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Abstract: Atmospheric sources of herbicides enable short- and long-range transport of these
compounds to off-target areas but the concentrations and mechanisms are poorly understood
due, in part, to the challenge of detecting these compounds in the atmosphere. We present chemical
ionization time-of-flight mass spectrometry as a sensitive, real-time technique to detect chlorinated
phenoxy acid herbicides in the atmosphere, using measurements during and after application over a
field at Colorado State University as a case study. Gas-phase 2,4-dichlorophenoxyacetic acid (2,4-D)
mixing ratios were greatest during application (up to 20 pptv), consistent with rapid volatilization
from spray droplets. In contrast, atmospheric concentrations of 2-methyl-4-chlorophenoxyacetic acid
(MCPA) increased for several hours after the initial application, indicative of a slower source than
2,4-D. The maximum observed gas-phase MCPA was 60 pptv, consistent with a post-application
volatilization source to the atmosphere. Exposure to applied pesticides in the gas-phase can thus
occur both during and at least several hours after application. Spray droplet volatilization and direct
volatilization from surfaces may both contribute pesticides to the atmosphere, enabling pesticide
transport to off-target and remote regions.
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1. Introduction

Herbicides are widely used throughout the United States, with up to 2.5 billion pounds of total
herbicide applied annually [1]. The off-target effects from aquatic transport and soil run-off of pesticides
are the typical focus of environmental studies, but the sources and fate of pesticides in the atmosphere
also impact the ecosystem and human health. Atmospheric concentrations cause unintentional
exposure to agricultural workers and pollinator populations [2–6]. Atmospheric transport enables
deposition to off-target areas (e.g., neighboring agricultural sites via short-range transport and more
distant areas via long-range transport) [7–15], and is controlled by atmospheric chemistry, including
gas/particle partitioning, oxidation chemistry, and removal by wet or dry deposition. However,
investigation of atmospheric pesticide sources and fate requires fast and sensitive instruments.

Atmospheric pesticide measurements are typically restricted to off-line sample collection and
subsequent analysis, often following time- and solvent-consuming extractions, with sample collection
times ranging from hours to days [16–18]. For example, high volume samplers pass hundreds of
cubic meters of air through filters in the space of 24 h, enabling sample concentration for subsequent
analysis. These actively-collected filters and sorbents, such as polyurethane foam or XAD-2 [19], are
then manually changed to obtain time-resolved sampling. Alternately, passive samplers comprising
absorbent material can be placed in outdoor environments, but typically require much longer (days to
weeks at best, often on the order of two to three months for seasonal sampling) sample collection time
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and are not typically used for pesticides that partition between gas and particle phases [20]. Off-line
analysis of filters or adsorbent cartridges typically involves gas or liquid chromatography coupled to
mass spectrometry and can be adequately sensitive for ambient measurements, even in remote locations.
However, recent developments in field-portable mass spectrometry enable much faster measurements
and offer the potential to directly measure gas-phase pesticides in the atmosphere [21,22].

Phenoxy acids are a class of herbicides that include 2,4-dichlorophenoxyacetic acid (2,4-D). 2,4-D
is toxic to humans and is linked to skin problems, cancer, and reproductive issues [23–25]. 2,4-D is
often paired with other herbicides in commercial mixtures, including 2-methyl-4-chlorophenoxyacetic
acid (MCPA) and other chlorinated aromatic alkyl acids. Few atmospheric measurements of these
2,4-D-type compounds exist. A four-year study of phenoxy acid herbicides in Canada showed
gas-phase atmospheric 2,4-D and MCPA concentrations on the order of micrograms per cubic meter [26],
although higher concentrations have been observed in the agricultural prairie regions (0.11–2.73 ng/m3

[0.014–0.355 pptv, STP] for 2,4-D and 0.17–1.88 ng/m3 [0.017–0.190 pptv] for MCPA) [27]. 2,4-D and
MCPA are currently used in both agriculture and commercial applications. Like many university
campuses, Colorado State University sprays herbicides annually to maintain campus grounds and
protect from broadleaf weeds. This annual spraying provides a test case that represents, to the best
of our knowledge, the first real-time measurements of herbicides in the atmosphere during and
after application.

Here, we describe the application of time-of-flight chemical ionization mass spectrometry with
acetate ionization to the direct measurement of atmospheric pesticides in the field. These measurements
highlight the different mechanisms for pesticide release into the atmosphere, and the potential for rapid
measurements to track the sources and fate of these anthropogenic pollutants. This work is intended
to be a case study, rather than a generalizable or quantifiable description of pesticide sources or fate to
the atmosphere. However, these measurements highlight the potential for real-time measurements
during application to study drift and other processes.

