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Abstract

Thyroid hormone (TH) system disruption by chemicals poses a significant concern due to
the key role the TH system plays in essential body functions, including the metabolism,
growth, and brain development. Animal-based testing methods are resource-demanding
and raise ethical issues. Thus, there is a recognised need for new approach methodologies,
such as quantitative structure–activity relationship (QSAR) models, to advance chemical
hazard assessments. This review, covering the scientific literature from 2010 to 2024, aimed
to map the current landscape of QSAR model development for predicting TH system
disruption. The focus was placed on QSARs that address molecular initiating events within
the adverse outcome pathway for TH system disruption. A total of thirty papers presenting
eighty-six different QSARs were selected based on predefined criteria. A discussion on the
endpoints and chemical classes modelled, data sources, modelling approaches, and the
molecular descriptors selected, including their mechanistic interpretations, was provided.
By serving as a “state-of-the-art” of the field, existing models and gaps were identified and
highlighted. This review can be used to inform future research studies aimed at advancing
the assessment of TH system disruption by chemicals without relying on animal-based
testing, highlighting areas that require additional research.

Keywords: endocrine disruption; thyroid hormone system disruption; new approach
methodologies; QSAR; MIE; AOP; molecular descriptors; mechanistic interpretation;
applicability domain

1. Introduction
The endocrine system is a network of glands and organs responsible for the proper

production and homeostasis of hormones that control and regulate essential physiological
processes, including growth, metabolism, and reproduction [1,2]. While the proper function
of this intricate network is vital for maintaining hormonal homeostasis, the endocrine
system is vulnerable to exogenous chemical substances known as endocrine disrupting
chemicals (EDCs) [1,2]. By mimicking or blocking hormone activity, EDCs cause a wide
range of severe adverse health outcomes in living organisms, including, among others,
cancers and infertility [1,3,4]. This breadth and severity of effects have made exposure to
EDCs a global concern for ecosystems and human health [4–6].

In mammals, three major axes characterise the endocrine system: the hypothalamic–
pituitary–gonadal (HPG) axis, the hypothalamic–pituitary–adrenal (HPA) axis, and the
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hypothalamic–pituitary–thyroid (HPT) axis [2,6,7]. The HPT axis regulates the synthesis
and release of specific hormones, i.e., thyroid hormones (TH), through a negative feedback
loop, ensuring their homeostasis and appropriate physiological concentrations [8,9]. THs,
primarily thyroxine (T4) and triiodothyronine (T3), are essential for regulating and coordi-
nating a wide spectrum of physiological processes throughout all life cycle stages, from
embryonic development to adult tissue functions. These processes include, among others,
the regulation of metabolism and energy balance [10,11], and the influence on the immune,
nervous, skeletal, reproductive, and cardiovascular systems [12–16]. Although proper TH
activity is essential for normal physiological processes in adulthood [17], its importance
is critically pronounced during gestation and early life stages, as THs play a lead role in
placenta, brain, and nervous system development [18–21]. TH system-disrupting chemicals
(THSDCs) are a specific subset of EDCs which target the TH system and interfere with the
synthesis, secretion, distribution, and metabolism of THs and, ultimately, with their binding
to nuclear TH receptors (TRs) for inhibiting or activating gene transcription [22,23]. To
date, multiple chemical substances have been recognised as THSDCs, including polychlori-
nated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), perchlorate, bisphenol
A, phthalates, dioxins, pesticides, per- and polyfluoroalkyl substances (PFAS), and met-
als [22,24–26]. Exposure to TSHDCs can disrupt TH homeostasis, resulting in cognitive
and neurobehavioral disorders [27], cancer [28], and immune, cardiovascular, and repro-
ductive system dysfunctions [29–32]. Therefore, it is of utmost importance that THSDCs
are identified without delays [23,33].

In the framework of the European Green Deal [34] and the Chemicals Strategy for
Sustainability [35], the development and implementation of new approach methodologies
(NAMs), including in vitro assays and in silico approaches, are heavily promoted to support
the identification of EDCs and reduce the reliance on vertebrate animal testing [36–38].
The European Union (EU) is advancing this field by funding key dedicated research
projects, such as the European Cluster to Improve Identification of Endocrine Disruptors
(https://eurion-cluster.eu/). At the international level, the Organisation for Economic Co-
operation and Development (OECD) included in vitro and in silico methodologies in the
“Conceptual Framework for Testing and Assessment of Endocrine Disrupting Chemicals”
as a relevant source of information to assess the ED properties of substances [39].

In previous years, the criteria for the determination of ED properties has been adopted
under the main EU chemical regulations, such as Regulation (EU) No 528/2012 [40],
Regulation (EC) No 1107/2009 [41], and Regulation (EC) No 1272/2008 [42]. Although
there are minor differences in the terminology across these regulations, a chemical substance
is recognised as an EDC if it meets the following three criteria: (i) it shows an adverse effect,
(ii) it can alter the endocrine system through an endocrine mode of action, (iii) a plausible
link between (i) and (ii) must be established. In this regard, the combined application of
NAMs and the adverse outcome pathway (AOP) framework [43] has been suggested as
an effective strategy [36,37,44]. Firstly, the development and application of NAMs can
identify molecular initiating events (MIEs) in AOPs through which chemical substances
can trigger specific endocrine modes of action and consequently lead to endocrine-related
adverse effects. Secondly, a biologically plausible link between endocrine modes of action
and adverse effects can emerge. This synergy gains even greater significance as it is now
established that EDCs can disrupt various pathways involving hormone signalling, rather
than the initial belief that their effects were solely mediated by interacting with nuclear
receptors [7]. As is the case with other types of NAMs, a synergism between AOPs and
quantitative structure–activity relationship (QSAR) models has been established [23,45,46].
The AOP network for TH system disruption developed by Noyes et al. [47] holds significant
importance in the field, as it was used as foundational framework by the European Union
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Reference Laboratory for alternatives to animal testing (EURL ECVAM) to validate a suite
of mechanistic in vitro assays for identifying THSDCs [33,48]. Multiple MIEs have been
well documented, which involved each step of the TH cycle [47]. Examples include, among
others, the inhibition of thyroperoxidase (TPO), which is a critical enzyme for TH synthesis
as it catalyses tyrosine residue iodination; binding to serum TH distributor proteins, such as
transthyretin (TTR), thyroid binding globulin (TBG), and albumin, which serve as buffers
of TH in the bloodstream to ensure the proper TH concentration in their free form; and
binding to TRs, which are proteins that, once bound to TH, regulate gene expression and
ultimately biological effects [47].

Despite the growing need and interest to advance TH system disruption assessments
using in silico and QSAR approaches, a comprehensive review on this topic is currently
lacking. While valuable studies have been recently published [49,50], their scopes were
different. Sellami and co-workers presented a review on in silico studies focused on nuclear
receptors, covering a range of approaches that included not only QSARs but also other
methods such as molecular docking and dynamics, and considered the TR as the sole
target related to the TH system [49]. In contrast, Vergauwen and co-workers presented a
broader review focused on in vivo, in vitro, and in silico methods currently available for
TH system disruption assessment [50]. However, their specific examination of in silico
tools was confined to models available in open-source predictive tools (e.g., Danish (Q)SAR
Database), leading to the identification of twelve models [50]. The present review addressed
the current state-of-the-art of QSAR models published in the literature from 2010 and up
to 2024 to predict potential TH system disruption by chemical substances. This allowed
for a detailed characterisation of how this field has evolved over time, which type of
TH system-related endpoints were modelled (and not) by these models, the main data
sources used for model development, the modelling approaches, the applicability domain
(AD) definitions, which types of chemicals have been assessed, which types of molecular
descriptors have been selected as more relevant, and their mechanistic interpretations to
suggest potential biological mechanisms. Mapping out the state-of-the-art on this topic is
necessary to consolidate existing knowledge, identify research gaps, and offer a resource
to guide future investigations. To provide the most up-to-date perspective on the topic, a
separate paragraph is dedicated to key articles published between January and July 2025.
The decision to treat these publications separately was made because 2025 is an incomplete
year and a full comprehensive review of its literature would be premature.

2. Materials and Methods
Criteria of Inclusion and Exclusion and Literature Collection

To meet the scope of this review, the following specific inclusion and exclusion criteria
were predefined to collect relevant publications. (1) Original peer-reviewed research
articles published from 2010 and up to 2024, where new QSAR models for predicting the
potential TH system disruption by chemical substances were proposed. Original peer-
reviewed research articles not proposing a new QSAR model (e.g., experimental studies,
the application of unsupervised learning methods) were excluded. (2) Modelling efforts
focused on predicting MIEs within AOPs for TH system disruption; the AOP network
proposed by Noyes et al. was used as a reference [47]. MIEs, such as the induction of
the constitutive androstane receptor (CAR), pregnane X receptor (PXR), aryl hydrocarbon
receptor (AhR), and peroxisome proliferator-activated receptor (PPAR), were not considered
in this review as they were not identified as being thyroid-specific by Dracheva et al. [51]
in a study following that by Noyes et al. [47], and were also not addressed by the EURL
ECVAM [33,48]. (3) From articles reporting multiple models for the same endpoint, only the
QSARs explicitly identified as the best ones by the developers and/or applied for screening
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purposes within the same study were retained, thereby excluding QSARs arising from,
e.g., different data partitioning, data imbalance handling techniques, and feature selection
procedures (please note that a description about the effects of such approaches on models’
performances was provided Section 3.5). (4) Original, peer-reviewed research articles
focusing on QSAR development for a series of “selective ligands” in illness treatments or
drug development were excluded. The same inclusion and exclusion criteria were applied
to identify relevant articles published between January and July 2025.

The literature search was conducted using the Web of Science database, according to
the inclusion and exclusion criteria. To obtain a more comprehensive collection of relevant
publications, the literature search was conducted using both the full names and abbrevia-
tions of key biological targets (e.g., TTR, TPO) as keywords, rather than searching for each
specific MIE (e.g., TTR binding, TPO inhibition) [47,48,51]. Hereafter in this review, each
biological target will be referred to as the related MIE. The search strategy involved the fol-
lowing combinations of keywords: “thyroid system” AND “QSAR”, “thyrotropin releasing
hormone receptor” AND “QSAR”, “TRHR” AND “QSAR”, “thyroid stimulating hormone
receptor” AND “QSAR”, “TSHR” AND “QSAR”, “thyroperoxidase” AND “QSAR”, “TPO”
AND “QSAR”, “sodium iodide symporter” AND “QSAR”, “NIS” AND “QSAR”, “type 1
deiodinase” AND “QSAR”, “DIO1” AND “QSAR”, “type 2 deiodinase” AND “QSAR”,
“DIO2” AND “QSAR”, “type 3 deiodinase” AND “QSAR”, “DIO3” AND “QSAR”, “deiod-
inase” AND “QSAR”, “DIO” AND “QSAR”, “iodothyronine deiodinase” AND “QSAR”,
“IYD” AND “QSAR”, “iodotyrosine deiodinase” AND “QSAR”, “DUOX” AND “QSAR”,
“dual oxidase” AND “QSAR”, “pendrin” AND “QSAR”, “monocarboxylate transporter 8”
AND “QSAR”, “MCT8” AND “QSAR”, “monocarboxylate transporter 10” AND “QSAR”,
“MCT10” AND “QSAR”, “monocarboxylate transporter” AND “QSAR”, “MCT” AND
“QSAR”, “organic anion transporter polypeptide 1C1” AND “QSAR”, “OATP1C1” AND
“QSAR”, “organic anion transporter polypeptide 1A4” AND “QSAR”, “OATP1A4” AND
“QSAR”, “organic anion transporter polypeptide” AND “QSAR”, “OATP” AND “QSAR”,
“multidrug resistance protein 1” AND “QSAR”, “MDR1” AND “QSAR”, “multidrug resis-
tance associated protein 2” AND “QSAR”, “MRP2” AND “QSAR”, “thyroid binding glob-
ulin” AND “QSAR”, “TBG” AND “QSAR”, “transthyretin” AND “QSAR”, “TTR” AND
“QSAR”, “albumin” AND “QSAR”, “thyroid receptor” AND “QSAR”, “TR” AND “QSAR”.

The selection of relevant publications from this search followed two main phases. An
initial screening of titles and abstracts was conducted to assess relevance based on the
inclusion and exclusion criteria. If relevance could not be determined from this step, a
full-text analysis was performed.

3. Results and Discussion
The final list comprised thirty publications including eighty-six distinct QSAR models.

A summary is reported in Table 1, where studies are presented chronologically. Additional
information is reported in Table S1 in the Supplementary Materials.

