
toxics

Article

Estimated Dietary Intake of Trace Metals from
Swordfish Consumption: A Human Health Problem

Grazia Barone 1, Angela Dambrosio 2 ID , Arianna Storelli 1, Rita Garofalo 1, Vito Pietro Busco 1

and Maria Maddalena Storelli 1,* ID

1 Biosciences, Biotechnlogies and Biopharmacological Department, University of Bari “Aldo Moro”—Strada
Prov. le per Casamassima Km 3, 70010 Valenzano (BA), Italy; grazia.barone@uniba.it (G.B.);
arianna.storelli@uniba.it (A.S.); rita.garofalo@uniba.it (R.G.); vitopietro.busco@uniba.it (V.P.B.)

2 Department of Emergency and Organ Transplant, University of Bari “Aldo Moro”—Strada Prov. le per
Casamassima Km 3, 70010 Valenzano (BA), Italy; angela.dambrosio@uniba.it

* Correspondence: mariamaddalena.storelli@uniba.it; Tel.: +39-(0)-805-443-866

Received: 12 March 2018; Accepted: 28 March 2018; Published: 3 April 2018
����������
�������

Abstract: Trace element (Hg, Pb, Cd, Zn, Cu, Ni, and Cr) occurrence was determined in the muscle
tissue of swordfish collected in the Mediterranean Sea to assess whether the intakes complied with
the recommended levels for essential metals and permissible levels for toxic elements. Metals were
analyzed by an atomic absorption spectrophotometer (Shimadzu AA 7000). The methodology of
Target Hazard Quotient (THQ) was also evaluated. The ranking order of toxic metal concentration
was Hg > Cd > Pb, while for essential elements the distribution pattern followed the sequence Zn
> Cu > Ni > Cr. The Estimated Weekly Intakes (EWI) as well as THQ for Cd and Pb indicated that
swordfish consumption did not pose a risk to human health, whereas the major concern was for Hg.
Fish size-related changes in Hg concentrations resulted in high EWI and THQ values relative to larger
fish consumption, implying a potential risk to human health. For consumer protection, catches of
swordfish approximately above 44 kg should be avoided as these fish have a higher risk of containing
toxic levels of Hg.
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1. Introduction

Swordfish, Xiphias gladius L. 1758, the only living species belonging to the Xiphiidae family,
is a pelagic fish of high commercial value. Characterized by specific biological traits, such as long
life-span and fast growth, this apical predator has an intense metabolic activity leading to continuous
supply of energy. As a result, the rate of predation and food intake is extremely high, features
exacerbating contaminant bioaccumulation in its body [1–3]. One of the most worrying classes of
chemical contaminants in terms of toxicological risk to humans is represented by heavy metals [4].
Elements such as mercury (Hg), lead (Pb), and cadmium (Cd) are extremely toxic even in trace
amounts, whereas other metals such as zinc (Zn), copper (Cu), chromium (Cr), and nickel (Ni), defined
as essential because play an important role in biological systems, can also produce toxic effects when
present in excessive concentrations. Diet is the primary pathway for metal accumulation in the general
population and the consumption of contaminated fish is a key food source of exposure in humans [5–7].
Therefore, there are many national and international regulations regarding seafood safety as well as
several health protection organizations that provide guidelines on the intake of trace elements by
consumers. This aspect becomes a primary matter of concern in the case of top predators because the
metal accumulation throughout the food web tends to be intensified, constituting a risk to human
health. A lot of studies have, in fact, reported high contamination levels in large predator fishes, leading
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to elevated exposure in consumers, especially for mercury [8,9]. The EFSA Panel on Contaminants
in the Food Chain for certain vulnerable groups, such as women of childbearing age, pregnant and
breastfeeding women, as well as young children, recommends restricted consumption of predator fish,
including shark, tuna, and swordfish [10,11]. Consequently, it becomes imperative to clarify the status
of chemical contamination of this important fishery product in order to ensure safety for consumers.
This is especially relevant when the organisms come from marine areas overexposed to anthropogenic
pressure. This is the case in the Mediterranean Sea, which, with its semi-enclosed marine area with
reduced hydrodynamism and limited water exchange with the Atlantic Ocean, constitutes an ideal
sink for contaminants. On the other hand, pollution and over-fishing are among the causes of the
decline in the Mediterranean swordfish population, now classified as near-threatened in an overview
of the conservation of Mediterranean fish [12]. In this picture, the main purposes of current study
were (1) to estimate the levels of toxic (Hg, Pb, and Cd) and essential metals (Zn, Cu, Cr, and Ni)
in the muscle tissue of Mediterranean swordfish; (2) to ascertain whether the concentrations were
compliant with the maximum limits defined by legislation in different countries; (3) to evaluate the
health risk posed by fish consumption, comparing the estimated intake with reference toxicological
and nutritional values for each element; and (4) to examine how human exposure varies according to
the consumption of different sizes of fish.