2. Materials and Methods

2.1. Field Measurements

Commercially-available herbicide mixtures were applied between 6:42 and 7:08 am (local time,
MST) on 3 September 2017 to a 2000 m2 plot of grass adjacent to the Chemistry building on the main
campus of Colorado State University (Fort Collins, CO, USA). On the morning of sampling, weather
records show that the wind was 5 km/h from the north; temperatures were at a low of 14 ◦C at 6 am and
reached 34 ◦C by noon. Average relative humidity between 6 am to noon (local time) was 40%, and the
average pressure was 1017 mbar. The application target was a campus lawn comprising well-watered
turf, with concrete buildings to the south, east, and west. To the north, the campus includes roads,
paths, and other buildings. As the application discussed herein was the first, and to our knowledge
only, herbicide application on the campus on this day, this application can be considered the main local
source at this site.

The applied herbicide mixture included Battleship 3 (Helena Agri-Enterprises, LLC, Collierville,
TN, USA; includes MCPA, triclopyr, and fluroxypyr) and HardBall (Helena Agri-Enterprises,
LLC, Collierville, TN, USA; includes 2,4-D). Battleship 3 is typically marketed on its lack
of 2,4-D for use in sensitive regions, but in this case, the Colorado State University (CSU)
Facilities purposely added 2,4-D to maximize efficacy. The net mixture was representative of
best practices for commercial application and standard for campus application. The active
ingredients in the mixture specifically included 2,4-D, the dimethylamine salt of MCPA, the
triethylamine salt of triclopyr (3,5,6-trichloro-2-pyridinyloxyacetic acid), and the methylheptyl
ester of fluroxypyr (4-amino-3,5-dichloro-6-fluoro-2-pyridyloxy-acetic acid, 1-methylheptyl ester).
The herbicide spray solution was prepared in an 1136 L drum according to the manufacturer’s
specifications: 9.4 L of commercial 2,4-D (19.6% by weight; 208 g/L 2,4-dichlorophenoxyacetic
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acid on an isomer specific basis) and 11 L of a commercial mixture of MCPA, triclopyr, and
fluroxypyr (37.84%, 4.07%, 4.45%, by weight of the original commercial mixture, respectively; 340 g/L
2-methyl-4-chlorophenoxyacetic acid/MCPA, 35 g/L 3,5,6-trichloro-2-pyridinyloxyacetic acid/triclopyr,
32 g/L ((4-amino-3-5-dichloro-6-fluoro-2-pyridinyl)oxy)acetic acid/fluroxypyr on an isomer specific
basis) were added to the drum; water was added to fill the remaining volume.

The herbicide mixture was applied by the standard approach used on the CSU campus, but only
for a short period (total application took < 30 min). A 4 m boom sprayer pulled by a small tractor
applied the herbicide mixture. At the site, the applicator sprayed a total of ~64 L of the herbicide
solution 0.3 m from the ground. The application covered a circular pattern, in which each successive
loop was smaller, ~4 to 5 m closer towards the center of the plot.

We sampled the ambient atmosphere in real-time (data collected at 1 Hz, averaged in
post-processing to 10 s) before, during, and after the application. Gas-phase mixing ratios were
measured by a time-of-flight chemical ionization mass spectrometer with acetate reagent ions (hereafter
referred to as acetate-CIMS). The acetate-CIMS was located on a paved footpath in the middle of the
application area (Figure 1). At its innermost loop, the booms passed ~1 m from the instrument inlet.
No further herbicide application was conducted in the vicinity of the measurement area after 7:08 am
to avoid confusing drift with volatilization.

We emphasize that the patchwork nature of campus lawns requires a different method of
application from large agricultural regions, limiting the generalizability of these observations. Further
field measurements will be essential to accurately quantify herbicide sources to the atmosphere from
pesticide application over different land-use types. That said, this work aims to demonstrate the
potential for real-time gas-phase herbicide measurements in the atmosphere and provide evidence that
herbicide application can be a source of atmospheric toxins.
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USA) is described in detail elsewhere [28,29]. The acetate-CIMS is a real-time mass spectrometer 
designed for atmospheric chemistry measurements. Our instrument, in particular, is racked to ensure 
it is portable (300 kg; 0.6 m × 1.1 m × 1.3 m; on wheels; power requirements < 2 kW), enabling field 
measurements [28,30–32]. The acetate-CIMS consists of a short inlet (<5 cm of stainless steel) that 
samples ambient air into an ion-molecule reaction chamber. Ambient air is mixed with acetate 
reagent ions at decreased atmospheric pressure (typically 80–100 mbar), before progressing through 
a series of segmented quadrupoles as the pressure is reduced before the time-of-flight detector.  