Table 1. Summary and main characteristics of selected QSARs. C: classification-based; R: regression-
based; Primary: data generated as part of the same study; Secondary: data collected from the
existing literature; ToxCast database: Toxicity Forecaster (ToxCast) database (https://www.epa.gov/
comptox-tools/toxicity-forecasting-toxcast); Tox21 database: Toxicology in the 21st Century (Tox21)
(https://tox21.gov/); Ref.: reference; n.s.: not specified.

Model ID Ref. Year MIE Algorithm C or R Chemical Class Data Source
Type

Data Source Literature
Reference(s)

ID_1 [52] 2024 TBG MLR R PBBs Primary [52]

ID_2 [52] 2024 TBG MLR R PBBs and OH-PBBs Primary [52]

https://www.epa.gov/comptox-tools/toxicity-forecasting-toxcast
https://www.epa.gov/comptox-tools/toxicity-forecasting-toxcast
https://tox21.gov/
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Table 1. Cont.

Model ID Ref. Year MIE Algorithm C or R Chemical Class Data Source
Type

Data Source Literature
Reference(s)

ID_3 [52] 2024 TBG MLR R PBBs and 2OH-PBBs Primary [52]

ID_4 [52] 2024 TBG MLR R PBBs, OH-PBBs, and
2OH-PBBs Primary [52]

ID_5 [53] 2024 TTR MLR R Heterogeneous Secondary [54–60]

ID_6 [53] 2024 TTR MLR R Heterogeneous Secondary [61–67]

ID_7 [53] 2024 TTR MLR R Heterogeneous Secondary [68–89]

ID_8 [90] 2023 TR α MLR R PFAS Primary [90]

ID_9 [90] 2023 TR β MLR R PFAS Primary [90]

ID_10 [91] 2023 TR n.s. LDA C OH-PCBs Secondary [92]

ID_11 [91] 2023 TR n.s. LR C OH-PCBs Secondary [92]

ID_12 [93] 2023 Albumin PLS R PFAS Secondary [94]

ID_13 [93] 2023 Albumin LDA C PFAS Secondary [94]

ID_14 [93] 2023 Albumin MLR R PFAS Secondary [94]

ID_15 [95] 2023 TSHR RF C Heterogeneous
Tox21

database and
secondary

[96–98]

ID_16 [51] 2022 TTR RF C Heterogeneous Secondary [87]

ID_17 [51] 2022 TR β RF C Heterogeneous Tox21
database * [99,100]

ID_18 [51] 2022 TR β RF C Heterogeneous Tox21
database * [99,100]

ID_19 [51] 2022 TSHR RF C Heterogeneous Tox21
database * [99,100]

ID_20 [51] 2022 TSHR RF C Heterogeneous Tox21
database * [99,100]

ID_21 [51] 2022 TRHR RF C Heterogeneous Tox21
database * [99,100]

ID_22 [51] 2022 DIO1 RF C Heterogeneous ToxCast
database ** [101]

ID_23 [51] 2022 DIO2 RF C Heterogeneous ToxCast
database ** [101]

ID_24 [51] 2022 DIO3 RF C Heterogeneous ToxCast
database ** [101]

ID_25 [51] 2022 NIS RF C Heterogeneous ToxCast
database ** [102]

ID_26 [51] 2022 TPO RF C Heterogeneous ToxCast
database ** [103]

ID_27 [104] 2022 TTR RF C Heterogeneous ChEMBL
database *** [105]

ID_28 [104] 2022 TR α RF C Heterogeneous ChEMBL
database *** [105]

ID_29 [104] 2022 TR β RF C Heterogeneous ChEMBL
database *** [105]

ID_30 [104] 2022 NIS RF C Heterogeneous ChEMBL
database *** [105]

ID_31 [106] 2022 TSHR RF C Heterogeneous Tox21
database

https://tripod.nih.gov/tox2
1/assays/

ID_32 [106] 2022 TSHR RF C Heterogeneous Tox21
database

https://tripod.nih.gov/tox2
1/assays/

ID_33 [106] 2022 TSHR XGB C Heterogeneous Tox21
database

https://tripod.nih.gov/tox2
1/assays/

ID_34 [106] 2022 TSHR LR C Heterogeneous Tox21
database

https://tripod.nih.gov/tox2
1/assays/

https://tripod.nih.gov/tox21/assays/
https://tripod.nih.gov/tox21/assays/
https://tripod.nih.gov/tox21/assays/
https://tripod.nih.gov/tox21/assays/
https://tripod.nih.gov/tox21/assays/
https://tripod.nih.gov/tox21/assays/
https://tripod.nih.gov/tox21/assays/
https://tripod.nih.gov/tox21/assays/
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Table 1. Cont.

Model ID Ref. Year MIE Algorithm C or R Chemical Class Data Source
Type

Data Source Literature
Reference(s)

ID_35 [106] 2022 TSHR XGB R Heterogeneous Tox21
database

https://tripod.nih.gov/tox2
1/assays/

ID_36 [107] 2022 TPO XGB C Heterogeneous
ToxCast

database and
secondary **

[103,108–111]

ID_37 [107] 2022 TPO Hard Voting C Heterogeneous
ToxCast

database and
secondary **

[103,108–111]

ID_38 [107] 2022 TPO Soft Voting C Heterogeneous
ToxCast

database and
secondary **

[103,108–111]

ID_39 [112] 2022 TR β MLR R PCNs Primary [112]

ID_40 [113] 2023 TR β RF C Heterogeneous Tox21
database

National Center for
Biotechnology Information.

PubChem Database.
Source = 824, AID = 743067,
https://pubchem.ncbi.nlm.
nih.gov/bioassay/743067

(accessed 13 May 2021)

ID_41 [59] 2021 TTR MLR R Halogenated phenols
and thiophenols

Primary and
Secondary [57,59]

ID_42 [114] 2021 TTR kNN C Heterogeneous Secondary [54–59,61,62,64,68,70–
73,75,78–89,115–118]

ID_43 [114] 2021 TTR kNN C Heterogeneous Secondary [54–59,61,62,64,68,70–
73,75,78–89,115–118]

ID_44 [114] 2021 TTR kNN C Heterogeneous Secondary [54–59,61,62,64,68,70–
73,75,78–89,115–118]

ID_45 [114] 2021 TTR kNN C Heterogeneous Secondary [54–59,61,62,64,68,70–
73,75,78–89,115–118]

ID_46 [114] 2021 TTR kNN C Heterogeneous Secondary [54–59,61,62,64,68,70–
73,75,78–89,115–118]

ID_47 [114] 2021 TTR MLR R Heterogeneous Secondary [61,70–73,75,78–88]

ID_48 [114] 2021 TTR MLR R Heterogeneous Secondary [57–59]

ID_49 [114] 2021 TTR kNN R Heterogeneous Secondary [61,70–73,75,78–88]

ID_50 [114] 2021 TTR kNN R Heterogeneous Secondary [57–59]

ID_51 [119] 2021 TR n.s. RF C Heterogeneous ToxCast
database

Cited as ToxCast and Tox21
Summary Files for

invitroDBv3.2, U.S. EPA,
Washington, DC.

ID_52 [119] 2021 TSHR RF C Heterogeneous ToxCast
database

Cited as ToxCast and Tox21
Summary Files for

invitroDBv3.2, U.S. EPA,
Washington, DC.

ID_53 [119] 2021 TSHR NN C Heterogeneous ToxCast
database

Cited as ToxCast and Tox21
Summary Files for

invitroDBv3.2, U.S. EPA,
Washington, DC.

ID_54 [119] 2021 TPO XGB C Heterogeneous ToxCast
database **

Cited as ToxCast and Tox21
Summary Files for

invitroDBv3.2, U.S. EPA,
Washington, DC. and [103]

ID_55 [119] 2021 TRHR SVM C Heterogeneous ToxCast
database

Cited as ToxCast and Tox21
Summary Files for

invitroDBv3.2, U.S. EPA,
Washington, DC.

https://tripod.nih.gov/tox21/assays/
https://tripod.nih.gov/tox21/assays/
https://pubchem.ncbi.nlm.nih.gov/bioassay/743067
https://pubchem.ncbi.nlm.nih.gov/bioassay/743067
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Table 1. Cont.

Model ID Ref. Year MIE Algorithm C or R Chemical Class Data Source
Type

Data Source Literature
Reference(s)

ID_56 [119] 2021 DIO1 SVM C Heterogeneous ToxCast
database **

Cited as ToxCast and Tox21
Summary Files for

invitroDBv3.2, U.S. EPA,
Washington, DC. and [101]

ID_57 [119] 2021 DIO2 SVM C Heterogeneous ToxCast
database ** [101]

ID_58 [119] 2021 DIO3 NN C Heterogeneous ToxCast
database ** [101]

ID_59 [119] 2021 NIS LR C Heterogeneous ToxCast
database **

Cited as ToxCast and Tox21
Summary Files for

invitroDBv3.2, U.S. EPA,
Washington, DC. and [102]

ID_60 [120] 2021 TPO kNN C Heterogeneous ToxCast
database ** [103,121]

ID_61 [120] 2021 TPO RF C Heterogeneous ToxCast
database ** [103,121]

ID_62 [57] 2019 TTR MLR R Phenolic DBPs Primary [57]

ID_63 [122] 2018 TR β SVM C PCBs Primary [122]

ID_64 [122] 2018 TR β LDA C PCBs Primary [122]

ID_65 [123] 2018 TR n.s. SVM C PCBs and PBDEs Secondary [124–132]

ID_66 [133] 2017 TTR LDA C PFCs Secondary [82]

ID_67 [133] 2017 TTR MLR R PFCs Secondary [82]

ID_68 [121] 2017 TPO PLR C Heterogeneous ToxCast
database ** [103,134–136]

ID_69 [121] 2017 TPO PLR C Heterogeneous ToxCast
database ** [103,134–136]

ID_70 [87] 2015 TTR kNN C Heterogeneous Secondary [88]

ID_71 [137] 2015 TTR ASNN C Heterogeneous Secondary [88]

ID_72 [138] 2015 TR β Monte Carlo R Heterogeneous Secondary [139]

ID_73 [138] 2015 TR β Monte Carlo R Heterogeneous Secondary [139]

ID_74 [138] 2015 TR β Monte Carlo R Heterogeneous Secondary [139]

ID_75 [139] 2014 TR β RF R Heterogeneous ChEMBL
database *** [140]

ID_76 [139] 2014 TR β RF R Heterogeneous Secondary [141–143]

ID_77 [139] 2014 TR β RF C Heterogeneous ChEMBL
database *** [140]

ID_78 [144] 2013 TTR kNN C PFCs and BFRs Secondary [78,80,82]

ID_79 [144] 2013 TTR MLR R PFCs and BFRs Secondary [78,80,82]

ID_80 [145] 2012 TTR kNN C PFCs Secondary [82]

ID_81 [145] 2012 TTR kNN C PFCs Secondary [82]

ID_82 [145] 2012 TTR kNN C PFCs Secondary [82]

ID_83 [145] 2012 TTR kNN C PFCs Secondary [82]

ID_84 [146] 2011 TTR kNN C BFRs Secondary [78,80]

ID_85 [147] 2010 TTR MLR R BFRs Secondary [78,80]

ID_86 [148] 2010 TR β PLS R OH-PBDEs Primary [148]

* Tox21 served as a data source but it was cited as [99,100]. ** Although cited as [101–103] or [134–136], this review
will refer to them as the ToxCast data source as described in the referenced papers. *** ChEMBL served as a data
source but it was cited as [105] or [140].

3.1. Temporal Trend

Figure 1 illustrates the number and distribution of the selected QSAR models and
papers over time. Despite minor fluctuations, modelling efforts remained relatively stable
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since 2010 until 2020, followed by a noticeable surge in the period 2021–2022 and by a
slight decrease in 2023–2024. Sixteen out of the thirty papers selected in this review were
published in the period 2021–2024, suggesting a recent acceleration of research into TH
system disruption using QSAR-based approaches. Before this, the field was characterised
by notably sparser publications, with fourteen papers appearing over the ten years from
2010 to 2020. Notably, no relevant publications were detected in 2016 and 2020, which could
signify periods of reduced research focus (e.g., the impact of the COVID-19 pandemic), or
a shift in research priorities. The number of developed QSAR models mirrors this trend.
Indeed, while a year-to-year fluctuation was observed up to 2020, over 70% of the total
QSARs were published within the last four years, with a pronounced surge occurring in
2021 and 2022. The number of QSAR models exceeding the number of publications is
largely attributed to the increasing practice of proposing multiple models within a single
publication, often addressing, for instance, different endpoints, descriptor types, and/or
methodological approaches. These findings could be mainly attributed to the growing
availability of publicly available high-throughput screening (HTS) data for multiple thyroid-
related endpoints, such as those from large-scale projects like Toxicity Forecaster (ToxCast)
(https://www.epa.gov/comptox-tools/toxicity-forecasting-toxcast) and Toxicology in the
21st Century (Tox21) (https://tox21.gov/).