2. Materials and Methods

2.1. Sample Collection

Approximately 100 g of muscle tissue from the carcass anterior portion of 30 Mediterranean
swordfish specimens (fishing location: FAO area 37, division 37.2.2) were obtained from an Italian fish
trade company. The sampling methodology used was in accordance with the Commission Regulation
(EU) N 644/2017 [13]. These muscle portions, packed in ice, were transported to an analytical chemical
laboratory, homogenized, and kept in a deep freeze at −20 ◦C until analysis. Weight (kg) and lower
jaw fork length (LJFL) measurement to the nearest cm and for each fish are illustrated in Table 1.

2.2. Chemical Analyses

The extractive analytical procedure and the instrumental conditions for determine metal
concentrations have been described in detail elsewhere [14]. Briefly, aliquots (about 1.0–2.0 g) of
the samples were digested to a transparent solution with a mixture of HNO3-HClO4 (8:3) for Cd, Pb,
Zn, Cu, Cr, and Ni determination and with a mixture of H2SO4–HNO3 (1:1) for Hg. The completely
digested samples were allowed to cool and diluted with deionized water according to the method
recommended by the Official Italian Agencies [15]. The metals content was determined by an atomic
absorption spectrophotometer (Shimadzu AA 7000, Milan, Italy Zn and Ni were analyzed by flame;
Cd, Pb, Cr, and Cu by using a graphite furnace (high-density tube) (GFA-7000); and Hg by using
a hydride vapor generator (HVG-1) after reduction by NaBH4 (Table S1).

2.3. Quality Control and Assurance

Reference tissue (Tort-2 Lobster Hepatopancreas, National Research Council of Canada, Ottawa,
ON, Canada) was treated and analyzed in the same way as the samples. Results (Hg: 0.28 ± 0.03;
Cd: 26.2 ± 2.4; Pb: 0.32 ± 0.18; Zn: 188 ± 12; Cu: 101 ± 13; Ni: 2.3 ± 0.23; Cr: 0.73 ± 0.16 µg g−1

dry weight) were in good agreement with the certified values (Hg: 0.27 ± 0.06; Cd: 26.7 ± 0.60; Pb:
0.35 ± 0.13; Zn: 180 ± 6; Cu: 106 ± 10; Ni: 2.5 ± 0.19; Cr: 0.77 ± 0.15 µg g−1 dry weight) and the
standard deviation was low (n = 3), proving the good repeatability of the methods. The results for
the standard reference material displayed recoveries of the elements ranging from 91 to 104% (n = 3).
The limit of detection (LOD) (Hg: 5; Cd: 0.12; Pb: 10; Zn: 24; Cu: 26; Ni: 26; Cr: 5 ng g−1 wet weight)
is defined as the concentration corresponding to three times the standard deviation of blanks and
the standards of quantification (LOQ) are the following: Hg: 13; Cd: 0.40; Pb: 0.38; Zn: 87; Cu: 81;
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Ni: 79; Cr: 16 ng g−1 wet weight. Two blank samples were analyzed together with each sample
batch. Metal concentrations in blanks were below the detection limits in all the analyses. Blanks and
calibration standard solutions were analyzed in a similar way to the digested sample solution, and
calibration curves were constructed. Analyses were duplicated to check the reproducibility of the
results. Relative standard deviations among replicates were always less than 10%. Recovery tests were
performed for the investigated metals in selected samples by spiking analyzed samples with aliquots
of the metal standards and then carrying out digestion. The recovery percentages ranged from 96 to
99%. Throughout the manuscript, metal concentrations are presented as µg g−1 wet weight basis.