Figure 1. (a) A schematic of the time-of-flight chemical ionization mass spectrometer with acetate
reagent ions (acetate-CIMS) demonstrating how ambient air is pulled in from a vertically-oriented
inlet into an ion-molecule reaction chamber (IMR), where ambient air molecules are ionized through
reaction with acetate ions. Air and ions are pulled through a series of segmented quadrupoles as the
pressure is dropped, before orthogonal extraction into a time-of-flight detector; (b,c) The acetate-CIMS
was located under a shaded tent. Pesticides were applied to the surrounding lawn.

2.2. Acetate-CIMS

The acetate-CIMS (Tofwerk AG, Thun, Switzerland and Aerodyne Research, Inc., Billerica, MA,
USA) is described in detail elsewhere [28,29]. The acetate-CIMS is a real-time mass spectrometer
designed for atmospheric chemistry measurements. Our instrument, in particular, is racked to ensure
it is portable (300 kg; 0.6 m × 1.1 m × 1.3 m; on wheels; power requirements < 2 kW), enabling field
measurements [28,30–32]. The acetate-CIMS consists of a short inlet (<5 cm of stainless steel) that
samples ambient air into an ion-molecule reaction chamber. Ambient air is mixed with acetate reagent
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ions at decreased atmospheric pressure (typically 80–100 mbar), before progressing through a series of
segmented quadrupoles as the pressure is reduced before the time-of-flight detector.

During this study, the inlet was oriented vertically, sampling 1.3 m above ground level. This
orientation and setup ensured that spray droplets released near ground-level at the base of the tractor
at 0.3 m above ground level would not directly enter the inlet, thereby minimizing interferences.
Observed herbicides must, therefore, enter the instrument from over one meter above the application
point. Ambient air was pulled into the instrument at 1.9 standard L min−1 into an ion-molecule
reaction chamber (IMR, 100 mbar, 40 ◦C), where molecules in the air were ionized by acetate reagent
ions. Acetate ions were generated by passing acetic anhydride through a 210Po ionizer. The mixture
of air and reagent ions was directed through two segmented quadrupole regions as the pressure in
the mass spectrometer dropped to 10−6 mbar. Ions were pulsed orthogonally into a time-of-flight
mass spectrometer. The acetate-CIMS was tuned to negative ion mode, with a range of m/z 4–500,
mass accuracy < 20 ppm, mass resolution (m/∆m) > 4000, and time resolution of 1 s. The high mass
resolution of the TOF enabled ion elemental composition analysis.

Acetate ionization occurs by either deprotonation [29], or by a clustering reaction in the IMR that
can be coupled to a declustering reaction in the segmented quadrupoles. The net reaction is typically:

H3C2O2
− + HM→ H3C2O2H + M− (R1)

Because the gas-phase basicity of acetic acid is so high, acetate-CIMS is extremely sensitive
to organic acids and is well-suited for the phenoxy acid herbicides [28,32,33]. We calibrated the
acetate-CIMS in the laboratory with heated solution injections of 2,4-D and MCPA standards (US
EPA Pesticide Repository, 99%) diluted in methanol (HPLC grade, Sigma Millipore, Burlington, MA,
USA) [21]. 2,4-D is observed as a deprotonated molecular ion (C8H6Cl2O3

−, m/z 218.96), with a minor
contribution from a fragment ion (C6H4Cl2O−, m/z 160.95). The relative ion signal for 2,4-D is 2:1 for
C8H6Cl2O3

−: C6H4Cl2O−. MCPA and triclopyr are also observed as a deprotonated molecular ion
(C9H8ClO3

− for MCPA; C7H3Cl3NO3
− for triclopyr) with negligible contributions of fragment ions.

These peak assignments were verified by the presence of high-resolution ion peaks corresponding to
isotopes in signals proportional to natural abundance. The sensitivity of the acetate-CIMS is 1.3 ± 0.4
and 1.5 ± 0.4 normalized counts pptv

−1 (parts per trillion by volume) for deprotonated molecular ions
of 2,4-D and MCPA, corresponding to detection limits (3σ/sensitivity) of 3.1 pptv and 12 pptv in 1 s
averaging, respectively.