 

Figure 1. Annual distribution of QSAR models (yellow bars) and papers (purple bars).

3.2. Modelled MIEs

The selected QSAR models were developed for eleven different MIEs for TH system
disruption, which represent only a subset of the over twenty described by Noyes et al. [47].
MIEs regarding DUOX, IYD, and pendrin inhibition, as well as those related to cellular TH
transport (i.e., MCT8, MCT10, OATP1C1, OATP1A4, MDR1, and MRP2), have never been
addressed by QSAR modelling.

As illustrated in Figure 2, a predominant focus was placed on TR and TTR, which
together account for 57% of all the QSARs included in this review. This large number could
be attributed to the widespread availability of in vitro data for these MIEs and to their es-

https://www.epa.gov/comptox-tools/toxicity-forecasting-toxcast
https://tox21.gov/
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tablished mechanistic links with TH system disruption [7]. While less frequently modelled
than TTR and TR, targets like TSHR and TPO were still relatively well represented. The
modelling of TPO, which is a key enzyme for THs synthesis, and TSHR, which is a protein
that regulates thyroid gland function, highlighted an expanding scope of investigation
beyond just TH distribution or nuclear receptor binding reflected by, respectively, TTR
and TR. In contrast, other important MIEs remained significantly poorly addressed, high-
lighting the notable gaps in the current research in the field. The critical roles of albumin,
TBG, NIS, TRHR, and the three deiodinases (DIO 1, 2, and 3) in TH synthesis, distribution,
and metabolism are well established [31,47]. However, despite their recognised relevance,
the scarcity of QSAR research for these targets pointed out potential challenges, such as
poor data availability or a limited interest or awareness among QSAR developers. This
almost-negligible modelling effort for these MIEs indicates a significant opportunity for
future research and QSAR model development.

 

Figure 2. Count of QSAR models developed for each MIE.

As illustrated in Figure 3, TR and TTR were consistently modelled throughout the
entire study period, reflecting their long-standing recognition as key targets for TH system
disruption assessment. A shift in research focus is evident from 2021 onward, with a
significant diversification of modelled MIEs. Specifically, the modelling efforts on TSHR,
TPO, NIS, TRHR, and deiodinases (DIO1, DIO2, DIO3), though less numerous overall,
were distinctly concentrated in 2021 and 2022. This concentrated activity, however, largely
stemmed from two studies by Dracheva et al. [51] and de Lomana et al. [119], where
multiple endpoints were addressed in the same publication. QSARs addressing other
important TH distributor proteins, i.e., TBG and albumin, were only published in the last
two years.

As discussed in Section 3.1, this trend of diversification and the surge in the 2021–2022
biennium are likely linked to the growing availability and accessibility of HTS data. Prior
to 2021, the scarcity of QSAR studies for MIEs other than TR and TTR likely stemmed
from a combination of factors: a scarcity of available experimental data (for instance,
Gadaleta et al. [104] pointed out that MIEs such as MCT8, MCT10, and OATP1C1 lacked
sufficient active compounds in the ChEMBL database to be used for modelling purposes)
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and a complexity of developing suitable and validated assays for their generation, or a
lower awareness of the mechanistic role of these MIEs in TH system disruption. It is worth
highlighting that no in vitro assays for TH system disruption have yet been validated by
the OECD [33,48,149,150], which might slowing data generation. The relatively recent
publication of the AOP network for TH system disruption by Noyes and colleagues [47]
likely played a crucial role. By providing a more structured understanding of these diverse
pathways, it stimulated research into previously underexplored MIEs. The growing number
of publications and QSARs covering multiple MIEs underscored the increasing awareness
of the multifaceted and interconnected nature of TH system disruption.

Figure 3. Annual distribution of QSAR models, categorised by MIE.

3.3. Data Sources

As detailed in Table 1, the QSARs selected for this review were based on data from
three main source types: (1) primary sources, where data was generated as part of the
same study; (2) secondary sources, where data was collected from the existing literature;
(3) publicly available databases (i.e., ToxCast, Tox21, and ChEMBL). In most cases, these
sources were used individually, while in others, they were combined (Figure 4).

The data source reference(s) used to develop each QSAR are reported in Table 1. The
data included in publicly available databases served as unique data sources for developing
thirty-five distinct QSARs, representing approximately 41% of the total. MIEs covered by
these QSARs included TTR, TR, TSHR, TPO, TRHR, NIS, and the three deiodinases. With a
single exception [121], all of the studies using data from the ToxCast and Tox21 projects
were published from 2021 to 2023, proposing all of the available QSARs addressing TPO,
NIS, TSHR, TRHR, DIO1, DIO2, and DIO3. As previously discussed, these findings were
linked to the growing availability and accessibility of comprehensive HTS datasets. This
data availability, combined with an increasing awareness of the critical roles these targets
play within the TH system, has broadened the scope of QSAR investigations for TH system
disruption assessment.
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In contrast, primary and secondary data sources were used alone for the development
of forty-six (53%) QSARs. The consistent use of primary and secondary data sources from
the literature throughout the entire study period underscored their sustained importance.
These models covered a stricter range of MIEs, such as TR and TH distributor proteins
TTR, TBG, and albumin, underscoring limited data availability or utilisation for other MIEs.
Whilst the majority of these QSARs were developed using data from in vitro experiments,
Kowalska et al. [90] and Yang et al. [52] developed a total of six QSARs to predict binding
energies to TTR and TBG, respectively. Binding energies used for models’ development
were generated within the same studies through molecular docking and dynamic simula-
tions and used as dependent variables. The successful application of integrated in silico
approaches highlighted their utility as an effective strategy when experimental data from
in vivo or in vitro studies is limited or entirely lacking, further enabling the exploration of
complex molecular interactions that might be otherwise inaccessible.

Figure 4. Count of QSAR models based on data source type, categorised by MIE.

A key aspect across the studies was data transparency. The data sources and data
used for model development were consistently made available, either directly within
the publications or through adequately referenced sources. This commitment to data
availability aligned with the FAIR (Findable, Accessible, Interoperable, Reusable) principles
for data sharing [151], thereby optimising data reuse for future research.

3.4. Chemical Classes

The datasets used for QSARs training and validation included either structurally
heterogenous chemicals or class-specific chemicals.

Structurally heterogeneous datasets were used for approximately 67% of the QSARs.
These datasets primarily consisted of organic chemicals, encompassing a mix of envi-
ronmental pollutants, natural compounds, and, occasionally, drugs. The sizes of such
datasets varied considerably, from 41 to 8682 compounds. About 83% of these QSARs were
published within the last four years, reflecting the spreading availability of HTS data, as
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previously described. As illustrated in Figure 5, all the endpoints were addressed using
heterogeneous datasets, with the exception of TBG and albumin.

Figure 5. Count of QSAR models based on structurally heterogenous or class-specific datasets,
categorised by MIE.

In contrast, only a limited number of chemical classes have been tested and modelled
for TH system disruption, addressing a limited number of MIEs. These datasets primarily
focused on environmental pollutants of known concern, including PCBs and their hydroxy-
lated metabolites, PBDEs and their hydroxylated metabolites, PCNs, halogenated phenols
and thiophenols, phenolic DBPs, PFAS (often referred to as PFCs), and PBBs and their
hydroxylated metabolites. The sizes of these datasets were generally smaller compared
with the structurally heterogeneous ones, ranging from 17 to 107 compounds. Furthermore,
these data were exclusively generated within the same study or retrieved from the existing
literature, hence were never extracted from databases. Notably, only TR and TH distributor
proteins (i.e., TTR, TBG, and albumin) were modelled using these datasets, underscoring
limited data availability or the utilisation of specific class data for other thyroid-related
endpoints. It is also important to highlight that almost half of these QSARs were published
within the last four years. This trend suggested that, despite the increasing availability of
HTS data, the reliance on data published in the literature by independent research groups
remained critically important.

Although certain compounds, like bisphenol derivatives, phthalates, various pesti-
cides, and constituents of personal care products have been experimentally identified as
THSDCs [22,25,26,152], many others within these same classes remain poorly addressed.
This lack of data is concerning because structural similarity among compounds within
the same class may suggest a similar toxic potential. This highlighted a strong need for
additional in silico or in vitro efforts to generate more data for these and other chemical
categories for specific MIEs. Broadening the chemical space coverage for each of these
chemical categories would be essential to develop new, specific QSAR models, enabling a
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more robust hazard assessment for entire groups of compounds. Building on the successful
application of integrated in silico approaches by Kowalska et al. [90] and Yang et al. [52], as
described in Section 3.3, a similar approach could be an effective strategy to address other
MIEs for specific chemical classes.

Generally, the use of heterogeneous datasets can improve a model’s AD coverage
and generalizability for large screening applications. In contrast, local QSARs, which
are specifically designed for specific classes of compounds, are often preferred for their
ability to more accurately capture subtle structural differences and specific structure–
activity relationships. This can lead to (potentially) more reliable predictions within that
defined chemical space. Therefore, the choice between using global or local QSAR models
depends on the specific application purposes. Furthermore, the inherent complexity of
heterogeneous data can hinder the mechanistic interpretation of molecular descriptors
(see Section 3.8). When a model is trained on a wide array of chemical structures, it is
more challenging to pinpoint the exact structural features or physicochemical properties
responsible for a particular activity. This is in contrast to datasets of specific classes,
where a clearer structure–activity relationship can emerge, making interpretation more
straightforward.

3.5. Modelling Approaches

A wide variety of modelling algorithms are available for QSAR model development.
These range from traditional methodologies, such as MLR and LDA, to more complex
machine learning methodologies, such as NN and SVM [46,153]. The choice of algorithm
generally depends on the complexity of the data and the desired interpretability of the
model. Thus, the landscape of algorithms for QSAR development lacks a universally
accepted solution, as each method presents its own set of strengths and limitations.

As illustrated in Figure 6, different modelling algorithms and approaches were identi-
fied across the papers.

Figure 6. Count of QSAR models based on the modelling algorithm, categorised by MIE.
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Over two-thirds of the QSARs selected in this review (67%) were designed for clas-
sification, a preference largely driven by the nature of HTS data. Large-scale projects
like ToxCast and Tox21 generate vast datasets, where the effect on a biological target by
compounds is often reported with a simple categorical outcome, i.e., “active” or “inactive”.
This format has consequently led to a shift in QSAR modelling for TH system disruption,
favouring classification-based approaches over regression-based ones.

RF was the most frequently used algorithm, followed by MLR and kNN. Overall, RF,
kNN, and MLR were used to develop a total of fifty-eight different QSARs, corresponding
to approximately 67% of the total models. It is important to highlight that a single study
by Dracheva et al. [51] utilised RF to develop eleven different QSARs for the prediction of
nine MIEs, which significantly influenced the overall count of RF applications.

The majority of studies concentrated on a single, well-defined modelling strategy,
while a few explored more comprehensive approaches, systematically exploring combi-
nations of algorithms, descriptor types, or class-balancing techniques to achieve the best
possible performance. While a comprehensive comparative analysis of the predictive mod-
els’ performances would be highly valuable, it fell outside the scope of this review, as it
was hindered by the following two key reasons. Firstly, the distribution of available models
was highly imbalanced. While MIEs like TTR and TR have been extensively studied with
multiple QSARs, others have been addressed by a few, or even no, models. Secondly, cross-
study comparisons of models’ performances can be performed only when the same dataset
and data processing technique are used [154], meaning that simply looking at the statistical
metrics of QSARs from different papers would be inappropriate to determine which mod-
elling approach is truly superior. For example, Schür et al. recently reviewed predictive
ecotoxicology studies and concluded that no existing studies were truly comparable due to
inconsistent methodologies regarding datasets, data processing, and performance statistical
metrics [155]. This finding could also be applicable to the broader toxicological context.
Therefore, the focus of this section was placed on studies that directly explored various
modelling approaches, in terms of algorithms, descriptor types, or data-balancing methods,
on a single, consistent dataset. This approach allowed the authors to conduct a reliable
assessment of which specific methodology yielded the best predictive results.

