Supplemental Material: A Comparison of the Nephrotoxicity of Low Doses of Cadmium and Lead

Soisungwan Satarug, Glenda C. Gobe, Pailin Ujjin and David A. Vesey

Figure S1. Comparing effects of $E_{c d} / E_{c r}$ and $E_{p b} / E_{c r}$ on eGFR change. The scatterplots relate eGFR to log $\left[(E C d / E c r) \times 10^{3}\right](\mathbf{A})$ and eGFR to $\log \left[(E P b / E c r) \times 10^{3}\right](\mathbf{B})$ in all subjects. The linear equations and coefficients of determination $\left(R^{2}\right)$ are provided together with standardized β and p-values. The bars represent the mean values for $e G F R$ across $E_{c d} / E_{c r}$ quartiles (\mathbf{C}) and $E_{p b} / E_{c r}$ quartiles (\mathbf{D}) after adjustment for age, covariates and interactions. The numbers of subjects are provided for all subgroups. The geometric mean (GM) values (standard deviation) for $E_{c d} / E_{c r}$ in quartiles $1,2,3$ and 4 are 0.14 (0.06), $0.35(0.06), 0.58$ (0.09) and 1.13 (0.51) $\mu \mathrm{g} / \mathrm{g}$ creatinine, respectively. The GM (SD) for Epb/Err in quartiles 1, 2, 3 and 4 are 0.49 (0.43), $1.52(0.14), 2.03$ (0.19) and $3.52(3.56) \mu \mathrm{g} / \mathrm{g}$ creatinine, respectively.

Table S1. Multivariable regression analysis for association of eGFR with $\mathrm{E}_{\mathrm{Cd}} / \mathrm{E}_{\mathrm{cr}}$ and $\mathrm{Epb}_{\mathrm{p}} / \mathrm{E}_{\mathrm{cr}}$.

Independent Variables	eGFR, mL/min $1.73 \mathrm{~m}^{2}$									
	All, $n=392$		Men, $n=195$		Women, $n=197$		Non-Smokers, $n=295$		Smokers, $n=97$	
	β	p								
Age	-0.474	<0.001*	-0.564	<0.001*	-0.402	<0.001*	-0.445	<0.001*	-0.548	<0.001*
BUN	-0.144	0.002*	-0.103	0.100	-0.158	0.017*	-0.127	0.020*	-0.189	0.031*
$\mathrm{Ecd}_{\text {d }} / \mathrm{E}_{\text {cr }}$	0.001	0.985	0.069	0.304	-0.043	0.516	0.016	0.779	-0.014	0.876
$\mathrm{Epb}^{\text {/ }}$ cr ${ }_{\text {cr }}$	0.044	0.365	0.015	0.806	0.065	0.324	0.043	0.460	0.012	0.888
Ferritin	0.067	0.216	0.141	0.024*	-0.013	0.838	0.048	0.429	0.098	0.246
Gender	0.181	0.008*	-	-	-	-	0.158	0.022	-	-
Smoking	0.039	0.481	0.024	0.696	-	-	-	-	-	-
Adjusted R^{2}	0.252	<0.001 \dagger	0.307	<0.001 \dagger	0.203	<0.001 \dagger	0.217	<0.001 \dagger	0.350	<0.001+

eGFR is a continuous dependent variable. Independent variables are listed in the first column, including $\mathrm{Ecd}_{\mathrm{cd}} / \mathrm{E}_{\text {cr }}$ as $\log \left[\left(\mathrm{E}_{\mathrm{cd}} / \mathrm{E}_{\mathrm{cr}}\right) \times 10^{3}\right], \mu \mathrm{g} / \mathrm{g}$ creatinine and $\mathrm{Epb} / \mathrm{E}_{\text {cr }}$ as $\log \left[\left(\mathrm{Epb}_{\mathrm{p}} / \mathrm{E}_{\mathrm{cr}}\right) \times 10^{3}\right], \mu \mathrm{g} / \mathrm{g}$ creatinine. A standardized regression coefficient β indicates the strength of an association between eGFR and an independent variable. * $p \leq 0.05$ identify statistically significant associations. Adjusted R^{2} value indicates the fraction of eGFR variation explained by independent variables. $+p \leq 0.05$ indicate the model explained a significant variability of eGFR levels.

Table S2. Prevalence odds ratios for reduced eGFR across Ecd/Ecr quartiles and Epb/Ecr quartiles.

Independent Variables/Factors	eGFR Levels <96 mL/min/1.73 m ${ }^{2}$				
	β Coefficients	POR ${ }^{\text {a }}$	95\% CI		pValue
	(SE)		Lower	Upper	
Age (years)	-0.080 (0.015)	0.923	0.896	0.951	<0.001*
Gender	-0.685 (0.353)	0.504	0.252	1.007	0.052
Smoking	-0.170 (0.354)	0.843	0.421	1.690	0.631
Low body iron store status ${ }^{\text {b }}$	0.072 (0.426)	1.075	0.466	2.479	0.866
$\mathrm{Ecd}_{\text {/ }} / \mathrm{Ecr}, \mu \mathrm{g} / \mathrm{g}$ creatinine					
Q1 (0.03-0.25)	Referent				
Q2 (0.26-0.44)	-0.125 (0.351)	0.883	0.444	1.755	0.722
Q3 (0.45-0.75)	0.059 (0.366)	1.061	0.517	2.176	0.872
Q4 (0.76-3.84)	0.357 (0.405)	1.430	0.646	3.162	0.378
$\mathrm{Epb} / \mathrm{Ecr}_{\text {cr }}, \mu \mathrm{g} / \mathrm{g}$ creatinine					
Q1 (0.05-1.24)	Referent				
Q2 (1.25-1.75)	-0.169 (0.380)	0.844	0.401	1.777	0.655
Q3 (1.76-2.41)	-0.689 (0.372)	0.502	0.242	1.042	0.064
Q4 (2.42-33.1)	-0.359 (0.395)	0.698	0.322	1.514	0.363

${ }^{\text {a }}$ POR $=$ Prevalence Odds Ratios for eGFR levels $\leq 96 \mathrm{~mL} / \mathrm{min} / 1.73 \mathrm{~m}^{2}$. The eGFR $96 \mathrm{~mL} / \mathrm{min} / 1.73 \mathrm{~m}^{2}$ corresponds to the $25^{\text {th }}$ percentile eGFR. ${ }^{\text {b }}$ Low iron store status is defined as serum ferritin levels $\leq 30 \mu \mathrm{~g} / \mathrm{L}$. ${ }^{*} p \leq 0.05$ indicate a statistically significant increment of POR, compared with the reference. The GM (SD) for $\mathrm{Ecd}_{\mathrm{cd}} / \mathrm{Ecr}_{\mathrm{cr}}$ and $\mathrm{Epb}_{\mathrm{p}} / \mathrm{Ecr}_{\mathrm{cr}}$ together with number of subjects in all urinary Cd quartiles and urinary Pb quartiles are as in Figure S1.