2.4. Health Risk Assessment

2.4.1. Provisional Tolerable Weekly Intake (PTWI)

Dietary intake of Hg, Cd and Pb through seafood consumption was calculated using the following
Equation (1):

EWI = (C × IR)/BW, (1)

where C represents the element concentration in seafood, IR the daily ingestion rate (g/day) of seafood
(pelagic fish: 85 g week–1) [16] and body weight (70 kg). The estimated weekly intakes were compared
with the Provisional Tolerable Weekly Intake (PTWI) of toxic elements (Hg: 4 µg kg−1 bw/week and
1.3 µg kg−1 bw/week for methylmercury (MeHg) [17]; Cd: 7 µg/kg bw/week and a tolerable weekly
intake (TWI) of 2.5 µg/kg body weight established by EFSA [18]; Pb: 25 µg/kg bw/week [19]).

2.4.2. Target Hazard Quotient (THQ)

The methodology for estimation of non-carcinogenic risk THQ and target carcinogenic risk was
available in a U.S. EPA Region III Risk-based Concentration table [20,21] and it is described by the
following Equation (2):

THQ = [(EF × ED × FIR × C/RfD × BW × AT)] × 10−3, (2)

where EF is exposure frequency (365 days/year); ED is exposure duration (80 years) [22], equivalent to
the average lifetime; FIR is food ingestion rate (pelagic fish: 85 g week–1) [16]; C is metal concentration
in fish (µg g−1); RfD is oral reference dose (Hg = 3.0 × 10−4 µg g−1 day–1, MeHg = 1.0 × 10−4 µg g−1

day–1, Cd = 1.0 × 10−3 µg g−1 day–1, Pb = 4.0 × 10−3 µg g−1 day–1, Zn = 3.0 × 10−1 µg g−1 day–1,
Cu = 4.0 × 10−2 µg g−1 day–1, Ni = 2.0 × 10−2 µg g−1 day–1, Cr = 3.0 × 10−3 µg g−1 day–1) [20,21];
BW is body weight (70 kg); and AT is the averaging exposure time for non-carcinogens (365 days/year
× ED). If the THQ value obtained is under “1,” an adverse effect is out of the question in terms of
human health.

2.5. Statistical Analysis

The Kruskal–Wallis test was used to test the hypothesis about differences in the levels of metal
accumulation, while a simple linear regression coefficient was used to examine the correlations between
metals and specimen length. To investigate the influence of size on metal accumulation, the length
of fish has been chosen because it is less subject to fluctuation than body weight [23]. The level of
significance was set at p < 0.05.

3. Results and Discussion

3.1. Non-Essential Element Levels and Compliance with Permitted Legal Limits

Concentrations (range, mean ± standard deviation and variance) of Hg, Cd, and Pb recorded
in the swordfish specimens, as well as the respective permitted legal limits established by European
Commission [24,25] for human consumption are illustrated in Table 1. The three toxic elements were
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detected in all samples examined, with Hg displaying the highest concentrations (mean: 0.77 µg g−1