All of the models for TPO inhibition were developed using structurally heterogenous
datasets of chemicals (see Table 1 and Figure 5). Rosenberg et al. [121] developed two
robust QSAR models using PLR, named QSAR1 and QSAR2, using an initial selection
of predefined molecular descriptors and training set-dependent scaffolds. The authors
evaluated seven different modelling strategies, including approaches that used scaffolds
and those that did not, in both single and composite models. The most successful strategy
was a composite model that uniquely combined a single, unbalanced model with balanced
sub-models from a composite one. This strategy was found to be particularly effective
in handling the challenges posed by imbalanced datasets, and led to the final QSAR1
and QSAR2 models (with a cross-validation balanced accuracy equal to 80.6% and 82.7%,
respectively). Similarly, Seo et al. [107] developed binary, ternary, and quaternary QSAR
models. They applied multiple algorithms, such as RF, SVM, artificial NN, Adaptive
Boosting (AdaB) and XGB, and hard- and soft-voting classifiers. Each algorithm was
combined with multiple categories of fingerprints (FPs) (e.g., Morgan FPs, Atom Pair
Count FPs) and dimensionality reduction techniques (i.e., principal component analysis
(PCA) and LDA) to address overfitting. The Atom Pair Count FPs was the best-performing
FP, whereas the best-performing models in the binary, ternary, and quaternary models were
the hard-voting classifier, XGB with LDA, and soft-voting classifier, respectively (test scores
equal to 0.66, 0.51, and 0.52, respectively). Gadaleta et al. [120] applied multiple algorithms,
including SVM, balanced RF, RF, and kNN, and explored different partitioning schemes



Toxics 2025, 13, 799 15 of 42

to stratify and select active compounds in different ways. The top-performing models
were based on balanced RF and kNN using a dataset that excluded compounds with an
ambiguous active categorization. The models achieved a balanced accuracy of 76–78% on
external data, which resulted as a performance comparable to the reported experimental
variability of the assay used to generate modelled data.

Regarding TR binding, Bai et al. [122] developed classification QSARs based on twenty-
two PCBs using LDA and SVM. Both showed strong and equal accuracy in the training
set (88.2%), with the SVM model exhibiting a greater accuracy in the test set, equal to 80%.
Akinola et al. [91] developed classification models applying LR and LDA on a dataset of
sixty-eight OH-PCBs, showing that both methods performed identically (accuracies in the
training set and in the test set equal to 84.3% and 76.5%, respectively). Yan et al. [123]
developed ternary classification models applying LDA, classification and regression trees
(CART), and SVM on a dataset of structurally heterogenous compounds. SVM proved to be
the optimal algorithm, with a total accuracy in the training and test set equal to 81.4% and
76.5%, respectively. Sapounidou et al. [113] proposed a comprehensive set of twenty-three
QSAR models for various MIEs related to endocrine disruption, including TRβ binding,
utilising the conformal prediction (CP) framework combined with RF as the modelling
algorithm. Five different data-balancing techniques were employed (for more details, see
below), with CP providing the best one. A balanced accuracy equal to 0.78 was achieved.

As for TPO, all of the models for TSHR inhibition were developed using datasets of
structurally heterogenous chemicals. Xu and colleagues [106] developed binary classifi-
cation models comparing three different algorithms: RF, XGB, and LR. Both RF and XGB
models showed good predictive performances, with balanced accuracies of 0.85 and 0.84,
respectively. The authors further developed a simplified RF model using the seven most
influential descriptors, which maintained strong performance (balanced accuracy equal to
0.83). Additionally, they first developed a regression model using MLR, which yielded an
R2 of 0.35. Therefore, a regression model using XGB was developed and the R2 increased
up to 0.65. Later, Liu et al. [95] explored various combinations of seven molecular repre-
sentations (including different types of FPs and Mordred descriptors) and four algorithms
(RF, SVM, multilayer perceptron, and graph attention network). The best-performing
model was a RF using PubChem FPs, which achieved a balanced accuracy of 0.94 on the
validation set.

Regarding TTR binding, Zhang et al. [87] developed QSAR classification models
applying kNN, PLS discriminant analysis (PLS-DA), and SVM. The kNN model, with a
k-value of 4, showed the best performance, achieving the highest correct classification
rate during both internal and external validation (0.88 and 0.82, respectively). Similarly,
Rybacka et al. [137] tested seven different machine learning methods (MLR, PLS, associative
NN, kNN, RF, SVM, and fast stepwise (stagewise) multivariate linear regression) and
five distinct descriptor sets. The best result was obtained by combining the associative NN
algorithm with Dragon descriptors, which achieved a balanced accuracy equal to 89%.

Finally, de Lomana et al. [119] used five different algorithms (i.e., LR, RF, XGB, SVM,
and NN) in combination with three class-balancing techniques (see below for more details)
to predict multiple MIEs. All algorithms performed similarly, with a tendency for the
models trained on over-sampled data to achieve better results. Balanced accuracies ranged
from 0.68 to 0.82 for different endpoints.

Although the use of diverse algorithms was evident (Figure 6), no clear temporal trend
was observed in the type of modelling algorithms employed. This suggested a consistent
application of both established and newer algorithms across different publication years,
rather than a gradual shift toward more complex techniques. Interestingly, despite the re-
cent advancements in machine learning and deep learning approaches, classical algorithms
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such as MLR, LDA, and PLS continued to be widely used, given their interpretability and
simplicity. Indeed, their added value stems from providing easily understandable models
that offer direct insights into the structural features driving the activity, which is a key
aspect to enhance confidence with QSARs. On the contrary, the “black box” nature of
more complex algorithms makes them less transparent and, if not adequately controlled,
potentially more susceptible to overfitting [156]. Therefore, an important research direction
is to leverage the power of complex algorithms by focusing on developing methods that
enhance their interpretability and transparency, thereby increasing user confidence and
facilitating their broader adoption.

Establishing a clear link between the algorithm type and a specific endpoint proved
challenging, as most endpoints have been assessed by a few, or even no, QSARs. Regarding
TTR and TR, the two most modelled endpoints, algorithms capable of handling linear
relationships (e.g., MLR) and non-linear relationships (e.g., kNN) between independent
and dependent variables were both utilised, with a slight preference for the second group.

An additional methodological aspect observed across the studies was the application
of class-balancing strategies. This is crucial to address class imbalance, where one class
(e.g., inactive compounds) is much more common than another (e.g., active compounds) in
a training dataset. This imbalance is frequently found in data from databases or generated
through HTS and can cause a model to become biased toward the majority class, leading to
a poor performance with the minority class. This is especially critical in hazard prediction,
where mistakenly predicting a dangerous compound as safe is a far more serious error than
the opposite. Several effective strategies exist and were observed in the reviewed studies.
Sapounidou et al. [113] in combination with RF, explored five different data-balancing
techniques: CP, equal size sampling (under-sampling), over-sampling by duplication,
synthetic minority over-sampling technique, and random over-sampling examples. As
described above, the use of CP was the best choice. de Lomana et al. [119] combined
five different algorithms (i.e., LR, RF, XGB, SVM, and NN) and three class-balancing tech-
niques: weight balancing, over-sampling, and under-sampling. The models trained on
over-sampled data achieved better results. Xu et al. [106] employed the synthetic minority
over-sampling technique-edited nearest neighbours (SMOTEENN) technique, which com-
bines over-sampling the minority class samples with under-sampling the majority class
samples to achieve a more balanced distribution. Gadaleta et al. [104,120] developed mod-
els using balanced RF, which is an adaptation of the more traditional RF that incorporates
the internal balancing of categories. Finally, Liu et al. [95] employed a threshold moving
method. The increasing volume of HTS data highlights the critical importance of effective
class-balancing strategies for enhancing the robustness and reliability of models built on
these datasets.

3.6. Validation Strategies

Validation stands as a crucial step in QSAR model development, ensuring the appro-
priateness of goodness-of-fit, overall robustness, and predictive ability, thereby ultimately
maximising the model’s reliability [157–159]. Validation procedures can be distinguished
as internal and external. Internal validation is conducted to evaluate the robustness and
the predictive ability of a QSAR on the data from which it was developed (i.e., training
set). External validation, on the other hand, is conducted to evaluate the actual predic-
tive ability of a QSAR on data not used for its development (i.e., test set). Thus, external
validation is of key importance as it assesses the model’s true predictive power using
unseen data [157,158,160]. Although the best strategy to perform external validation in-
volves the use of completely new and independent datasets, obtaining these datasets is
often challenging given the scarcity of available experimental data. Therefore, a common
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practice is to partition the available data into a training set and into a test set (i.e., dataset
splitting) [157,158,161].

All of the QSARs reviewed in this study underwent some form of internal and/or
external validation. Internal validation was performed to evaluate the robustness of
seventy-two QSARs, accounting for approximately 84% of the total. The most frequent
internal validation strategy was the k-fold cross-validation (CV), which was used in fifty-five
instances. This approach involves splitting the training set into k equally sized groups. The
method iteratively trains a model on k − 1 groups and validates it on the remaining group.
This is repeated k times, such that each group serves as the validation set once [162]. In this
review, k values were typically set to 2, 5, or 10. In some instances, this strategy was often
referred to as leave-more-out CV (LMO CV) and as leave-one-out CV (LOO CV). The latter
is the simplest case of k-fold CV, where each compound of the training set is removed one at
time, and it was employed in twenty instances. Finally, the stratified bagging method was
used in one instance [137], where k-fold CV was also tested. Additionally, regression-based
QSARs often underwent further internal validation strategies, such as the QUIK rule [163]
to detect high predictor collinearity, Y-randomisation to detect chance correlations [164],
and the use of the bootstrapping coefficient [165]. Details about each model are reported in
Table S1. External validation was performed to evaluate the predictive ability of eighty-three
QSARs, representing almost all of them. It is important to highlight that for the three QSARs
where external validation was not conducted, this omission was not an oversight, instead
it was intentionally not performed and adequately justified by the authors [93,121]. For
example, Rosenberg et al. [121] proposed two QSARs for TPO inhibition, named QSAR1 and
QSAR2, which were developed using two independent datasets. QSAR1 was developed
using one dataset as the training set and the other one as the test set for external validation.
Instead, QSAR2 was developed by merging both datasets to form a larger training set:
whilst QSAR2 was developed using the same modelling method and CV approaches as
QSAR1, it purposely lacked external validation. Both QSARs showed good performances
and were applied to broader screening purposes. In the study by Gallagher et al. [93],
given the small size of the dataset (twenty-two compounds), the “Small Dataset Modeler”
tool proposed by Ambure et al. [166] was utilised to facilitate an exhaustive double CV
approach that uses the entire dataset without requiring splitting it into a training set and a
test set, making it an effective and suitable solution to validate QSARs based on limited
data. Beyond these three specific exceptions, data partitioning into a training and test set
was performed by employing various splitting strategies. Random splitting is a frequently
adopted strategy [167], and its prevalence was also observed in this review, where it
was applied in sixty-three instances. While straightforward, this procedure can lead to
an uneven data distribution particularly when dealing with small-sized datasets or with
skewed class distributions [168–170]. This imbalance might ultimately result in training and
test sets that deviate from the representativeness suggested by Golbraikh et al. [171], who
argued that using rationally selected training and test set can enhance QSAR reliability [171].
Alternative partitioning strategies have been proposed and used for a strategic selection
of training and test set compounds [157,168]. In this review, strategies alternative to
random splitting included those based on sorted response variables [53,90,133,144] or on
the Kennard–Stone algorithm [87,91,172]. The details about each model are reported in
Table S1.

The diverse array of splitting strategies reflected the fact that there is not a single
and widely considered ideal partitioning scheme. Instead, the choice depends on the
specific dataset type, its size, and the modelling methodology employed in the study [168].
Encouragingly, with only a few noted exceptions, the predominant practice across the re-
viewed studies involved the combined application of both internal and external validation.
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This robust approach, which was utilised in 80% of the QSAR models, suggested a strong
commitment within the field to ensure their validity and reliability.

3.7. Applicability Domains

A single QSAR model cannot accurately predict the entire chemical universe [173].
Thus, each QSAR needs to be associated with a clearly defined AD. This domain determines
whether a QSAR model can provide reliable or unreliable predictions (i.e., extrapolations)
based on the structural, physicochemical, and response information present in the training
set of the model [157,158,174]. No single, universally accepted method exists for defining
the AD of a QSAR model. Instead, a range of methodologies are utilised, each offering a
distinct approach [175,176]. These methods can differ in their restrictiveness and can yield
either categorical outcomes (e.g., a simple “in” or “out” of the AD) or continuous values
(e.g., distance) quantifying the relative position of a compound to the AD boundaries or
centre [157].

An alarming finding was that the AD was not explicitly defined for thirty-two QSARs,
accounting for approximately 37% of the total models. Among these, it is worth highlighting
the studies by Bai et al. [122] and by Akinola et al. [91]. Bai et al. [122] developed two QSARs
using a training set of twenty-two PCBs, which were then applied to predict TR binding
for the remaining PCBs congeners. Similarly, Akinola et al. [91] developed two QSARs
based on TR binding data for sixty-eight mono-hydroxylated PCBs. While the ADs of these
models were not formally defined, it is reasonable to assume that they were implicitly
limited to these specific chemical classes due to their relatively small number and well-
defined congeners. In the publication by de Lomana et al. [119], nine different QSARs were
developed without defining a priori their ADs. Instead, ADs were assessed post hoc in
terms of the Tanimoto coefficient by comparing the chemical space covered by the training
sets with the chemical spaces covered by well-known datasets of pesticides, cosmetics,
and drugs.