We overflowed the inlet with Ultra High Purity zero air (AirGas, total hydrocarbon content
<0.01 ppm) each hour for 2 to 5 min to quantify the instrument background. Data collection began
at 06:30 am, and continued until 11:30 am, when ambient temperatures reached 32 ◦C, and the
temperature on the TOF detector itself reached 40 ◦C, as the instrument was not in an enclosed or
air-conditioned structure.

2.3. Data Analysis

We analyzed data using Tofware (v2.5.6, Tofwerk AG, Thun, Switzerland) and Igor Pro (v6.37,
Wavemetrics, Portland, OR, USA, 2015). We fit mass spectral peaks that corresponded to the applied
herbicides (targeted analysis). We also fit all mass spectral peaks that met an enhancement criterion
(i.e., the ratio of any signal during the closest pass of the herbicide applicator to the pre-spray period
≥3 through non-targeted analysis). The targeted analysis identified peaks corresponding to 2,4-D and
MCPA, but not triclopyr or fluroxypyr. Multiple lines of evidence validated the assignment of mass
spectral peaks to 2,4-D and MCPA. Each identified ion has multiple isotopes, and signals for those
isotopes were proportional to expected natural abundances. NO2

− and NO3
− are strong tracers of

diesel exhaust, [34] and displayed little correlation with the pesticide signals (r2
≈ 0.1), confirming that

the signals attributed to herbicides were not from the tractor exhaust. Finally, four zero air overflow
experiments throughout the field experiment demonstrated that ambient signals were substantially
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higher than background signals from the instrument itself, confirming that the herbicide signal was
truly ambient, and neither variable instrument background nor inlet artifact.

3. Results

Herbicide application caused clear increases in both 2,4-D and MCPA mixing ratios above
background ( Figures 2 and 3). No herbicide-related peaks were observed before application. Once
spraying commenced, peaks associated with 2,4-D were immediately apparent, reaching a maximum
of 13 pptv during the closest pass of the spray boom, with an average of 4 ± 3 pptv (1σ) during the
application period. MCPA mixing ratios were also enhanced above background during the application
period (average 4 pptv), but reached their maxima several hours after application (70 pptv at 10:15 am).
Neither fluroxypyr nor triclopyr was observed in the field; the acetate-CIMS instrument is capable of
detecting these herbicides in lab settings, but these compounds were an order of magnitude lower in
concentration than MCPA in the applied solution, suggesting that the concentrations were below the
instrument’s detection limit.
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Figure 2. Time series of 2,4-dichlorophenoxyacetic acid (2,4-D) (upper panel, detected as a deprotonated
molecular ion m/z 218.96) mixing ratios before, during, and immediately after the application period.
Grey circles represent the 1 s data points, while colored circles are the 10 s averages. Application began
at 6:42 am local time and ended at 7:08 am; each applicator pass is annotated on the time series of 2,4-D
with the distance of the tractor (e.g., 18 m), and the direction of closest point of the applicator (East,
West, South of the acetate-CIMS). Decreases in signal during the application period corresponded to
periods when the spray boom was briefly turned off.

4. Discussion

The Acetate-CIMS was adequately sensitive to observe at least two gas-phase phenoxy herbicides
(2,4-D and MCPA) during and after application with fast (1 s) time resolution. To the best of our
knowledge, such field measurements of pesticides in the atmosphere are unprecedented. Atmospheric
measurements of these herbicides are typically limited to a much longer time resolution of hours
or days and require sample collection followed by work-intensive off-line analysis. For example,
high volume air samplers with filter collection for 2 to 12 days integration times before laboratory
analysis by GC-MS with detection limits in the order of 1 to 5 pg/m3 for MCPA and 2,4-D for a 350 m3