wet weight), followed by Cd (mean: 0.16 µg g−1 wet weight) and Pb (mean: 0.11 µg g−1 wet weight)
(p < 0.001). The analysis of variance showed a large intra-specific variability of Hg concentrations, while
the opposite was verified for Cd and Pb. Chemical accumulation in marine organisms is influenced by
an assortment of synergistic factors, including endogenous characteristics and physiological condition
of the organism, feeding behavior, diet, geographical habitat, environmental features, and the metal’s
tendency to undergo biomagnification in the food web. This latter property is typical of Hg, which
enters the food chain via feeding organisms and gradually gets concentrated higher up the food
chain [26], so an elevated load of Hg in these pelagic high trophic level predators is not surprising.
The scientific literature confirms this assumption, also reporting that Hg concentrations are markedly
higher than those found in our investigation. For example, surveys of swordfish specimens from
different areas of the Mediterranean Sea, including the Ionian (1.58 µg g−1 wet weight) and Tyrrhenian
Sea (1.04–2.41 µg g−1 wet weight), report elevated Hg concentrations [1], similar to other studies on
swordfish from oceans around the world (Atlantic Ocean: 0.90–2.20 µg g−1 wet weight [27]), (Pacific
Ocean: 1.81 µg g−1 wet weight [28]), (Indian Ocean: 1.30 µg g−1 wet weight [29]). However, caution is
needed when comparing Hg concentrations because numerous factors influence the body burden of this
metal. For example, variations in specimen size have a large effect on the magnitude of accumulated Hg,
due to its propensity to increase with the size/length of the organisms. So the largest and potentially
oldest fish exhibit higher Hg levels than younger organisms [27,30,31]. In complete accordance with this
picture, results of linear regression analysis materialized a positive significant relationship between Hg
concentrations and specimen length (r = 0.62; p < 0.001) (Figure 1a). Concerning Cd, there is evidence
that this metal is less oriented towards accumulation in fish muscle tissue, where the concentrations
are usually very low, preferring internal organs such as the liver and kidneys [32–34]. In the case in
question, swordfish having a mixed diet consisting of fish but mainly of cephalopods [35], impregnated
in Cd, showed relatively high concentrations consistent with those reported in specimens from different
Mediterranean geographical locations (0.10–0.16 µg g−1 wet weight [1]) and the Indian (0.13 µg g−1

wet weight [36]) and Atlantic Ocean (0.14 µg g−1 wet weight [5]). Also for Pb, the contamination image
was essentially similar to that encountered in swordfish specimens from Mediterranean waters around
Corsica Island (0.08 µg g−1 wet weight [6]) and from the Ionian Sea along Italian coasts (0.05 µg g−1

wet weight [2]). For Pb, the concentrations did not vary with specimen size (r = 0.35; p > 0.05), while Cd
levels revealed a length-dependent correlation (r = 0.56; p < 0.001) (Figure 1b). In general, accumulation
of these two latter elements does not correspond with the age/size of marine organisms [14,37,38],
however, the available literature data are rather controversial. Specimens from the Atlantic Ocean
and Mediterranean Sea show a significantly positive correlation between body length and Pb and
Cd concentrations [1], while swordfish from the Indian Ocean exhibit a positive correlation between
Cd concentrations and length, but not for Pb [30]. These elements are extremely toxic even in trace
amounts and, thus, the necessity of establishing hygienic standards for human consumption has been
recognized by various countries in different opportunities. As depicted in Table 1, the European
Community has established limits for Hg, which differ from one type of seafood to another, reaching
a consumption limit of 1.0 µg g−1 wet weight for large predatory fish such as swordfish [39]. Also,
for Pb and Cd, the limits have been updated and diversified according to different fishery products.
For swordfish, values of 0.30 and 0.25 µg g−1 wet weight for Pb and Cd, respectively, have been fixed
by the European Commission recently [24,25]. According to these standard limits, Hg, Cd, and Pb
occurred at levels exceeding the respective critical values in eight, three, and two of the swordfish
specimens examined, respectively. In samples non-compliant with the food safety regulations, the
highest Cd and Pb concentrations found were 0.29 µg g−1 wet weight and 0.33 µg g−1 wet weight,
respectively, which indicated that levels of these metals were exceedingly small. Conversely, Hg levels
were higher than the regulatory limit, except in one sample in which the concentration of 1.02 µg g−1

wet weight was very close to the European safety standard. Concerning Hg, it is also important to
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emphasize that none of the swordfish smaller than 140 cm surpassed the maximum permitted by the
European Community, except in one case.

Figure 1. Correlation between Hg (a) and Cd (b) concentrations and length.