Despite its critical importance for ensuring the reliability of predictions for new chemi-
cals, the AD was explicitly defined for fifty-four QSARs (see Table S1). As illustrated in
Figure 7, a variety of methodologies were used for the AD definition of both classification
and regression QSARs, showing that some studies integrated multiple approaches while
others relied on a single method. While some methods were used more frequently, others
appeared in only a single instance.

 

Figure 7. Types of AD definitions used in the selected QSAR models (and count).
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The leverage approach was the most frequently used method, employed in approx-
imately 44% of the QSAR models. This method was used either as a standalone tech-
nique [52,53,90,112,144,145,147,148] or in combination with other approaches [57,59,114],
often complemented by the Williams plot as a graphical support for AD visualisa-
tion [52,53,57,59,90,112,114,144,147,148]. For example, in two different studies by Yang
et al. [57,59] the leverage approach was combined with the Euclidean distance-based
method to define the AD boundaries of two regression QSARs for TTR binding. In another
study [114], Yang et al. used the same approach as before and included the Tanimoto simi-
larity index to assess the reliability of external predictions for four regression QSARs for
TTR binding; in the same study, they combined the Euclidean distance-based method with
the Tanimoto similarity index to define the AD of five classification QSARs. The Euclidean
distance method was additionally employed to define the AD of two QSARs developed
by Kar et al. [133] and one QSAR by Kovarich et al. [146]. Kar et al. [133] combined it
with the standardisation-based technique [173], while Kovarich et al. [146] combined it
with the range of descriptor values in the training set. Zhang et al. [87] employed the
Hotelling T2 test to measure the distance of new compounds from the centre of the training
set in descriptor space in order to define the AD. Rybacka and colleagues [137] used a
PCA to define the chemical space of the training set based on selected molecular descrip-
tors, and then calculated the distance-to-the-model (DModX) value for each compound.
Methodologies less common than distance-based approaches were applied in six distinct
publications [51,95,113,120,121,138]. Toropova et al. [138] defined the ADs of three QSARs
according to the prevalence of local and global SMILES attributes in the training and vali-
dation sets, as proposed in their earlier publication [177]. Both Gadaleta et al. [120] and
Rosenberg et al. [121] defined the ADs of their models in terms of the post probability of
the predictions, with Rosenberg et al. [121] integrating the study of post probabilities with
the Tanimoto similarity index. Liu et al. [95] characterised the AD in terms of weighted
similarity density (ρs) and weighted inconsistency of activities (IA) (ADSAL{ρs, IA}). Finally,
both Dracheva et al. [51] and Sapounidou et al. [113] employed the CP framework to define
the AD. As described in the studies, the CP quantifies the uncertainty of predictions by
providing similarity scores, also termed as nonconformity scores, which can then be used
to determine whether query compounds fall inside or outside the AD of a model.

Overall, a critical finding was the pronounced lack of QSAR models associated with a
clearly defined AD. A clear definition of the AD is fundamental to increase confidence in the
reliability of QSAR predictions and to accurately assess the degree of extrapolations. With-
out a defined AD, QSAR models risk being applied incorrectly and outside their intended
scope, which can lead to the misuse of the tool and, ultimately, unreliable predictions.

3.8. Molecular Descriptors: Mechanistic Interpretations and Feature Importance

Molecular descriptors encode for numerical representations of molecular structures
and serve as independent variables in QSAR models. Thousands of molecular descriptors
have been developed, reflecting the varied complexity of chemical structural representation.
Molecular descriptors range from simple molecular properties (e.g., molecular weight
(MW)) to highly complex ones (e.g., quantum chemical descriptors) [178]. Multiple types
of software, either open or commercial, are available for their calculation [179].

Across the examined studies, an extensive range of molecular descriptors and software
for their calculation was observed. The full list of software and molecular descriptors used
for each model is provided in Table 2, where models are presented for each MIE to facilitate
direct comparison. These descriptors encompassed multiple categories, including physic-
ochemical properties, FPs, constitutional, topological, electronic, and quantum chemical
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descriptors. It was a common practice to combine multiple software or libraries within a
single study to compute different types of molecular descriptors.

Table 2. Summary of the molecular descriptors selected by each QSAR, grouped by MIE.

MIE Ref. Model ID Chemical Class Descriptors Software

TTR

[53]

ID_5 Heterogeneous AATSC1c; PubchemFP381; ATSC2s;
nX PaDEL [180]

ID_6 Heterogeneous naasC; SpMin4_Bhs; VE3_Dzs PaDEL [180]

ID_7 Heterogeneous
PubchemFP590; SpMax1_Bhe;

PubchemFP18; GATS5c; AATSC1e;
AATS4v

PaDEL [180]

[51] ID_16 Heterogeneous Calculation of 119 RDKit chemical
descriptors

RDKit: Open-source cheminformatics.
http://www.rdkit.org

[104] ID_27 Heterogeneous
Calculation of extended fingerprints

with a KNIME implementation of the
CDK toolkit

CDK toolkit: https://cdk.github.io/

[59] ID_41
Halogenated
phenols and
thiophenols

logDOW(pH = 7.40); ωadj; dipoleadj

Marvin Sketch 15.6.29.0, 2015: ChemAxon,
http://www.chemaxon.com);

Gaussian 16; GsGrid 1.7
(http://gsgrid.codeplex.com)

[114]

ID_42 Heterogeneous Vsadj; Πadj; µadj

Marvin Sketch 15.6.29.0, 2015: ChemAxon,
http://www.chemaxon.com;

GaussView 6.0; Gaussian 16; GsGrid 1.7,
http://gsgrid.codeplex.com

ID_43 Heterogeneous Vsadj; O-059; µadj

Marvin Sketch 15.6.29.0, 2015: ChemAxon,
http://www.chemaxon.com;

GaussView 6.0; Gaussian 16; GsGrid 1.7,
http://gsgrid.codeplex.com

ID_44 Heterogeneous Vsadj; H-050; nCbH

Marvin Sketch 15.6.29.0, 2015: ChemAxon,
http://www.chemaxon.com;

GaussView 6.0; Gaussian 16; GsGrid 1.7,
http://gsgrid.codeplex.com

ID_45 Heterogeneous nArOH; Vsadj; ωadj

Marvin Sketch 15.6.29.0, 2015: ChemAxon,
http://www.chemaxon.com;

GaussView 6.0; Gaussian 16; GsGrid 1.7,
http://gsgrid.codeplex.com

ID_46 Heterogeneous Vsadj; C-024; nHDon

Marvin Sketch 15.6.29.0, 2015: ChemAxon,
http://www.chemaxon.com;

GaussView 6.0; Gaussian 16; GsGrid 1.7,
http://gsgrid.codeplex.com

ID_47 Heterogeneous C-040; nCq; H-050; O-058; Πadj; O-056

Marvin Sketch 15.6.29.0, 2015: ChemAxon,
http://www.chemaxon.com;

GaussView 6.0; Gaussian 16; GsGrid 1.7,
http://gsgrid.codeplex.com

ID_48 Heterogeneous log DOW(pH = 7.40); nArOH; O-057;
nArNO2

Marvin Sketch 15.6.29.0, 2015: ChemAxon,
http://www.chemaxon.com;

GaussView 6.0; Gaussian 16; GsGrid 1.7,
http://gsgrid.codeplex.com

ID_49 Heterogeneous EHOMO-adj; nArOH; H052; ωadj

Marvin Sketch 15.6.29.0, 2015: ChemAxon,
http://www.chemaxon.com;

GaussView 6.0; Gaussian 16; GsGrid 1.7,
http://gsgrid.codeplex.com

ID_50 Heterogeneous log DOW(pH = 7.40); nArOH

Marvin Sketch 15.6.29.0, 2015: ChemAxon,
http://www.chemaxon.com;

GaussView 6.0; Gaussian 16; GsGrid 1.7,
http://gsgrid.codeplex.com

[57] ID_62 Phenolic DBPs log D; dipoleadj
Marvin Sketch 15.6.29.0, 2015: ChemAxon,
http://www.chemaxon.com; Gaussian 16

[133]
ID_66 PFCs Me; nCsp2; H-050 DRAGON Version 6.0, 2011,

http://www.talete.mi.it/

ID_67 PFCs IC3; ∑β’S
DRAGON Version 6.0, 2011,

http://www.talete.mi.it/

http://www.rdkit.org
https://cdk.github.io/
http://www.chemaxon.com
http://gsgrid.codeplex.com
http://www.chemaxon.com
http://gsgrid.codeplex.com
http://www.chemaxon.com
http://gsgrid.codeplex.com
http://www.chemaxon.com
http://gsgrid.codeplex.com
http://www.chemaxon.com
http://gsgrid.codeplex.com
http://www.chemaxon.com
http://gsgrid.codeplex.com
http://www.chemaxon.com
http://gsgrid.codeplex.com
http://www.chemaxon.com
http://gsgrid.codeplex.com
http://www.chemaxon.com
http://gsgrid.codeplex.com
http://www.chemaxon.com
http://gsgrid.codeplex.com
http://www.chemaxon.com
http://www.talete.mi.it/
http://www.talete.mi.it/
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Table 2. Cont.

MIE Ref. Model ID Chemical Class Descriptors Software

TTR

[87] ID_70 Heterogeneous

Based on the following 14 molecular
descriptors: TPSA; a_don; a_nOH; nX;

PEOE_VSA_FNEG; PEOE_RPC-;
density; PEOE_RPC+; diameter;
PEOE_PC+; vsa_hyd; KierFlex;

logP(o/w); opr_brigid

Molecular Operating Environment (MOE),
2013.08; Chemical Computing Group Inc.:

Montreal, QC, Canada, 2015

[137] ID_71 Heterogeneous
nArOH; nHDon; nCb-; nCRX3;

nCH2RX; ALogPS_logP; nArOR;
nCrq; nCq; nCp; nCs; nCbH

DRAGON version 6 [181].

[144]
ID_78 PFCs and BFRs nArOH; F03(Br..Br); HATS6m DRAGON Version 5.5 for Windows, Talete

srl, Milan, Italy, 2007

ID_79 PFCs and BFRs R5u; F07[C-O]; nArOH DRAGON Version 5.5 for Windows, Talete
srl, Milan, Italy, 2007

[145]

ID_80 PFCs AMW; HATS6m DRAGON Version 5.5 for Windows, Talete
srl, Milan, Italy, 2007

ID_81 PFCs nH; HATS6m DRAGON Version 5.5 for Windows, Talete
srl, Milan, Italy, 2007

ID_82 PFCs nH; F06[C-O] DRAGON Version 5.5 for Windows, Talete
srl, Milan, Italy, 2007

ID_83 PFCs T(F..F); HATS6m DRAGON Version 5.5 for Windows, Talete
srl, Milan, Italy, 2007

[146] ID_84 BFRs DISPe; nArOH DRAGON Version 5.5 for Windows, Talete
srl, Milan, Italy, 2008

[147] ID_85 BFRs qpmax; MATS6v DRAGON Version 5.5 for Windows, Talete
srl, Milan, Italy

TR α

[90] ID_8 PFAS X%; ICR AlvaDesc [182]

[104] ID_28 Heterogeneous
Calculation of extended fingerprints

with a KNIME implementation of the
CDK toolkit

CDK toolkit: https://cdk.github.io/

TR β

[90] ID_9 PFAS X%; TPC AlvaDesc [182]

[51]
ID_17 Heterogeneous Calculation of 119 RDKit chemical

descriptors
RDKit: Open-source cheminformatics.

http://www.rdkit.org

ID_18 Heterogeneous Calculation of 119 RDKit chemical
descriptors

RDKit: Open-source cheminformatics.
http://www.rdkit.org

[104] ID_29 Heterogeneous
Calculation of extended fingerprints

with a KNIME implementation of the
CDK toolkit

CDK toolkit: https://cdk.github.io/

[112] ID_39 PCNs ELUMO; ∆E; µ; Qxx; Qyy; Qyz; q+;
logKow; NCl; No

Gaussian 09 software.

