled in Table 1 to appreciate the statistical
power of the studied data.

Table 1. Number of animals in the control, Cd1 and Cd2 groups at PND21, PND26, and PND60.

PND21 PND26 PND60

Control 48 13 12
Cd1 38 18 17
Cd2 35 10 12

Figure 1. Protocol for indirect exposure of rat litters to cadmium through their mothers.

2.2. The Minimal Model (MINMOD)

As we plan in future work to apply formal or computationally expensive methods on our
model, we built the simplest model possible while retaining important and meaningful variables
for experimentalists, namely the plasma glucose concentration and the plasma insulin concentration.
For this purpose, we used the minimal model (MINMOD) [20,21] as a starting point. The MINMOD
model [21] is a small ODE model describing the evolution of glucose concentration after an initial
intravenous injection of a glucose bolus.

Ġ = −p1(G(t)−Gb)− X(t)G(t)

Ẋ = −p2X(t) + p3(I(t)− Ib)

İ = −n I(t) + γ (G(t)− h) t

(1)

The MINMOD model in Equation (1) has three variables: G is the glucose concentration in
circulating blood, X is the rate of glucose withdrawal by muscles and adipocytes due to insulin, and
I is the insulin concentration in circulating blood. This dynamic is modulated by seven parameters
p1, p2, p3, n, γ, Gb, Ib and h. Parameters p1 is a control rate on the glucose G(t) to maintain the threshold
concentration Gb in absence of insulin regulation and glucose intake. Parameter p2 is the decrease rate
of the variable glucose absorption rate X(t). Parameter p3 is the increase rate of X(t), and is associated
to the insulin threshold Ib. The parameters associated to insulin modeling in the MINMOD model are
as follows: n is the degradation rate of insulin and γ is the long-term insulin production rate when
glucose is above threshold h.
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2.3. Glucose Tolerance Test Simulation Procedures

Numerical simulations were performed in JULIA using the DIFFERENTIALEQUATIONS

library [22]. The process of fitting the parameter sets by minimizing Equation (5) for each
dataset was performed manually. The code associated to these simulations can be found at
https://github.com/roccaa/OGTT_Simulations.

3. Results

3.1. OGTT Modeling

In this approach, we first propose a model, which is adapted from the model MINMOD [21], to
reproduce the OGTT results obtained in [17,18] from the protocol described in Figure 1. We refer to [23]
for a review of glucose regulation models, and, together with [24–27], for a modeling of the OGTT in
a more complex and exhaustive manner. Finally, we highlight the work [28] which contains a very
detailed model of glucose response after a meal. The oral minimal model defined in [29] assembles
three “minimal” models in order to build a quantitative minimal model of both glucose and insulin
evolution in the context of OGTT. However, this model is still too complex for our simple purpose.
The trade off of not using a model as detailed as [29] is that our conclusion will only be qualitative:
the fitted models and parameters cannot be used for quantitative predictive purposes unlike those
in [21,29].

The MINMOD model from [21] is not designed for OGTT, but for intravenous glucose tolerance
tests (IvGTT). Therefore, we cannot consider that the plasma glucose is already at its maximal
concentration at t = 0, as it is done for IvGTT studies.

Complex OGTT models such as [28] use compartmental modeling to represent the multiple stages
of glucose distribution in the body, and to obtain the glucose rate of appearance in plasma after the meal.
As a first approximation, we propose a simpler modeling using direct experimental results measuring
the glucose rate of appearance after ingestion in rat, as follows. Following Wielinga et al. [30], we set
the maximum of the rate of glucose appearance in the rat circulation ∼30 min after the meal
(we consider that the time food spends in stomach is close to zero for the glucose solution). Similarly,
the initial value of the rate of appearance was ∼70% of its maximum (see Figure 2). With this
approximation, we eluded the steep increase of the glucose rate of appearance in the first few minutes
of the experiments. This is justified as we focus on the simulation of the plasma glucose concentration
with the first data point 10 min after glucose feeding. However, this implies imprecision with respect
to the numerical variation of insulin between the fasting period and the peak of the insulin production.
The curve of the glucose rate of appearance as a function of time was modeled by the continuous
function GRA(t):