3.2. Essential Element Levels and Compliance with Permitted Legal Limits

Concentrations (range, mean ± standard deviation, and variance) of Zn, Cu, Ni, and Cr recorded
in the swordfish specimens as well as the respective permitted legal limits established in different
countries for human consumption are illustrated in Table 1. For these elements the differences among
concentrations reached levels of statistical significance (p < 0.001), with a distribution pattern following
the sequence Zn > Cu > Ni > Cr. The data analysis also showed a large intra-specific variability of metal
concentrations, with the strongest for Zn, whose values ranged from 3.38 to 15.74 µg g−1 wet weight
(mean: 8.34 µg g−1 wet weight); intermediate for Cu, Ni, and Cr, whose levels varied from 0.30 to
1.87 µg g−1 wet weight (mean: 0.90 µg g−1 wet weight) and from 0.08 to 1.15 µg g−1 wet weight (mean:
0.52 µg g−1 wet weight), respectively, while Cr with concentrations between 0.03 and 0.22 µg g−1 wet
weight (mean: 0.12 µg g−1 wet weight) showed the weakest variation. The concentrations of these
essential metals in swordfish, on a global scale, are not well documented. However, the comparison
reveals that our Cu and Cr values are similar to data encountered in Mediterranean specimens (Cu:
0.35 µg g−1 wet weight; Cr: 0.04 µg g−1 wet weight [6]) (Cu: 0.34 and 0.45 µg g−1 wet weight; Cr: 0.06
and 0.05 µg g−1 wet weight [40]), while, relative to Zn, Gobert et al. [6] report concentrations (30.28 µg
g−1 wet weight) higher than those detected here. Remaining within the Mediterranean Sea, the present
levels of Ni appear to be higher than those reported by Iamiceli et al. [40] (0.07 and 0.08 µg g−1 wet
weight), but closer to the results illustrated by Gobert et al. [6] (0.27 µg g−1 wet weight). The values of
Zn, Cu, and Cr in the fish investigated were also comparable to those reported by Bodin et al. [41] for
swordfish from Seychelles waters (Indian Ocean), while for Ni the same author found much lower
values (0.02 µg g−1 wet weight). With regard to the influence of size on essential metal levels, a linear
regression analysis revealed that there was no accumulation pattern directly linked to length for Zn
(r = 0.21; p = 0.28), Cu (r = 0.14; p = 0.46) and Cr (r = 0.14; p = 0.15), while a negative relationship was
noted for Ni (r = 0.35; p > 0.05). Reports on this topic are scanty and fail to reach a general consensus
as a consequence of the fact that the essential metals are subject to homeostatic regulation by species
metabolism and consequently their accumulation is not correlated with the age/size of fish. However,
Branco et al. [27] report a positive correlation between Zn concentrations and length in the blue shark,
but not in swordfish.

Kojadinovic et al. [30] observed an increase in Cu concentrations dependent on length in the
muscle tissue of swordfish from the Indian Ocean, while the opposite finding was reported by Bodin
et al. [41] in large pelagic fish species from the same geographical location. Similarly, Milatou et al. [42]
found a negative relationships between Zn and Cu levels and Atlantic bluefin tuna specimen size.
For these essential elements, legal thresholds are non-existent in Europe, while in different countries
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limits above which seafood is considered unsuitable for human consumption have been established.
According to the U.K. Food Standards Committee’s Report, Zn and Cu should not exceed 50 and
20 µg g−1 wet weight [43], respectively. The Export Inspection Council of India states that in fish and
fish products, the Ni level should not be more than 80 µg g−1 wet weight [44], while the Western
Australian Food and Drug Regulation List sets a limit of 5.5 µg g−1 wet weight for Cr [45]. The results
recorded here are compliant with these legal thresholds in all examined samples.

Table 1. Biometric data, metal concentrations (µg g−1 wet weight) (range, mean ± standard deviation,
variance) and permitted legal limits.