[113] ID_40 Heterogeneous Use of RDKit descriptors RDKit: Open-source cheminformatics.
http://www.rdkit.org

[122]
ID_63 PCBs logKow; ω; BER; nCl; EEig13d; JGI4 EPI Suite, version 4.1 (US EPA, 2012);

DRAGON

ID_64 PCBs logKow; ω; BER; nCl; EEig13d; JGI4 EPI Suite, version 4.1 (US EPA, 2012);
DRAGON

[138]

ID_72 Heterogeneous Molecular optimal descriptor
DCW(3, 10)

CORAL software:
http://www.insilico.eu/coral

ID_73 Heterogeneous Molecular optimal descriptor
DCW(1, 3)

CORAL software:
http://www.insilico.eu/coral

ID_74 Heterogeneous Molecular optimal descriptor
DCW(3, 4)

CORAL software:
http://www.insilico.eu/coral

https://cdk.github.io/
http://www.rdkit.org
http://www.rdkit.org
https://cdk.github.io/
http://www.rdkit.org
http://www.insilico.eu/coral
http://www.insilico.eu/coral
http://www.insilico.eu/coral
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MIE Ref. Model ID Chemical Class Descriptors Software

TR β
[139]

ID_75 Heterogeneous

Thirty-five most statistically
significant descriptors were identified:

F04[N-Cl]; EEig03d; F06[C-Cl];
EEig08r; GATS7e; nArOH; EEig07r;
EEig05d; EEig06d; TPSA(Tot); GGI1;
BEHp4; SPI; C-026; ESpm01d; nCb-;

Hy; GATS8v; T(O..O); BLTA96; IVDE;
MATS1e; Ms; GATS6e; MATS6m;

MATS5m; MATS2e; MATS1p;
MATS8v; MATS6e; MATS8p; X4Av;

X2Av; X0Av; Jhetp

Dragon software (version 5.4; Talete s.r.l.,
Milan, Italy)

ID_76 Heterogeneous

Twenty-seven most statistically
significant descriptors were identified:
F08[C-Cl]; T(N..Cl); C-006; EEig06d;

SEigm; ATS3m; ATS4m; BEHm6;
T(O..Cl); ATS5m; ATS7m; BEHm7;
Uindex; EEig04d; BELe3; EEig08d;
HVcpx; PHI; BELm3; GGI8; BIC5;

BEHml; JGI6; JGI7; BELml; GATS3p;
VEA2

Dragon software (version 5.4; Talete s.r.l.,
Milan, Italy)

ID_77 Heterogeneous

Thirty most statistically significant
descriptors were identified: B05[O-O];

EEig03d; nArOH; GGI7; EEig05d;
PW2; F04[C-N]; C-026; ESpm01d;

AAC; GATS8p; Hy; PCR; GATS8v;
F05[O-O]; O-057; MATS5v; IVDE;

MATS1e; Ms; MATS5p; ARR;
MATS5m; PHI; MATS8v; GATS1e;

MATS8p; RBF; Jhetp; X1A

Dragon software (version 5.4; Talete s.r.l.,
Milan, Italy)

[148] ID_86 OH-PBDEs nBr; logKow; IA; ELUMO; ω; µ2
EPI Suite, version 4.0 (U.S. Environmental

Protection Agency 2009); Gaussian 03
programs; DRAGON [181]

TR n.s.

[91] ID_10 OH-PCBs RDF35u; RDF55u; RDF85u; RDF65v PaDEL [180]

ID_11 OH-PCBs RDF35u; RDF55u; RDF85u; RDF65v PaDEL [180]

[119] ID_51 Heterogeneous

Calculation of count-based Morgan
fingerprints with a radius of 2 bonds
and a length of 2048 bits, and of all

119 one-dimensional and
two-dimensional RDKit chemical

descriptors

RDKit: Open-source cheminformatics.
http://www.rdkit.org

[123] ID_65 PCBs; PBDEs DELS; MAXDN; Mor31v; Ms;
RDF040e; BER

DRAGON 5.5 for Windows, Talete srl,
Milan, Italy, 2008

TSHR [106]

ID_31 Heterogeneous

Thirty-nine descriptors were used,
here sorted by their weight in
descending order (top seven

descriptors were used to build Model
ID_32.): Sw < 0.1 mg/mL probability;
LogSw; LogD(pH = 7.4); LogL; S; R2;

E; LogS(pH = 7.4); logP; Solubility
class; AAB/LogP; McGowan Volume;

MW; Pi2; LogS(pH = 7.4)-; L; V;
Sw < 1 mg/mL probability; No Of H

Donors; Acid_pKa; LogSwLo;
Sw > 10 mg/mL probability;

Abraham’s Alfa; NoOfRotBonds; A;
Bo; 0Form; B; Form+; No Of H

Acceptors; LogSwHi; Rel_pKa_ac;
Base_pKa; Abraham’s BetaH; Ertl

TPSA; Form-; Rule of 5; Rel_pKa_bs;
Form±

KOWWIN program (EPI Suite version
4.1.1, https://www.epa.gov/tsca-

screening-tools/epi-suitetm-estimation-
program-interface) to calculate logKow.
Software for the calculation of the other
molecular descriptors was not specified

ID_32 Sw < 0.1 mg/mL probability; LogSw;
LogD(pH = 7.4); LogL; S; R2; E

KOWWIN program (EPI Suite version
4.1.1, https://www.epa.gov/tsca-

screening-tools/epi-suitetm-estimation-
program-interface) to calculate logKow.
Software for the calculation of the other
molecular descriptors was not specified

http://www.rdkit.org
https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface
https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface
https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface
https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface
https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface
https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface
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MIE Ref. Model ID Chemical Class Descriptors Software

TSHR

[106]

ID_33 The use of thirty-nine descriptors was
reported in the study

KOWWIN program (EPI Suite version
4.1.1, https://www.epa.gov/tsca-

screening-tools/epi-suitetm-estimation-
program-interface) to calculate logKow.
Software for the calculation of the other
molecular descriptors was not specified

ID_34 LogS, LogP, E

KOWWIN program (EPI Suite version
4.1.1, https://www.epa.gov/tsca-

screening-tools/epi-suitetm-estimation-
program-interface) to calculate logKow.
Software for the calculation of the other
molecular descriptors was not specified

ID_35

Forty-one descriptors were used, here
sorted by their weight in descending
order: Base_pKa; V; Abraham’s Alfa;
0Form; AAB/LogP; CDocker Energy;

NoOfRotBonds; S; LogSwLo;
LogSwHi; CDocker Interaction

Energy; Rel_pKa_bs; R2; E;
LogD(pH = 7.4); LogS(pH = 7.4)-;
Sw < 0.1 mg/mL probability; A;
Sw > 10 mg/mL probability; Ertl

TPSA; MW; logP; LogSw; Pi2;
Abraham’s BetaH; Solubility class; B;
LogL; Sw < 1 mg/mL probability; L;

Acid_pKa; Rel_pKa_ac; No Of H
Acceptors; Bo; No Of H Donors;

McGowan Volume; LogS(pH = 7.4);
Form+; Form-; Form±; Rule of 5

KOWWIN program (EPI Suite version
4.1.1, https://www.epa.gov/tsca-

screening-tools/epi-suitetm-estimation-
program-interface) to calculate logKow.
Software for the calculation of the other
molecular descriptors was not specified

[51]
ID_19 Heterogeneous Calculation of 119 RDKit chemical

descriptors
RDKit: Open-source cheminformatics.

http://www.rdkit.org

ID_20 Heterogeneous Calculation of 119 RDKit chemical
descriptors

RDKit: Open-source cheminformatics.
http://www.rdkit.org

[119]

ID_52 Heterogeneous

Calculation of count-based Morgan
fingerprints with a radius of 2 bonds
and a length of 2048 bits, and of all

119 one-dimensional and
two-dimensional RDKit chemical

descriptors

RDKit: Open-source cheminformatics.
http://www.rdkit.org

ID_53 Heterogeneous

Calculation of count-based Morgan
fingerprints with a radius of 2 bonds
and a length of 2048 bits, and of all

119 one-dimensional and
two-dimensional RDKit chemical

descriptors

RDKit: Open-source cheminformatics.
http://www.rdkit.org

[95] ID_15 Heterogeneous

Top twenty FPs with positive SHAP
(Shapley additive explanation) values:

PubchemFP12, PubchemFP259,
PubchemFP257, PubchemFP256,
PubchemFP628, PubchemFP185,
PubchemFP258, PubchemFP2,

PubchemFP143, PubchemFP146,
PubchemFP656, PubchemFP633,
PubchemFP150, PubchemFP464,
PubchemFP442, PubchemFP607,
PubchemFP613, PubchemFP549,
PubchemFP153, PubchemFP418

PaDEL [180]

https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface
https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface
https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface
https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface
https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface
https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface
https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface
https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface
https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface
http://www.rdkit.org
http://www.rdkit.org
http://www.rdkit.org
http://www.rdkit.org
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MIE Ref. Model ID Chemical Class Descriptors Software

TPO

[51] ID_26 Heterogeneous Calculation of 119 RDKit chemical
descriptors

RDKit: Open-source cheminformatics.
http://www.rdkit.org

[107]

ID_36 Heterogeneous Use of Atom Pair Count (APC)
fingerprints PaDEL [180]

ID_37 Heterogeneous Use of Atom Pair Count (APC)
fingerprints PaDEL [180]

ID_38 Heterogeneous Use of Atom Pair Count (APC)
fingerprints PaDEL [180]

[119] ID_54 Heterogeneous

Calculation of count-based Morgan
fingerprints with a radius of 2 bonds
and a length of 2048 bits, and of all

119 one-dimensional and
two-dimensional RDKit chemical

descriptors

RDKit: Open-source cheminformatics.
http://www.rdkit.org

[120]

ID_60 Heterogeneous

The top twenty ranked descriptors
identified in the kNN model: GATS1e;
NArOH; CATS2D_02_DL; MATS1e;

MATS1s; C-026; CATS2D_03_DL; B10
[C-C]; MATS1m; ‘SpMax2_Bh(s);

MATS1p; nCb-; NX; Uc; ‘P_VSA_i_1’;
SpMAD_B(v); NCbH; GATS1s;

MLOGP; Eta_C_A’

DRAGON v7.0.8., 2017:
https://chm.kode-solutions.net/

products_dragon.php

ID_61 Heterogeneous Based on 160 molecular descriptors
DRAGON v7.0.8., 2017:

https://chm.kode-solutions.net/
products_dragon.php

[121]

ID_68 Heterogeneous Based on scaffolds and structural
features

Leadscope Predictive Data Miner (LPDM),
Leadscope, Inc., (2016):

http://www.leadscope.com/

ID_69 Heterogeneous

The top ten most common structural
features linked to active compounds:
benzene, 1,3-dihydroxy-; Scaffold 288;

benzene, 1-alkyl-,4-amino(NH2)-;
benzene, 1,2-dihydroxy-; Scaffold 297;

alcohol, alkenyl-; Scaffold 576;
benzene, 1-alkoxy-,4-hydroxy-;

Scaffold 306; Scaffold 574.
The top ten most commons structural
features linked to inactive compounds:
Scaffold 110; Scaffold 342; Scaffold 210;

Scaffold 253; Scaffold 303; Scaffold
108; benzene, 1-alkyl-,4-halo-; halide,

benzyl-; Scaffold 454; Scaffold 194

Leadscope Predictive Data Miner (LPDM),
Leadscope, Inc., (2016):

http://www.leadscope.com/

TBG [52]

ID_1 PBBs
Molecular Weight (MW); Critical

temperature (CT); Critical pressure
(CP); Topological diameter (TD)

PaDEL [180]; Gaussian (Gaussian 09
(Gaussian Inc., Wallingford, CT, USA);

ChemDraw 12.0

ID_2 PBBs and
OH-PBBs

Quadrupole moment Qyy (Qyy); Most
negative Mulliken charge number

(q−); Frequency (Freq); TD

PaDEL [180]; Gaussian (Gaussian 09
(Gaussian Inc., Wallingford, CT, USA);

ChemDraw 12.0

ID_3 PBBs and
2OH-PBBs q−; CP; TD; Topological Shape (TS)

PaDEL [180]; Gaussian (Gaussian 09
(Gaussian Inc., Wallingford, CT, USA);

ChemDraw 12.0

ID_4 PBBs, OH-PBBs,
and 2OH-PBBs q−; CP; TD; CT

PaDEL [180]; Gaussian (Gaussian 09
(Gaussian Inc., Wallingford, CT, USA);

ChemDraw 12.0

http://www.rdkit.org
http://www.rdkit.org
https://chm.kode-solutions.net/products_dragon.php
https://chm.kode-solutions.net/products_dragon.php
https://chm.kode-solutions.net/products_dragon.php
https://chm.kode-solutions.net/products_dragon.php
http://www.leadscope.com/
http://www.leadscope.com/
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MIE Ref. Model ID Chemical Class Descriptors Software

NIS

[51] ID_25 Heterogeneous Calculation of 119 RDKit chemical
descriptors

RDKit: Open-source cheminformatics.
http://www.rdkit.org

[104] ID_30 Heterogeneous
Calculation of extended fingerprints

with a KNIME implementation of the
CDK toolkit

CDK toolkit: https://cdk.github.io/

[119] ID_59 Heterogeneous

Calculation of count-based Morgan
fingerprints with a radius of 2 bonds
and a length of 2048 bits, and of all

