Supplementary Material: The Source and Pathophysiologic Significance of Excreted Cadmium

Soisungwan Satarug, David A. Vesey, Werawan Ruangyuttikarn, Muneko Nishijo, Glenda C. Gobe and Kenneth R. Phelps

1. Demonstration that $E_x/C_{cr} = [x]_u[cr]_p/[cr]_u$.

Let V_u = urine flow rate, units of volume/time;

E_{*x*} = urinary excretion rate of substance *x*, units of mass/time;

[*x*]^u = urinary concentration of substance *x*, units of mass/volume;

E_{cr} = urinary excretion rate of creatinine, units of mass/time;

[cr]_P = plasma concentration of creatinine, units of mass/volume;

[cr]^u = urine concentration of creatinine, units of mass/volume;

 C_{cr} = renal creatinine clearance (an approximation of GFR) = $E_{cr}/[cr]_{P}$, units of volume/time;

 E_x/C_{cr} = amount of *x* excreted per volume of filtrate, units of mass/volume.

 $E_x/C_{cr} = [x]_u V_u/([cr]_u V_u/[cr]_p)$; cancelling V_u and rearranging,

 $\mathbf{E}_{x}/\mathbf{C}_{\mathrm{cr}} = [x]_{\mathrm{u}}[\mathrm{cr}]_{\mathrm{p}}/[\mathrm{cr}]_{\mathrm{u}}.$

2. Demonstration that Ecd/Crr is Unaffected by Muscle Mass

Let

(a) V_u = urine flow rate

(b) $E_{Cd} = [Cd]_u V_u$;

(c) $E_{cr} = [cr]_u V_u$; and

(d) $C_{cr} = E_{cr}/[cr]_p = [cr]_u V_u/[cr]_p.$

 E_{cr} is directly related to muscle mass [60]. According to equation (d), at a given C_{cr} , E_{cr} and $[cr]_{P}$ rise or fall by the same factor.

If E_{Cd} is normalized to E_{cr} , then $E_{Cd}/E_{cr} = [Cd]_u V_u/[cr]_u V_u$. Since E_{cr} is directly related to muscle mass, E_{Cd}/E_{cr} is inversely related to muscle mass at any E_{Cd} . The same is true of $[Cd]_u/[cr]_u$ after cancellation of V_u in the numerator and denominator.

If Ecd is normalized to C_{cr}, then Ecd/C_{cr}, *i.e.*, [Cd]_uV_u/[cr]_vV_u/[cr]_p, is unaffected by muscle mass because *at a given* $C_{cr} = (E_{cr}/[cr]_p)$, E_{cr} and [cr]_p rise or fall by the same factor as muscle mass varies. This fact remains true after simplification of the complex fraction to yield $E_{cd}/C_{cr} = [Cd]_u[cr]_p/[cr]_u$.

3. Demonstration that Eß2MG May Rise because of Increased Endogenous Production

Let $I_{\beta 2MG}$ = influx of β_2MG from endogenous sources into plasma;

 $[\beta_2 MG]_p$ = plasma concentration of $\beta_2 MG$, mg/L;

 $F_{\beta 2MG}$ = rate of glomerular filtration of $\beta 2MG$, mg/d;

 $E_{\beta 2MG}$ = urinary excretion rate of $\beta 2MG$, mg/d;

TD_{β 2MG} = rate of tubular degradation of β 2MG, mg/d;

GFR = glomerular filtration rate, L/d.

Assume that $F_{\beta 2MG} = GFR[\beta_2MG]_P = E_{\beta 2MG} + TD_{\beta 2MG}$.

Assume an equilibrium between $I_{\beta 2MG}$ and $F_{\beta 2MG}$, and assume stable GFR. If $I_{\beta 2MG}$ rises, so do $[\beta_2MG]_P$ and $F_{\beta 2MG}$. If $TD_{\beta 2MG}$ remains stable, $E_{\beta 2MG}$ must rise if $F_{\beta 2MG}$ rises. Thus $E_{\beta 2MG}$ may rise even though $TD_{\beta 2MG}$ has not fallen.

4. Demonstration that Eß2MG Rises if GFR Falls

From item 3, $F_{\beta 2MG} = GFR[\beta_2MG]_P = E_{\beta 2MG} + TD_{\beta 2MG}$. Dividing the equation on the right by GFR, $[\beta_2MG]_P = E_{\beta 2MG}/GFR + TD_{\beta 2MG}/GFR$.

Assume that I_{β2MG} and thus F_{β2MG} remain stable. Since F_{β2MG} = GFR[β_2MG]_P, [β_2MG]_P must rise reciprocally if GFR falls. Assume that TD_{β2MG}/GFR remains stable as GFR falls. If GFR has fallen, TD_{β2MG} must also fall. Since F_{β2MG} is constant and F_{β2MG} = E_{β2MG} + TD_{β2MG}, E_{β2MG} must rise.