Sample Length
(cm)

Weight
(g) Hg Cd Pb Zn Cu Ni Cr

1 110 14 0.46 0.10 0.09 15.74 0.75 1.15 0.22
2 114 16 0.67 0.15 0.12 6.44 1.33 0.44 0.11
3 120 18 0.62 0.14 0.05 9.12 0.47 0.66 0.11
4 121 17 0.55 0.20 0.13 8.43 1.50 0.99 0.15
5 125 21 0.40 0.11 0.11 5.75 0.38 0.80 0.04
6 127 20 0.36 0.13 0.09 9.30 0.84 0.40 0.06
7 128 23 0.45 0.20 0.08 8.65 0.37 0.33 0.17
8 130 30 0.56 0.12 0.10 7.07 0.61 0.28 0.06
9 133 33 0.38 0.20 0.11 8.04 0.43 0.78 0.09

10 134 35 0.40 0.14 0.09 3.38 0.40 0.79 0.17
11 137 42 0.46 0.19 0.11 8.92 1.31 0.32 0.08
12 137 40 1.02 0.13 0.33 8.22 1.78 0.93 0.16
13 138 43 0.30 0.15 0.09 9.39 1.11 0.46 0.07
14 139 42 0.63 0.16 0.07 8.61 1.41 0.12 0.15
15 140 44 1.36 0.08 0.08 6.48 0.67 0.08 0.19
16 142 43 1.48 0.17 0.03 7.25 1.87 0.68 0.03
17 143 44 0.46 0.19 0.02 8.70 0.30 1.01 0.08
18 145 45 0.42 0.09 0.10 8.35 1.09 0.49 0.07
19 145 44 0.43 0.13 0.16 15.15 0.41 0.55 0.13
20 149 46 0.58 0.10 0.07 9.53 0.50 0.73 0.11
21 150 49 0.35 0.18 0.06 7.45 0.95 0.17 0.17
22 153 53 0.35 0.16 0.13 6.35 0.34 0.17 0.04
23 167 66 1.18 0.15 0.09 7.05 0.75 0.88 0.10
24 175 83 1.30 0.14 0.05 8.60 1.10 0.10 0.14
25 180 92 0.82 0.10 0.09 13.96 0.77 0.69 0.10
26 200 108 1.78 0.17 0.09 7.88 1.50 0.09 0.13
27 212 113 1.80 0.29 0.12 7.23 1.15 0.28 0.21
28 218 120 0.97 0.26 0.15 6.59 0.98 0.98 0.15
29 230 127 1.85 0.26 0.16 5.56 0.44 0.12 0.13
30 233 130 0.60 0.19 0.31 7.00 1.41 0.08 0.19

Range 110–233 14–130 0.30–1.85 0.08–0.29 0.02–0.33 3.38–15.74 0.30–1.87 0.08–1.15 0.03–0.22
Mean ± St. Dev 153 ± 34 53 ± 35 0.77 ± 0.48 0.16 ± 0.05 0.11 ± 0.07 8.34 ± 2.62 0.90 ± 0.46 0.52 ± 0.33 0.12 ± 0.05

Variance - - 0.23 0.003 0.004 6.87 0.21 0.11 0.003
Permitted legal

limits - - 1.0 1 0.25 2 0.30 3 50.0 4 20.0 4 80.0 5 5.5 6

1 [39]; 2 [25]; 3 [24]; 4 [43]; 5 [44]; 6 Western Australian Food and Drug Regulation List [45].

3.3. Assessment of Potential Public Health Risk

Recently, great interest has been paid to the investigation of toxic and essential trace element
content in fish, as a result of growing concern about the health benefits and hazards associated with
their consumption. In contrast to toxic metals, essential elements, in particular microelements, need to
be consumed daily in adequate amounts for the maintenance of normal physiological processes in
humans. However, deficiencies occur when they are consumed in insufficient quantities, and they may
become toxic when taken in excessive amounts. So the changes in concentrations of essential elements
as well as the presence of toxic metals, even in trace amounts, may cause various and strong metabolic
alterations in humans. Consequently, it is crucial to monitor the levels not only of toxic metals, but
also of essential elements in large species consumed, such as swordfish. As can be seen in Table 2,
the calculated Hg, Cd, and Pb intakes, taking into account the mean contamination levels, constituted
23.3%, 2.7%, and 0.5% of the PTWIs, respectively, indicating that consumption of the species can be
considered safe.
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Table 2. Estimation of the dietary intake for Hg, Cd, Pb, Zn, Cu, Ni, and Cr through swordfish
consumption based on average concentrations.