119 one-dimensional and
two-dimensional RDKit chemical

descriptors

RDKit: Open-source cheminformatics.
http://www.rdkit.org

Albumin [93]

ID_12 PFAS PDI; GATS8v; MATS8m; QED AlvaDesc 2.0.16 [183]

ID_13 PFAS Eig12_AEA(bo); DECC; X4A AlvaDesc 2.0.16 [183]

ID_14 PFAS QED; PDI; GATS8v; MATS8m AlvaDesc 2.0.16 [183]

DIO1

[51] ID_22 Heterogeneous Calculation of 119 RDKit chemical
descriptors

RDKit: Open-source cheminformatics.
http://www.rdkit.org

[119] ID_56 Heterogeneous

Calculation of count-based Morgan
fingerprints with a radius of 2 bonds
and a length of 2048 bits, and of all

119 one-dimensional and
two-dimensional RDKit chemical

descriptors

RDKit: Open-source cheminformatics.
http://www.rdkit.org

DIO2

[51] ID_23 Heterogeneous Calculation of 119 RDKit chemical
descriptors

RDKit: Open-source cheminformatics.
http://www.rdkit.org

[119] ID_57 Heterogeneous

Calculation of count-based Morgan
fingerprints with a radius of 2 bonds
and a length of 2048 bits, and of all

119 one-dimensional and
two-dimensional RDKit chemical

descriptors

RDKit: Open-source cheminformatics.
http://www.rdkit.org

DIO3

[51] ID_24 Heterogeneous Calculation of 119 RDKit chemical
descriptors

RDKit: Open-source cheminformatics.
http://www.rdkit.org

[119] ID_58 Heterogeneous

Calculation of count-based Morgan
fingerprints with a radius of 2 bonds
and a length of 2048 bits, and of all

119 one-dimensional and
two-dimensional RDKit chemical

descriptors

RDKit: Open-source cheminformatics.
http://www.rdkit.org

TRHR

[51] ID_21 Heterogeneous Calculation of 119 RDKit chemical
descriptors

RDKit: Open-source cheminformatics.
http://www.rdkit.org

[119] ID_55 Heterogeneous

Calculation of count-based Morgan
fingerprints with a radius of 2 bonds
and a length of 2048 bits, and of all

119 one-dimensional and
two-dimensional RDKit chemical

descriptors

RDKit: Open-source cheminformatics.
http://www.rdkit.org

The mechanistic interpretation of a QSAR model is critically important because it
allows for the identification of the chemical properties or structural features that most
significantly contribute to the predicted endpoint, enhancing the scientific credibility and
acceptance of predictions [157,158]. Furthermore, it can offer new insights into the molecu-
lar features driving the modelled activity, hence contributing to safe-by-design approach.
However, mechanistic interpretation is not always straightforward. This is often due to
the challenging interpretability of certain molecular descriptors or the complexity of the
algorithms used in model development [184]. To overcome this, feature importance tech-
niques are often employed to provide clarity and to pinpoint the most influential molecular
descriptors among many, since not all descriptors contribute equally.

http://www.rdkit.org
https://cdk.github.io/
http://www.rdkit.org
http://www.rdkit.org
http://www.rdkit.org
http://www.rdkit.org
http://www.rdkit.org
http://www.rdkit.org
http://www.rdkit.org
http://www.rdkit.org
http://www.rdkit.org
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Mechanistic interpretation or the application of feature importance techniques was con-
ducted for fifty-six QSARs selected in this review, accounting for approximately 65% of the
total models. These approaches were applied across six specific MIEs: TTR, TR, TSHR, TPO,
TBG, and albumin. The decision to conduct a straightforward mechanistic interpretation of
selected molecular descriptors or to apply feature importance techniques was contingent
upon various factors, including the type of modelling methodology employed, the chemical
nature of the compounds modelled, and the specific types of molecular descriptors used.
Relevant descriptors are influenced by the structural characteristics included in the dataset,
which in turn depends on whether the dataset is composed of structurally heterogeneous
chemicals or of compounds from a single chemical class.

Interpreted QSARs for TTR binding were either based on heterogenous organic chem-
icals or specific chemical classes, including halogenated phenols and thiophenols, PFAS
and/or PFCs, and PBDEs and their hydroxylated metabolites. A strong consensus on
the fundamental molecular properties influencing TTR binding was revealed, although
different descriptors were used to represent those properties, highlighting the fact that
various computational methods can effectively encode the same critical structural infor-
mation. The most significant and consistently identified structural features were aromatic
rings, halogen atoms, and hydroxyl groups. Examples of descriptors encoding for these
features were nArOH (number of aromatic hydroxyls) and nX (number of halogen atoms),
which consistently showed a positive correlation with TTR binding affinity. These can
be referred to as “structural alerts”, as their presence recalls the chemical structure of
THs like T3 and T4. In addition, hydrophobicity was consistently recognised as a critical
property driving TTR binding. Descriptors encoding for this property, such as logP and log
DOW (pH = 7.40), were repeatedly selected in various QSARs. The hydrophobic nature
of the TTR binding site for T4 justifies this observation [185]. Furthermore, descriptors
like a_don, nHDon, and H-050 were selected to encode for hydrogen bond donor capacity,
thereby emphasising the role of noncovalent interactions, such as hydrogen bonding and
electrostatic interactions, between ligands and TTR. Furthermore, a consensus on the most
significant features determining the TTR binding by PFAS (or PFCs) was highlighted across
studies addressing this class of chemicals. These were mainly represented by the carbon
chain length, MW and dimension, and terminal functional groups. An intermediate carbon
chain length was found to be optimal for TTR binding. This information was encoded
by descriptors like HATS6m and F06[C-O]. The most active PFAS were found to have an
MW between 300 and 500 g/mol, as captured by the AMW descriptor. HATS6m, which
encodes for molecular shape and dimension, was used to distinguish the activity of com-
pounds with similar molecular weights. F07[C-O] and nH were used to account for the
presence of carboxylic or sulfonic acid terminal groups at a particular topological distance
and to differentiate compounds based on their terminal functional group. As seen before,
hydrophobicity was still recognised as a critical property driving TTR binding. A broad
spectrum of molecular descriptors was used across these studies, encompassing quantum
chemical and electronic descriptors, topological, structural, and constitutional ones, as
well as functional group counts and logKOW. It was often observed that the same groups
of descriptors were employed across different studies, especially when conducted by the
same research groups. While all studies converged on similar key features for TTR binding,
it is worth noting that the specific choice and subsequent interpretation of descriptors
could be influenced by a research group’s preferred modelling tools, their expertise, and
their background. This implies that while the underlying findings may be consistent, their
description might vary in the level of detail, depending on the specific approach adopted
by the group.
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As seen for TTR, interpreted QSARs for TR binding predictions were either based
on heterogenous organic chemicals or specific classes. These included PCBs and their
hydroxylated metabolites, PBDEs, PCNs, and PFAS. Similarly to TTR, TR modelling was
performed using a wide array of molecular descriptors, and mechanistic interpretations
were either more general or detailed. The presence and quantity of halogen atoms were
consistently identified as being critical for TR binding. This information was encoded in
descriptors like X% (percentage of halogen atoms) and nBr or nCl (number of bromine
or chlorine atoms, respectively), which showed a positive correlation with TR binding
affinity. In addition, molecular polarity was identified as a relevant property. Descriptors
like EEig03d and EEig06d (edge adjacency indices weighted by dipole moments) and µ and
µ2 (dipole moments) were positively correlated with TR binding, indicating that an increase
in polarity could enhance affinity to TR. For PFAS, an optimal chain length was identified
as a key determinant of TR binding, showing a moderate to high probability of binding
for longer chains. Hydrophobicity was another key property consistently identified as a
positive contributor to TR binding. Finally, electronic descriptors were selected to encode
for the ability of a compound to accept or donate electrons and form hydrogen bonds
with TR.

The interpretation of five QSARs for TPO inhibition by Seo et al. [107], Gadaleta
et al. [120], and Rosenberg et al. [121] led to converged results, despite the use of differ-
ent software to calculate molecular descriptors and different types of descriptors. The
presence of aromatic structures, either hydroxylated (e.g., phenols) or non-hydroxylated
(e.g., anilines), and of various heteroatoms (including nitrogen, oxygen, sulphur, and halo-
gens) were highlighted as key structural features for TPO inhibition. These findings pointed
out how these structural features often mimic typical endogenous targets of TPO, like tyro-
sine residues, thereby exerting disrupting effects [120]. Additionally, the lipophilic nature
of a compound was also identified as a critical property. Furthermore, valuable insights
regarding typical structural features found in non-TPO inhibitors were provided [121],
including ethers, esters, aryl halides, and tertiary amines. All of these findings offered a
comprehensive picture of which structural features and/or properties either contribute to,
or detract from, TPO inhibition.

Regarding TSHR, two QSARs by Liu et al. [95] and Xu et al. [106] were interpreted.
According to Xu et al. [106], the inhibitory effect of compounds on the TSHR is primarily
influenced by two key chemical descriptors: the probability of water solubility (encoded by
the descriptor “Sw < 0.1 mg/mL probability”) and lipophilicity (encoded by the descriptor
“log D (pH = 7.4)”). The probability of water solubility was identified as the most influential
factor because compounds must be able to diffuse through blood or body fluids to reach
their biological target. Compounds with very low water solubility are less likely to be
transported effectively, thus limiting their TSHR inhibitory potential. High lipophilicity
was highlighted as key for TSHR inhibition, since this property describes the ability of
compounds to penetrate the cell membrane and reach the transmembrane domain of TSHR.
Nevertheless, several other molecular descriptors, reported in Table 2, were considered to
account for factors influencing properties including dissociation properties, molecular flexi-
bility, and electronic interactions. Liu et al. [95] employed the Shapley additive explanation
(SHAP) technique to quantitatively assess the influence of each molecular feature, encoded
as FPs, on TSHR agonism. While twenty different FPs were identified as having positive
SHAP values, this analysis pointed out the contributions of lipophilicity, and aromatic
and/or amino groups in promoting TSHR agonism.

TBG binding was only modelled by Yang et al., who developed four QSARs based on
data for PBBs, including their mono-hydroxylated and di-hydroxylated metabolites [52].
The mechanistic interpretation indicated that hydroxylated metabolites exhibited a greater
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ability to bind with TBG, likely due to their capacity to establish hydrogen bonds or van der
Waals interactions. Similarly, albumin binding was modelled only by Gallagher et al. [93],
who developed three QSARs based on data for PFAS. Although they only provided indi-
cations about the positive or negative contributions of the selected molecular descriptors
based on their coefficients signs, the authors concluded that PFAS with chain lengths
shorter than ten carbons demonstrated a higher albumin binding affinity compared with
those with longer carbon chains.

Overall, although these findings provided valuable insights into the main structural
features and properties that may cause TH system disruption, a drawback is the lim-
ited emphasis or, in some instances, the complete absence of mechanistic interpretations
or the application of feature importance techniques. This may limit the confidence in
QSAR models among both scientists and regulatory bodies. Therefore, considering the
increasing demand for mechanistically informed NAMs to advance chemical hazard as-
sessments, future research should prioritise and dedicate resources to improving the
mechanistic understanding of QSAR models in order to promote wider acceptance and
trust in these methodologies.

Finally, this review showed the wide array of software and molecular descriptors
used in QSAR studies for TH system disruption, underscoring the dynamic nature of the
field. The diversity in approaches to descriptor calculation and selection indicates a lack of
a single, standardised tool or method. Instead, the choice of software and methodology
appeared to be driven by factors such as the expertise of researchers, tool accessibility, and
prior experience with specific platforms.

3.9. Recent Advances: 2025

To keep this review up to date and to provide a picture of the field’s evolution, this
section was included to provide a concise picture of the key models published between
January and July 2025. Tables 3 and 4 are included for quick reference.

Table 3. Summary and main characteristics of relevant QSARs published from January to July 2025.
C: classification-based; R: regression-based; Primary: data generated as part of the same study;
Secondary: data collected from the existing literature.