GRA(t) = K
1

σ
√

2π
e
−(t−µ)2

2σ2 , (2)

where 1
σ
√

2π
e
−(t−µ)2

2σ2 is a Gaussian function centred on µ. Fitting to the experimental curve in ([30],
Figure 4), we chose µ = 30 min that is the time of maximal appearance rate, and σ = 35 to obtain
∼70% of the maximum rate at t = 0. The value of the parameter K is determined by the actual
quantity of glucose fed to the rats, such that all the glucose has to be absorbed over the [0,+∞[ time
interval. Let mGlc be the mass of glucose fed to the rats (see Table 2 for the chosen rat body mass in
the simulations at PND21, -26, and -60 with respect to the measurement in [17,18]) and VBlood the rat
blood volume (see Table 2) as given in [31]. Then, given an administrated concentration of glucose
mGlc/VBlood, the value of K (Table 2) is the solution of the following equation:

∫ +∞

0
K

1
σ
√

2π
e
−(t−µ)2

2σ2 dt =
mGlc
VBlood

. (3)

https://github.com/roccaa/OGTT_Simulations
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Figure 2. Approximation of the plasma glucose rate of appearance in 21-day-old rats (PND21).

Table 2. Values of body mass, blood volume, and parameter K at PND21, -26 and -60.

PND21 PND26 PND60 Unit

Body mass 45 65 205 g
Blood volume 0.03 0.04 0.128 dL
K 3729 4040 3982 mg/(dL·min)

Upon secretagogue (here glucose) stimulation, insulin release by β-cells occurs in two overlapping
phases [32]. The first phase, hereafter called ‘fast’, corresponds to the mobilization of granules
belonging to the ‘readily releasable pool’ (RRP) by fusion to the plasma membrane and quasi-immediate
excretion: it lasts for a few minutes. The second (‘slow’) phase lasts longer because it involves more
complex phenomena such as trafficking to the surface of more deeply stored granules, and production
and maturation of new insulin granules up to increased insulin transcription and synthesis to replenish
the RRP. The duration of this second phase of the order of 1–2 h allows the organism to start responding
to the insulin increase by the uptake of glucose in processing organs such as liver, muscles, and adipose
tissues, and parallel insulin clearance by the liver. Measuring glucose clearance in the circulation over
time thus integrates all these phenomena and probes the efficiency of insulin secretion by islets of
Langerhans in response to glucose and the insulin sensitivity of glucose processing tissues. Of note,
the first and second phases of insulin production cannot be distinguished in OGTT as delays in glucose
levels in the circulation depend on intestinal absorption. The MINMOD model correctly simulates
the slow phase of insulin production, but not the fast one outside of the IVGTT experimental context.
To address this problem, we added a state variable representing the insulin already present and ready
to be released in the blood circulation. Finally, the adapted MINMOD model is given by Equation (4).

Ġ = −p1(G(t)−Gb)− rCd X(t)G(t) + GRA(t)

Ẋ = −p2X(t) + p3(I(t)− Ib)

İ = −n I(t) + γ (G(t)− h) t + p4Is(t)

İs = −p4Is(t)

(4)

We recall that, in the ODE system in Equation (4), G is the glucose concentration in circulating
blood, X is the rate of glucose withdrawal by muscles and adipocytes due to insulin, I is the insulin
concentration in circulating blood, and Is is the insulin concentration stored in the β-cells and ready to
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be released. Here, we did not model the C-peptide concentration nor the liver production or absorption
of glucose unlike in the more detailed model of [29].