Hg Cd Pb Zn Cu Ni Cr

PTWI 4 1 7 2 25 3 - - - -
EWI 0.93 0.19 0.13 - - - -
DRIs - - - 11 (men); 8 (women) 0.9 - 35 4 (men); 25 4 (women)
EDI - - - 0.10 0.01 - 1.46 4

THQ 0.44 0.03 0.005 0.005 0.004 0.004 0.01

PTWI: Provisional Tolerable Weekly Intake (µg kg−1 body weight); EWI: Estimated Weekly Intake (µg kg−1 body
weight); DRIs: Dietary Reference Intakes (mg day−1) [46]; EDI: Estimated Daily Intake; THQ: Target Hazard
Quotient; 1,2 [17,18]; 3 [19]; 4 µg day−1.

Also, the analysis of carcinogenic risk relative to all trace metals indicated a low health risk for
consumers (THQ values < 1). However, because the assessment of exposure was estimated using
mean metal concentrations, it is necessary to generate more accurate information, above all for Hg,
whose concentrations change widely in relation to size. The consumption of specimens of smallest
size (110–137 cm) determined intake values from 0.44 to 0.81 µg kg−1 bw/week, that of medium sized
swordfish (138–153 cm) was associated with an intake between 0.36 and 1.80 µg kg−1 bw/week, while
eating the largest fish (167–233 cm) led to an increase in exposure ranging from 0.73 to 2.25 µg kg−1

bw/week (Figure 2). These figures, representing a considerable percentage of PTWI (19.3–56.3%),
need to be carefully evaluated in consideration of the fact that the present estimations did not include
exposure from other foods. Furthermore, it should be pointed out that Hg accumulation is connected
with that of MeHg, for which the European Food Safety Authority has set a Tolerable Weekly Intake
of 1.3 µg kg−1 bw/week. According to this guideline and assuming that almost all Hg in muscle
fish is present as MeHg, the scenario becomes alarming, because not only the consumption of larger
fish, but also that of medium size specimens exceeds the safe weekly dose. Also, the estimated TEQ
values for Hg and MeHg in relation to size categories indicate that consumers might have a higher
probability of experiencing long-term hazardous effects (Figure 3). With respect to essential elements,
the estimated daily intakes (EDI) remained lower than Dietary Reference Intakes (DRIs). In particular,
Zn (1.3% for women; 0.9% for men) and Cu (1.1%) accounted for a small percentage of the DRI, while
a major contribution was ascribed to Cr (5.8% for women; 4.2% for men), indicating that swordfish
consumption constitutes a good source of this element.

Figure 2. Provisional Tolerable Weekly Intake (PTWI) for Hg and MeHg and estimated weekly intake
by consumption of different swordfish size spectra.
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Figure 3. Estimated Target Hazard Quotient (THQ) for Hg and MeHg by consumption of different
swordfish size spectra.

4. Conclusions

The current study provides information on the concentrations of trace elements (Hg, Pb, Cd,
Zn, Cu, Ni, and Cr) in swordfish, a commercially important species widely consumed due to its
high-quality meat. The concentrations of essential elements were below the regulatory limits set by
various extra-European countries, whereas toxic elements were under the legally defined limits in
Europe, except for Hg, whose content varied widely from well below the maximum legal limit in
smaller sized fish to levels substantially above the limit in larger fish. Such variation obviously reflects
the exposure levels, which appear very high in relation to consumption of the largest fish. Also, the
THQ values show that adverse human health effects might occur for ingestion of the largest fish. More
research is needed to determine the fish size above which the Hg content exceeds the regulatory limit.
This size threshold could be used to introduce size-specific catch limits to minimize health risk related
to intake of this precious ichthyic resource.

Supplementary Materials: The following are available online at http://www.mdpi.com/2305-6304/6/2/22/s1,
Table S1: Lamp parameters for analysis of each element in terms of atomic absorption (Shimadzu AA 7000).
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wrote the paper.
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