sample collection, corresponding to a 24-h integration of the sampler. In contrast, the acetate-CIMS
detection limits of 12 and 3.1 pptv reported herein for MCPA and 2,4-D, respectively, correspond
to 0.099 and 0.027 µg/m3 in 1 second. Obviously, longer integration times lower the acetate-CIMS
detection limit substantially. Thus, while acetate-CIMS will not be competitive for monitoring of
remote locations, this work clearly demonstrates its utility for near-application measurements. To place
these numbers in perspective, in their study of air concentrations of pesticides in Canada, Yao et al. [35]
noted maximum air sample concentrations of 4.96 ng MCPA m−3 and 0.897 ng 2,4-D m−3 (1 m above
ground level) during application periods in agricultural areas of Saskatchewan during spring and
summer 2003, although averages were 0.5 and 0.2 ng m−3 for MCPA and 2,4-D, respectively. Thus,
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while the sensitivity of acetate-CIMS is likely insufficient for eddy covariance flux analysis, longer
averaging times of 1 or 5 min should yield detection limits adequate for regional agricultural studies
during periods of application. The rapid and moderately sensitive measurements are adequate for field
applications, such as investigating airborne pesticide drift during and immediately after application
by measurements immediately adjacent to application areas, as well as laboratory measurements to
determine chemical kinetics and oxidation chemistry [36,37].

Application of phenoxy herbicides caused elevated mixing ratios of two confirmed compounds
during and after application. The magnitude and timing of the atmospheric enhancement varied by
compound, indicative of different atmospheric source mechanisms and emphasizing the difference
in applied herbicide mixture from observed atmospheric concentrations. Application spray releases
aqueous droplets that are large enough to rapidly deposit, and are thought to contribute to off-target
effects over only short distances through spray drift. However, while spray droplets are in the
atmosphere, organic compounds can volatilize directly from spray droplets, forming a spray drift
volatilization source of gas-phase pesticides to the atmosphere during the application process.
Herbicide volatilization from soil or water surfaces to the atmosphere is better studied than spray drift
volatilization [17,38]. Short-term volatilization directly from ground and plant surfaces is considered
well-described by vapor pressure [4]. Once pesticides have penetrated the soil, volatilization is slower
(long-term volatilization), and is typically described by a combination of vapor pressure, Henry’s law
constant, soil adsorption, and water solubility. Compounds with lower Henry’s Law constants are
more mobile in soil, and can thus accumulate at soil surfaces and volatilize [39–41]. However, recent
studies suggest that vapor pressure is the main predictor of volatilization, while other physiochemical
properties only change the effectiveness of vapor pressure [42,43]. However, these models focus on
long-term volatilization over tens of days, rather than short-term volatilization immediately after
application. The time-resolved atmospheric herbicide measurements presented in this case study
provide insight into the potential importance of short-term volatilization in the hours after application.

Two atmospheric sources of herbicides were possible during these experiments: (1) spray
drift volatilization from herbicides in spray droplets partitioning to the gas-phase and (2) short-term
volatilization from direct partitioning of the applied mixture on soil and plant surfaces to the atmosphere.
Herbicides that have permeated into soil require longer (days to weeks) timescales for volatilization
because these compounds react with soils and require time to transport back to the soil surface for
subsequent volatilization.

Mixing ratios of 2,4-D were highest during the application process, indicating that spray
volatilization was likely the dominant atmospheric source of both compounds. A spray volatilization
source of MCPA was also apparent: gas-phase mixing ratios were elevated above background during
the application process. However, spray volatilization was not the dominant atmospheric source
of MCPA: mixing ratios maximized after application ceased. These results are consistent with the
extent of spray volatilization being described by the Henry’s Law constant, which describes the ratio
of gas-phase to aqueous concentration at equilibrium (Table 1). To the best of our knowledge, these
are the first field measurements to suggest that spray volatilization could be a substantial source of
gas-phase pesticides to the atmosphere.

Table 1. Chemical properties of observed herbicides. The KOC is the soil adsorption coefficient and is
soil dependent.

Compound Chemical
Formula Chemical Form

Vapor
Pressure
(mmHg,
25 ◦C)

Henry’s Law
Constant
(atm m3/

mole)

Water
Solubility

(mg/L)

KOC
(ml/g)

MCPA C9H9ClO3

Dimethyl amine salt of
2-methyl-4-

chlorophenoxyacetic acid

5.9 × 10−6

[44]
4.8 × 10−10

[45]
630 (25 ◦C)

[46] 52–60 [47]

2,4-D C8H6Cl2O3
2,4-dichlorophenoxyacetic

acid
1.4 × 10−7

[48]
9.8 ×10−8

[48]
851 (25 ◦C)

[45] 72–135 [49]
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Post-application volatilization was apparent for both 2,4-D and MCPA, but dominated by MCPA
(Figure 3). Post-application MCPA mixing ratios were well-correlated to calculated vapor pressure
(r = 0.75), consistent with the evaporation of this herbicide from applied solutions. Post-application
2,4-D is less correlated with temperature (r = 0.6).