The parameters p1, p2, p3, n, γ, Gb, Ib, and h are original parameters of the MINMOD model.
However, they were refitted in our experimental context. We refer to Section 2.2 for a more
detailed introduction to the original MINMOD model. In addition to the parameters of the original
MINMOD model, we added, for our purpose of modeling OGTT and cadmium impact, three
additional parameters. The flux associated with glucose intake is modeled by GRA(t) in Equation (2).
The efficiency of the rate of glucose withdrawal X(t) is modeled by rCd. This parameter rCd was
always taken equal to 1.0 in the simulations corresponding to the data of the control group. Finally,
the parameter p4 models the secretion rate of the readily releasable pool of insulin modeled by the
variable Is(t).

The datasets were obtained from three groups of pups [18], namely control, Cd1, and Cd2 born
from female rats with background, medium, and relatively high cadmium burden, respectively, still all
corresponding to low exposure doses [18]. OGTT were performed on pups at weaning (21 days after
birth, that is PND21), a few days later after shifting on a regular non contaminated chow (PND26), and
pcorfive weeks later (PND60). To estimate the goodness of fit of a given simulation compared to the
experimental data, we used the root of the weighted least squares error:

ε(k) =
√

∑
i

Wi(xexp,i − xsimu(ti, k))2 , (5)

where k is a parameter set, xexp,i are the mean values associated to an experimental dataset (see Table 1
for its corresponding population), and xsimu(t, k) its associated simulation of the OGTT. The weight
Wi is determined by the equation:

Wi =
1

ν2
i (∑i x2

exp,i)
,

where ν2
i are the variance to the mean associated to the ith data point.

It follows that, for a given parameter set k, the lower the fitting error ε(k), the better the fitting of
the mean of the experimental data. When fitting the experimental results, this implies a bias in favor of
the mean values of the data points as the error ε(k) is 0 if the simulation goes through all mean points.
Let us remark that the fitting error will decrease when the variances ν2

i increase: an experimental
point is easier to fit when its experimental uncertainty increases. This adjustment allows giving more
importance to the fitting of points which are experimentally in close positions as they will be the ones
which really matter in the decrease of ε(k). Here, the uncertainty on the experimental results not only
comes from the precision of the measurements, but also, and mainly, from the individual variations
within groups.

It is important to note that the error is specific to a dataset, and that errors associated to two
different datasets cannot be compared. Only comparing the effect of two parameter sets to mean data
points (and associated variances) corresponding to a given group (control, Cd1, or Cd2) at a given
period (PND21, -26, or -60) makes sense. In Figure 3, we provide a schematic representation of our
method to test the possible target of cadmium at PND21, PND26, and PND60, with respect to both our
OGTT modeling and the experimental data.
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Figure 3. Modeling method to test hypotheses on the possible targets of cadmium. In the diagram,
the index i spans hypotheses 1.1–3.3.

3.2. Parameter Analysis

The parameters were searched in the intervals proposed in [21], bloated by one order of magnitude,
when possible. The initial value of the concentration of readily releasable insulin was fitted for the
control group at PND21 and kept the same for the other experiments. The initial concentration of
fasting glucose and insulin in plasma were taken from [18]. We chose to take X(0) = 0 as initial
condition of the withdrawal rate of glucose: this implies a lack of regulation effect at t = 0. To relax the
parameter search, when fitting the parameters to the datasets corresponding to groups Cd1 and Cd2,
we only considered a few hypotheses on the evolution of the parameters, starting from the ones fitting
the control group, by only altering one parameter at a time.

We considered the following hypotheses for the possible effects of cadmium of plasma
glucose regulation:

Hypothesis 1. Modification of the sensitivity of insulin sensitive tissues.

- Hypothesis 1.1: rCd varies: this shows the effect of cadmium on the glucose removal by the tissues. If
rCd < 1, then the system has developed insulin resistance.

- Hypothesis 1.2: p3 varies: this represents the effect of insulin on the rate of glucose withdrawal from
the circulation.

- Hypothesis 1.3: p2 varies: this affects the decrease rate of X(t), which is the glucose withdrawal rate.