Model ID Reference Year MIE Algorithm C or R Chemical
Class

Data
Source
Type

Data Source
Literature

Reference(s)

ID_2025_1 [186] 2025 Albumin MLR R
Phenoxyacetic
acid-derived

congeners
Primary [186]

ID_2025_2 [187] 2025 TTR RF C Heterogenous Secondary [188]

ID_2025_3 [189] 2025 TTR LDA C PFAS Secondary [190]

ID_2025_4 [189] 2025 TTR MLR R PFAS Secondary [190]

ID_2025_5 [191] 2025 TTR DTC C PFAS Primary [191]

ID_2025_6 [191] 2025 TTR MLR R PFAS Primary [191]

Charest et al. [187] developed a QSAR model for TTR binding prediction using RF on
a dataset of 853 compounds. The AD was defined using prediction entropy (PS), a metric
derived from the probability outputs from the RF. A core strength of their modelling process
was the adoption of a “mechanistic a priori” approach. They first analysed crystal structures
of TTR and performed docking studies of how chemicals bind to it, allowing the authors
to select molecular descriptors that were known to be relevant to the binding mechanism.
The chosen descriptors, obtained from the PaDEL descriptor library using the OPERA
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software v2.9 [192], included measures of hydrogen bonding (nHBacc, nHBDon), planarity
(naAromAtom), and hydrophobicity (CrippenLogP), as well as more complex topological
descriptors like ETA and ATSC to capture fine structural details. They also included ZMIC
descriptors to account for the structural specificity of protein binding. After training the
model, they used the permutation importance and the mutual information methods to
perform an a posteriori analysis to confirm the importance of their selected features. The
authors found that the descriptors related to aromatic structures and hydrophobicity were
highly relevant for TTR binding, which aligned with their initial mechanistic hypothesis
and were consistent with mechanistic interpretations by previous studies described in
Section 3.8. This combination of a priori and a posteriori analysis turned the model from a
“black box” into a transparent and interpretable tool that is beyond the sole generation of
predictions. Janicka et al. [186] developed a QSAR model designed to predict albumin bind-
ing based on data for twenty-nine phenoxyacetic acid-derived congeners. The authors first
applied biopartitioning micellar chromatography (BMC) to derive an in vitro lipophilicity
descriptor (logkBMC), which was used with other descriptors to develop an MLR-QSAR.
The leverage approach, with the use of the Williams plot for graphical visualisation, was
used to define the AD. Three key molecular descriptors defined the model: logkBMC
to encode for lipophilicity, α to encode for polarizability, and the sum of hydrogen bond
donors (HBD) and acceptors (HBA). Based on the descriptors’ signs in the model’s equation,
binding to albumin was found to increase with higher lipophilicity and polarizability and
to decrease with a greater number of hydrogen bond donors and acceptors. Two QSAR
models were developed by Evangelista et al. [189] to predict the binding of PFAS to TTR,
using a dataset of 134 PFAS. One classification model was developed using LDA, while one
regression model was developed using MLR. To ensure robustness and avoid overfitting,
the models were subjected to a rigorous validation protocol including randomization pro-
cedures and leave-one-out bootstrapping. The AD was defined differently for each model.
For the classification model, the AD was defined in terms of distance (cosine α) and post
probabilities of classification. Shannon entropy was introduced to quantify the uncertainty
associated with external predictions. For the regression model, the AD was defined in
terms of the leverage approach, with the adoption of the Williams plot for graphical vi-
sualisation. A prediction interval was introduced to quantify the uncertainty associated
with external predictions. The classification model was characterised by GATS3e, ATSC6p,
GATS8m, and MIC2, while the regression model was characterised by piPC5, GGI9, and
AATSC0e. The selected descriptors were consistent with prior in vitro and in silico (dock-
ing) findings regarding the major drivers of PFAS binding to TTR. The findings highlighted
the importance of hydrogen bond formation and hydrophobic interactions to establish
binding with TTR. The relevance of lipophilicity, molecular weight, and chain length were
highlighted. The study performed by Sosnowska et al. [191] focused on the ability of PFAS
to bind to TTR. The methodology involved the development of classification and regression
QSAR models based on data from 45 PFAS. The classification model was developed using
the decision tree classifier (DTC). Then, a single regression model was developed using
MLR. The same algorithm was also used to perform a multiple regression model (MRM)
approach, where a total of thirty-one single MLR-QSARs were developed from different
data splits. The AD for the classification model was defined using a boundary box method,
while the leverage approach with the support of the Williams plot was employed to define
the AD of the regression QSARs. The classification model highlighted molecular size and
structural complexity as key factors, using descriptors like SM4_D and GATS3m. The
MLR model emphasised that compounds with heavier and more polar atoms tended to
be more active, with descriptors like AMW and GATS7p. It also identified the importance
of specific structural features, such as fluorine atoms at a topological distance of 10 bonds
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(B10[F-F]). Three molecular descriptors were frequently selected in the models developed
through the MRM approach (JGI10, ATSC7c, and MATS6i), which further confirmed the
importance of atomic charge and polarity. The QSAR models generated via the MRM
approach were not included in this review for simplicity because their performance was
comparable to that of the single model developed independently. The collective findings
consistently showed that molecular size, complexity, and polarity were the primary drivers
of PFAS activity in disrupting TTR. Ultimately, it is highly relevant to cite the study by
Cirino et al. [193]. Although their work did not propose any new QSAR models, its focus
on optimising predictive performance through consensus modelling and evaluating the
robustness of existing models made it a significant contribution to the field. Specifically,
this study served as a retrospective analysis of computational strategies from the Tox24
Challenge [194], which aimed to advance computational toxicology for predicting chemi-
cal binding to TTR by using a large dataset of 1512 compounds [188]. The primary goal
by Cirino et al. [193] was to analyse the models developed by the nine top-performing
teams from the Tox24 Challenge and explore consensus strategies to enhance the predictive
performances of single models. The participating teams adopted diverse strategies, with
some relying on single-method models while others combined multiple approaches, such
as descriptor-based and representation learning techniques. The study by Cirino et al. [193]
demonstrated that consensus modelling improved the predictive accuracy for TTR binding,
compared with individual models alone, achieving a lower error rate. Finally, an analy-
sis to identify overrepresented functional groups in active compounds for TTR binding
was performed. Unsurprisingly, groups similar to T4, such as phenols, aryl halides, and
diarylethers, were highly frequent. Six other functional groups of potential concern were
identified, including nitro compounds, arenes, and gem-trihalides.

Table 4. Summary of relevant QSARs published from January to July 2025 and selected molecular
descriptors, grouped by MIE.

MIE Ref. Model ID Chemical class Descriptors Software

TTR

[187] ID_2025_2 Heterogenous

Thirty-one descriptors sorted by
permutation importance: CrippenLogP;
ATSC3c; ATSC5c; C1SP3; ETA_BetaP_s;

naAromAtom; ZMIC1; ATSC4m; ZMIC5;
ATSC4c; hmin; hmax; ATSC2m; ATSC5m;

ETA_Beta_ns_d; ATSC0m; VE1_DzZ;
C1SP2; ZMIC2; ATSC1m; nHBAcc;

ZMIC3; ATSC3m; ATSC2c;
ETA_dAlpha_A; ETA_Shape_Y; ATSC0c;

maxdssC; ZMIC4; nHBDon; ATSC1c

PaDEL descriptors from
OPERA software v2.9

[192]

[189] ID_2025_3 PFAS GATS3e; ATSC6p; GATS8m; MIC2 PaDEL [180]

[189] ID_2025_4 PFAS piPC5; GGI9; AATSC0e PaDEL [180]

[191] ID_2025_5 PFAS SM4_D; GATS3m AlvaDesc [182]

[191] ID_2025_6 PFAS AMW; GATS7p; B10[F-F] AlvaDesc [182]

Albumin [186] ID_2025_1
Phenoxyacetic
acid-derived

congeners
logkBMC; α; sum of HBD and HBA

ACD/Percepta software,
version 1994–2012

(ACD/Labs, Advanced
Chemistry Development,

Inc., Toronto, ON,
Canada)

4. Conclusions
This review highlighted the growing yet still-evolving landscape of QSAR models

addressing MIEs leading to TH system disruption by chemical substances. While significant
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progress has been made, particularly due to the increased availability of HTS data, the
field remains fragmented and challenges persist. This review highlighted a preference for
classification-based models to predict categorical outcomes, instead of continuous toxicity
values, and that, despite the rise in complex machine learning methods, simpler algorithms
continued to be employed to leverage their interpretability and promote broader adoption.

This review revealed that modelling efforts were predominantly focused on key MIEs
like TR and TTR, scarcely followed by TPO and TSHR. Critically, many other relevant MIEs,
including the three deiodinases, NIS, TRHR, TBG, and albumin were significantly poorly
addressed in QSAR research. A critical finding was the lack of QSAR modelling studies
addressing MIEs related to DUOX, IYD, and pendrin inhibition, and those associated
with cellular TH transport (specifically MCT8, MCT10, OATP1C1, OATP1A4, MDR1, and
MRP2), highlighting critical areas for future investigations. Similarly, a limited number of
chemical classes were addressed, leading to a very small number of local QSARs. Notably,
while validation strategies were consistently employed, a critical finding was a frequent
lack of explicitly defined ADs. Without clear AD definitions, QSARs risk being applied
outside their scope, undermining decision-making confidence and leading to the incorrect
use of QSARs. Furthermore, even though several types of molecular descriptors have
been consistently identified as being relevant to model specific MIEs (e.g., TTR and TR),
a limited emphasis on mechanistic interpretations was observed for many models, rep-
resenting a critical drawback. However, the recent emergence of studies simultaneously
covering multiple TH system-related endpoints demonstrated a growing awareness of the
multifaceted nature of TH system disruption, offering a promising direction in aligning
predictive modelling within AOP frameworks. The findings suggested a need for increased
efforts in generating in vitro and in silico data for poorly addressed MIEs, broadening
the chemical space of tested compounds, and ultimately developing new models. The
successful application of integrated in silico approaches to generate activity data, such as
molecular docking and dynamic simulations, has proven to be an effective strategy for
developing QSARs when experimental data is limited or unavailable, presenting a valuable
path forward for exploring multiple MIEs and for specific chemical classes. This would
enable a more robust hazard assessment for entire groups of compounds. Future studies
should prioritise the development of QSAR models with clearly defined ADs and enhanced
mechanistic interpretability to increase the reliability and transparency of and confidence
in their predictions, ultimately to promote their wider acceptance as effective NAMs for
TH system disruption assessment.
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Abbreviations
The following abbreviations are used in this manuscript:

AD Applicability domain
AdaB Adaptive Boosting
AhR Aryl hydrocarbon receptor
AOP Adverse outcome pathway
ASNNs Associative neural networks
BFR Brominated flame retardant
BMC Biopartitioning micellar chromatography
CAR Constitutive androstane receptor
CART Classification and regression trees
CP Conformal prediction
DBP Phenolic disinfection byproduct
DIO Iodothyronine deiodinase
DIO1 Type 1 deiodinase
DIO2 Type 2 deiodinase
DIO3 Type 3 deiodinase
DTC Decision Tree Classifier
DUOX Dual oxidase
EDC Endocrine-disrupting chemical
EU European Union
EURL ECVAM European Union Reference Laboratory for Alternatives to Animal Testing
FAIR Findable, Accessible, Interoperable, Reusable
FP Fingerprint
HPA Hypothalamic–pituitary–adrenal
HPG Hypothalamic–pituitary–gonadal
HPT Hypothalamic–pituitary–thyroid
HTS High-throughput screening
IYD Iodotyrosine deiodinase
kNN k-nearest neighbours
LDA Linear discriminant analysis
LMO Leave more out
LOO Leave one out
LR Logistic regression
MCT Monocarboxylate transporter
MCT10 Monocarboxylate transporter 10
MCT8 Monocarboxylate transporter 8
MDR1 Multidrug resistance protein 1
MIE Molecular initiating event
MLR Multiple linear regression
MRM Multiple regression model
MRP2 Multidrug resistance-associated protein 2
MW Molecular weight
NAMs New approach methodologies
NIS Sodium iodide symporter
NN Neural network
OATP Organic anion transporter polypeptide
OATP1A4 Organic anion transporter polypeptide 1A4



Toxics 2025, 13, 799 33 of 42

OATP1C1 Organic anion transporter polypeptide 1C1
OECD Organisation for Economic Co-operation and Development
PBB Polybrominated biphenyl
PBDE Polybrominated diphenyl ether
PCA Principal component analysis
PCB Polychlorinated biphenyl
PCN Polychlorinated naphthalene
PFAS Per- and polyfluoroalkyl substances
PFC Poly- and perfluorinated compound
PLR Partial logistic regression
PLS Partial least squares
PLS-DA Partial least squares discriminant analysis
PPAR Peroxisome proliferator-activated receptor
PS Prediction entropy
PXR Pregnane X receptor
QSAR Quantitative structure–activity relationship
RF Random forest
SHAP Shapley additive explanation
SMOTEENN Synthetic minority over-sampling technique-edited nearest neighbours
SVM Support vector machine
T3 Triiodothyronine
T4 Thyroxine
TBG Thyroid-binding globulin
TH Thyroid hormone
THSDC Thyroid hormone system-disrupting chemical
TPO Thyroperoxidase
TR Thyroid hormone receptor
TRHR Thyrotropin-releasing hormone receptor
TSHR Thyroid-stimulating hormone receptor
TTR Transthyretin
XGB Extreme gradient boosting
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