1 
 

 
Figure 3. Time series of 2,4-D (upper panel) and MCPA (lower panel) during the entire measurement
period. Ambient temperature rose from 15 ◦C to 35 ◦C at the conclusion of the measurement period.

Gas-phase pesticides have three potential environmental impacts: (1) direct inhalation and
exposure to people and off-target ecosystems in the local area, (2) oxidation or other chemistry to
form secondary air pollutants, and (3) atmospheric transport to off-target and remote areas. Observed
atmospheric mixing ratios of the two herbicides were well below reported LD50 levels for acute exposure
via inhalation (1.79 and 6.3 mg/L, ~100 and 700 ppmv for 2,4-D and MCPA in rats, respectively),
although sub-lethal health effects are possible, and correlations between phenoxy acid herbicide
exposure and Non-Hodgkin’s lymphoma have been observed in agricultural workers [50,51]. Our
observations imply that applicators should continue to wear personal protective equipment when
working in an affected area for several hours after application. Of course, phenoxy herbicides are not
the only pesticides subject to spray droplet volatilization and direct volatilization: Other compounds
with comparable Henry’s Law constants and vapor pressures may also have substantial atmospheric
sources during and after application. Several pesticides, including chlorpyrifos, acephate, and diazinon,
have lethal and sub-lethal effects on bees; the chemical properties of those molecules (Henry’s law
constants of 4.16 × 10−6, 5.2 × 10−13, 0.112 × 10−6 atm m3 mole−1 and vapor pressures of 2.2, 0.17,
and 9.01 × 10−5 mmHg, respectively) suggest that atmospheric sources could contribute to pollinator
exposure [52–54].

Anthropogenic organic compounds, including the phenoxy herbicides described herein, can be
oxidized by OH radicals and other oxidants in the atmosphere [36,37]. The calculated OH reactivity
from observed concentrations and known rate constants for the two herbicides is small, <0.01 s−1 with
MCPA dominating the reactivity. This small contribution is unlikely to contribute to ground-level
ozone production in the Front Range region of Colorado, where OH reactivity is typically 1 to 3 s−1 [55].
However, the spray solution used by CSU was formulated and diluted to minimize volatilization, while
larger agriculture operations may spray more concentrated solutions less judiciously. Thus, while
the atmospheric sources had a minor effect on ozone production in the local area, volatilization from
larger-scale applications could impact local air quality. Oxidation products from phenoxy herbicides
include an array of peroxide, carbonyl and carboxylic acid moieties, and may contribute to secondary
organic aerosol [36].
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5. Conclusions

The acetate-CIMS provides a real-time measurement of gas-phase phenoxy herbicides with
application to field studies. This case study demonstrates that both spray droplet volatilization and
post-application direct volatilization are relevant mechanisms for phenoxy herbicides to enter the
atmosphere, but that the relative importance of different atmospheric sources of herbicides likely
depends on their chemical properties. Herbicides can enter the atmosphere through partitioning
from spray droplets during the application process (spray drift volatilization), volatilization from the
applied herbicide mixtures from soil and plant surfaces (short-term volatilization), and volatilization
from the applied herbicides following ground-penetration (long-term volatilization). Both MCPA and
2,4-D can thus be easily and unintentionally transported to off-target areas via the atmosphere.

The transport distance for atmospheric pesticides from application source to receptor site depends
on wet and dry deposition rates, oxidation chemistry, and gas-particle partitioning. In the absence of
precipitation events, a dry deposition velocity of 1.0 cm/s corresponds to a lifetime of ~29 h (assuming
a typical boundary layer height of 1000 m), while using kOH estimates for the two compounds
corresponds to a lifetime of 16 h for MCPA and 28 h for 2,4-D, assuming average OH of 1.5 × 106

molecules cm−3. While oxidation products of these compounds were not observed in the atmosphere
during the short (<4 h) timescales of this experiment, longer post-application observation times
would provide insight into the role of atmospheric oxidation chemistry in influencing the fate of
applied herbicides, as well as the role of soil–air interactions [56] in controlling the atmospheric source
of herbicides. This work focused on gas-phase herbicide concentrations and did not investigate
partitioning to the aerosol phase, a process that can influence the atmospheric lifetime of pesticides [57].
Thus, while the gas-phase herbicide concentrations observed are not acutely toxic, volatilization sources
warrant further consideration in both field measurement and modeling studies.
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