Hypothesis 2. n varies: this models an effect on insulin degradation.

Hypothesis 3. Modification of the insulin release rate.

- Hypothesis 3.1: γ varies: this models an evolution of the insulin release rate, in response to glucose, in the
slow phase of insulin production.

- Hypothesis 3.2: p4 varies: this models the stored insulin release rate.
- Hypothesis 3.3: h varies: this affects the glucose response threshold.

The hypotheses on the effect of cadmium on the regulation of circulating glucose were tested in
the following manner. We first looked for a starting parameter set kctrl minimizing Equation (5) for the
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experimental results of the control group. Then, for experimental results of group Cd1 (respectively
Cd2), we first took a hypothesis Hi and we refitted a parameter set kHi by varying only one parameter
at a time as defined above; the values of the other parameters were taken equal to the ones in the kctrl
parameter set.

3.2.1. Results at PND21 (Weaning)

For 21-day-old pups at weaning, the goodness of fit for each hypothesis and associated to group
Cd1 dataset are shown in Table 3. Considering the initial conditions from Table 4, the associated best
parameter sets are given in Table 5. The simulation corresponding to the best parameter fits are shown
in Figure 4. It should be reminded here that the experimental points reported in Figure 4 showed
significant differences between the animal groups for the areas under the arbitrary drawn curves
(AUC) in previously published data [17,18]. Here, the goodness of fit associated to the control group
dataset is 0.00311 (Table 6). The best fits for group Cd1 are obtained considering Hypothesis 3.1, i.e.,
decreased response of β-cells to glucose in the slow phase of insulin production. For the experiment
associated to group Cd2 at PND21, the best fit is also obtained for Hypothesis 3.1 and yields a goodness
of 0.00433: it shows a continuous decrease of γ as a function of increased cadmium burden of the dams
(Table 5).

Figure 4. Simulations of the OGTT at PND21 for the control group, Cd1 and Cd2 groups.
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Table 3. Goodness of fit from Equation (5) of each hypothesis applied to the Cd1 and Cd2 datasets at
PND21. The symbol − denotes a value no better than the control parameter set.

Hypothesis Cd1 Cd2

No Hyp. 0.0188 0.0144
Hyp 1.1 0.0144 0.00820
Hyp 1.2 0.0144 0.00821
Hyp 1.3 0.0140 0.00789
Hyp 2 0.0145 0.00852
Hyp 3.1 0.00566 0.00433
Hyp 3.2 − 0.0137
Hyp 3.3 0.0102 0.00740

Table 4. Initial condition determined for the control group at PND21. These initial conditions are
conserved for groups Cd1 and Cd2. Note that 1 U = 0.0347 mg of insulin.

Variable Value Unit

G(0) 110.0 mg/dL
X(0) 0.0 min−1

I(0) 16.0 nU/dL
Is(0) 5950.0 nU/dL

Table 5. Parameters values fitted for the control group as well as groups Cd1 and Cd2 at PND21
(considering Hypothesis 3.1 for both groups).

Parameters Ctrl Cd1 Cd2 Unit

p1 0.01 − − min−1

Gb 100.0 − − mg/dL
p2 0.56 − − min−1

p3 0.0155 − − (dL/nU)min−2

Ib 10.0 − − nU/dL
n 10.53 − − min−1

γ 0.0310 0.0258 0.0215 (nU/dL)min−2

h 85.0 − − mg/dL
p4 0.033 − − min−1

rCd 1.0 − − N.U.

Table 6. Goodness of fit from Equation (5) for each dataset of the control group at PND21, -26 and -60.

Control Groups Goodness of Fit

PND21 0.00311
PND26 0.00315
PND60 0.00251

3.2.2. Results at PND26

Concerning the experiments at PND26, after weaning at PND21 the pups shifted from a
milk-based, i.e., lipid-dominated, diet to conventional rodent chow which is rich in carbohydrates.
This change of diet induces important changes in the regulation mechanism: this translates into
considerable changes of the parameter set fitting the control group dataset. In addition, the three
groups of young animals were no longer differently exposed to cadmium after weaning, and the AUC
as previously reported [18] did not show any statistically significant difference.

The initial conditions at PND26 are given in Table 7. The goodness of fit for each hypothesis on
groups Cd1 and Cd2 are given in Table 8. The associated best parameters sets are given in Table 9.
The simulation associated to the best fits are shown in Figure 5. The goodness of fit associated to
the control group dataset is 0.00315 (see Table 6). We note that, unlike at PND21, there is no clear
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hypothesis that appears more likely than the others. Indeed, for group Cd1, although Hypothesis 2
yielded the best results, there is only a small difference with Hypotheses 1.1–1.3: thus, the present data
cannot discriminate between changes of the insulin sensitivity of muscle and adipose tissue or of the
insulin degradation rate.

Figure 5. Simulations of the OGTT at PND26 for the control group, Cd1 and Cd2 groups.

Table 7. Initial condition determined for the control group and groups Cd1 and Cd2 at PND26.

Variable Value Unit

G(0) 76.0 mg/dL
X(0) 0.0 min−1

I(0) 34.0 nU/dL
Is(0) 5950.0 nU/dL

Table 8. Goodness of fit from Equation (5) of each hypothesis applied to the datasets of groups Cd1
and Cd2 at PND26.

Hypothesis Cd1 Cd2

No Hyp. 0.00972 0.00600
Hyp 1.1 0.00411 0.00444
Hyp 1.2 0.00410 0.00435
Hyp 1.3 0.00398 0.00434
Hyp 2 0.00395 0.00442
Hyp 3.1 0.00762 0.00584
Hyp 3.2 0.00638 0.00388
Hyp 3.3 0.00819 0.00465

For group Cd2, we first observe that the higher variance on the experimental results leads to a
lower error associated to the control parameter set (denoted no Hyp. in Table 8). In addition, even
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though Hypothesis 3.2 (reduction in the RRP release rate) yields the best goodness of fit, there is no
clear distinction with the other hypotheses because of the increased variance. It follows that the
previous interpretation given for group Cd1, namely that of a cadmium effect on the sensitivity of
tissues to insulin or the hormone turnover, may still be valid.

Table 9. Parameters values fitted for the control group as well as groups Cd1 and Cd2 at PND26
(considering Hypothesis 3.2 for Cd2 and Hypothesis 2 for Cd1).

Parameters Ctrl Cd1 Cd2 Unit

p1 0.01 − − min−1

Gb 100.0 − − mg/dL
p2 0.61 − − min−1

p3 0.0245 − − (dL/nU)min−2

Ib 05.0 − − nU/dL
n 09.44 9.93 − min−1

γ 0.0110 − − (nU/dL)min−2

h 79.0 − − mg/dL
p4 0.0215 − 0.201 min−1

rCd 1.0 − − N.U.

3.2.3. Results at PND60

Finally, considering the initial conditions from Table 10, the parameter set fitted to the datasets at
PND60 are given in Table 11. The goodness of fit of the control group dataset is 0.00251 (see Table 6).
It can be observed in Figure 6 that group Cd1 from mothers with medium cadmium burden and
group Cd2 from the most intoxicated mothers show opposite behaviors with respect to the control
curve. Whereas group Cd1 behaved in a similar fashion to the previous results at PND26 with a higher
glucose peak than the control glucose response, the results of group Cd2 are characterized by a lower
glucose peak.

In Table 12, we notice for group Cd1 that except Hypotheses 3.1 and 3.3, none of the other
hypotheses have improved significantly the goodness of fit. However, Hypotheses 3.1 and 3.3 are not
among the ones providing an important improvement of the fit for the results associated to group Cd1
at PND26. This raises the possibility of a delayed effect of cadmium on the function of β–cells after
exposure during the perinatal period, in agreement with the variations of the C-peptide observed with
the same animals [18].

For the results associated with group Cd2, the first three data points are below their control
equivalent (see Figure 6). That means that, at PND60, group Cd2 (the one born of mothers with the
highest cadmium burden) has a faster removal of glucose from the circulation in the first 40 min. In the
simulation, it corresponds to an increase of the parameter p4 (Hypothesis 3.2) which best fits this
evolution. All the other hypotheses demonstrate only marginal, or no, improvements.

Table 10. Initial condition determined for the control group and groups Cd1 and Cd2 at PND60.

Variable Value Unit

G(0) 95.0 mg/dL
X(0) 0.0 min−1

I(0) 34.0 nU/dL
Is(0) 5950.0 nU/dL
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Table 11. Parameter values fitted for the control group as well as groups Cd1 and Cd2 at PND60
(considering Hypothesis 3.3 for Cd2 and Hypothesis 3.2 for Cd1).

Parameters Ctrl Cd1 Cd2 Unit

p1 0.01 − − min−1

Gb 100.0 − − mg/dL
p2 0.79 − − min−1

p3 0.0335 − − (dL/nU)min−2

Ib 06.0 − − nU/dL
n 8.35 − − min−1

γ 0.0078 − − (nU/dL)min−2

h 65.0 73.0 − mg/dL
p4 0.0170 − 0.0180 min−1

rCd 1.0 − − N.U.

Table 12. Goodness of fit from Equation (5) of each hypothesis applied to the datasets of groups Cd1
and Cd2 at PND60.

Hypothesis Cd1 Cd2

No Hyp. 0.00440 0.00403
Hyp 1.1 0.00395 0.00304
Hyp 1.2 0.00395 0.00304
Hyp 1.3 0.00396 0.00312
Hyp 2 0.00374 0.00325
Hyp 3.1 0.00267 −
Hyp 3.2 0.00439 0.00194
Hyp 3.3 0.00204 0.00402

Figure 6. Simulations of the OGTT at PND60 for the control group and groups Cd1 and Cd2.
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4. Discussion

As shown in the previous section, we tested through simulations various hypotheses that may
explain the cadmium influence on the glucose regulation mechanism by insulin. To this aim, we started
from a model reproducing correctly the control experiment with pups from mothers that were not
intentionally exposed to cadmium. Then, we tested each hypothesis by varying a single parameter
until it best fitted the dataset associated with the studied group of cadmium exposed pups. For this
reason, we can only provide insight on the effect of one mechanism at a time.

An apparent weakness of our approach might be the risk of overfitting a single curve with at least
10 parameters for four variables. However, once the initial conditions have been set, the procedure
aims at testing a series of hypotheses by varying a single parameter at a time to optimize fitting of a
complex curve. This way a clear trend may appear, as for the probed data at weaning (PND21), or not.
Thus, it is possible to safely avoid over-interpreting the simulations. The main practical interest of
the modeling effort is to readily help sorting out the most relevant effects of a perturbation of glucose
homeostasis.

For the experiments at PND21, we observed that, for both groups Cd1 and Cd2, it is the hypothesis
of a decreased response to glucose during the slow phase of production that best represents the
changes between the control group and the more exposed groups. On the experimental datasets,
this is noticeable by an increased plasma glucose concentration over the [30, 90] min interval, which
previously led to increased AUC [18]. The fitted simulations under Hypothesis 3.1 show a good fitting
especially on this interval.

However, a few noticeable points of the experimental datasets are not correctly represented by
the simulation with Hypothesis 3.1. In particular for group Cd2, the points at 10 and 120 min are not
correctly fitted by this single assumption on γ. The experimental point at 10 min, being higher than the
simulation, suggests an additional effect in the first phase of insulin secretion. This is represented in
our model by the parameter p4. However, this parameter should be affected together with γ, as Table 3
shows that Hypothesis 3.2 (p4 varies alone) does not correctly fit the data. Insights on the differences
for the point at 120 min are more difficult to explain as they can be due to multiple reasons such as:
a too coarse approximation of the glucose rate of appearance at 120 min, an effect on a mechanism
not represented in the model such as gluconeogenesis, the role of other hormones than insulin, or a
competition between multiple opposing effects that are not represented by our single hypothesis.
In any case, the present results can be compared with the observations made in [18]. Few biochemical
parameters were found to vary and consequently it was not possible to provide a robust explanation
to the changes of the OGTT results and associated AUC. Here, simulations of these curves point to
the decreased sensitivity of β-cells to glucose as the underlying factor. This decreased sensitivity is
proportional to the dams’ cadmium burden (Table 4), and it influences lipid metabolism [18]. The result
applies to pups at weaning, i.e., at an age when the endocrine pancreas has yet to fully mature.

The experimental results at PND26 and PND60 represent the evolution of the three groups without
additional exposure to cadmium through feeding beyond weaning: they show the lasting effect on
the metabolism of a previous cadmium exposure, even though the AUC derived from OGTT were no
longer significantly different between animal groups [18].

At PND26, we can already observe a slight behavioral difference with the previous datasets
at PND21: whereas at PND21 the glucose concentration of Cd2 is always significantly above Cd1
and control ([18], Figure 5), at PND26, all groups share similar results. Looking to the mean values,
one observes that the dataset of group Cd2 is closer to control than Cd1, which is confirmed in
the simulation by the lower fitting error for Cd2 compared to Cd1 in absence of hypothesis (see
Table 8). Even with this bias in favor of mean points, it is hard to reach any strong conclusion.
The experimental results of group Cd1 are best fitted under the hypotheses of a reduced sensitivity
to insulin of the glucose withdrawing tissues, or a faster degradation rate of insulin (Hypotheses
1.1–2). The experimental results of group Cd2 are so close to the control experimental results that no
hypothesis seems much better than another.
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Finally, at PND60, the differences among the three groups are not statistically significant ([18],
Figure 9). This is witnessed by the small error associated with the entry without hypothesis in Table 12.
When looking to the mean values, it is surprising to note that they are lower for group Cd2, and
larger than control for Cd1. The best fit for group Cd1 are Hypotheses 3.1 and 3.3 that are modeling a
negative effect on the slow phase of insulin production. The best fit for group Cd2 is the Hypothesis
3.2 modeling a positive effect on the first phase of insulin production.

5. Conclusions

In this work, we propose an extension of the MINMOD model [21] to simulate the circulating glucose
evolution during OGTT. We fitted OGTT experimental results performed on rats at different ages after
cadmium exposure through their mothers. Using these fitted models, we checked various different
hypotheses on the effect of cadmium on the glucose response, by comparing the implementation of these
hypotheses in the model to the experimental OGTT results for rats exposed to cadmium.

These simulations indicate that dams’ exposure to cadmium negatively affects the slow phase of
insulin release in response to glucose in pups at weaning. For the other experimental results at PND26
and PND60, there are no significant differences, yet the modeling approach agrees with the proposed
long-lasting effects of cadmium in young animals, long after the indirect exposure via their mothers
has ceased.

The results of this study may be extended by the development of a more complex model to
better approximate the glucose appearance rate in the context of an OGTT, as well as the mechanism
affected by Hypothesis 3.1. For this purpose, the comprehensive modeling of metabolism leading to
insulin secretion [33] should be included when relevant experimental data become available. In this
paper, we only propose a single fitting parameter set, but probing more complete datasets with more
exhaustive and costly methods should be performed in order to further assert our conclusions. Finally,
this model has only fitted the experimental glucose response, but not the evolution of insulin plasma
concentration over time during OGTT in young rats: combining such more extensive datasets would
be important to develop the modeling approach to be used in a more quantitative manner.
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PND21 Post-Natal Day 21
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PND60 Post-Natal Day 60
RRP Readily Releasable Pool
OGTT Oral Glucose Tolerance Test
AUC Area Under the Curve
MINMOD Minimal Model
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