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Abstract

The emergence of microplastics (MPs) in drinking water supply systems has become a
significant environmental challenge. Although the potential impacts of MPs in drinking
water on human health remain incompletely understood, the ingestion of MPs through
drinking water has raised substantial public concern regarding health risks. This review
synthesizes contemporary scientific advances focusing on the following: I. the sources
and fate of MPs in drinking water supply chains; II. comparative assessment of removal
at treatment; III. detection techniques based on microscopy, spectroscopic, and thermal
methods; and IV. the potential hazards of MPs to human health. This study aims to provide
novel insights into understanding the threats posed by MPs in drinking water and to
facilitate the development of effective monitoring strategies.

Keywords: MPs; drinking water; detection techniques; removal strategies; potential risks

1. Introduction
Plastic products are extensively utilized due to their advantageous properties, in-

cluding their superior waterproofing and moisture resistance, cost-effectiveness, chemical
stability, and electrical insulation. Global plastic production reached 3.907 × 108 tons in
2021, of which 90.2% comprised fossil-based plastics, 8.3% were post-consumer recycled
plastics, and 1.5% were bio-based/biodegradable plastics [1]. In addition to escalating pro-
duction and consumption, the mismanagement of plastic waste exacerbates environmental
plastic pollution. Global plastic production is projected to reach 3.3 × 1010 tons annually
by 2050 [2]. In aquatic systems, plastics undergo degradation into microplastic particles.
Microplastics (MPs) are defined as solid plastic particles and fragments with a length or
equivalent spherical diameter of <5 mm, while those <1 µm are classified as nanoplas-
tics. Based on their origin and formation pathways, MPs are categorized into two types:
(1) primary MPs, directly released into the environment, and (2) secondary MPs, derived
from the fragmentation, abrasion, UV degradation, biodegradation, or photo-oxidation of
larger plastic debris. Emerging pollution sources suggest that environmental MP loads will
continue to rise. Even if plastic emissions were halted, the secondary degradation of existing
plastic waste would persistently augment MP quantities. The United Nations Environment
Programme (UNEP) has identified MPs as the “PM2.5 of aquatic environments”.
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MPs are fundamentally composed of polymeric matrices characterized by diverse and
intricate structures. These polymers are formed through the covalent bonding of monomeric
units into linear or cross-linked polymeric chains. Variations in polymer types—such as
polyethylene (PE), polypropylene (PP), and others—dictate their distinct physicochemical
properties, which in turn govern their environmental behavior and fate. Representative
structural configurations of common MP polymers are illustrated in Figure 1.

Figure 1. Molecular structures of common MP polymers.

Records of MPs in drinking water are constantly being expanded and updated, which
serves as a critical pathway for human exposure to these contaminants. Senathirajah
et al. [3] synthesized data from 59 studies to evaluate human’s MP intake, revealing an
average annual ingestion of 9029~174,959 MP/L per person via drinking water, which is
equivalent to a mass of 25.3–489.7 g, with a mean value of 257.5 g. Bottled water, often
perceived as a “safer” alternative, has also been found to contain MPs, influenced by
packaging materials, production processes, and storage conditions [3–5]. The European
Food Safety Authority posits that MPs larger than 150 µm are unlikely to be absorbed by
the human body, while those smaller than 1.5 µm can penetrate organs [6]. Recent studies
demonstrate that MPs can traverse biological barriers, infiltrating multiple physiological
systems, including the digestive system [7], circulatory system [8], excretory system [9],
and maternal–fetal interfaces [10]. Notably, MPs have recently been identified in human
bone marrow [11]. Although the long-term health implications remain unclear, emerging
evidence suggests potential adverse effects on human health.

Drinking water safety is intrinsically linked to public health. The growing public
awareness of water quality has intensified the scrutiny of MP contamination in drinking
water. Despite extensive research on this topic, the systematic synthesis of findings re-
mains limited, hindering a comprehensive understanding of current research trends and
challenges. First, the identification of primary and secondary sources of MPs in drinking
water remains fragmented, with limited systematic analysis of contributions from source
water pollution, treatment plant inefficiencies, pipe corrosion, and packaging leaching. Sec-
ond, conventional drinking water treatment processes were not designed for MP removal,



Toxics 2025, 13, 782 3 of 19

and their performance varies widely depending on the particle size, shape, and surface
properties, with microfibers and nanoplastics often evading capture. Third, analytical
challenges, including low detection limits, matrix interference, and a lack of standardized
methodologies, have led to inconsistencies in the MP quantification and characterization
across studies, complicating the intercomparison of results.

To address these gaps, this review aims to synthesize the current state of knowledge
on MPs in drinking water. Specifically, we (1) systematically identify and evaluate the
major sources of MPs in drinking water, from the source water to point-of-use; (2) assess the
performance of conventional and advanced water treatment technologies for MP removal,
highlighting factors influencing efficiency and limitations; (3) summarize and compare
existing analytical methods for MP detection, quantification, and characterization; and
(4) critically discuss the potential human health risks associated with MP exposure via
drinking water, as well as future research priorities.

2. Sources and Fate of Microplastics in Drinking Water Supply Chain
Tracking and identifying the sources of MPs in drinking water, as well as mapping

their migration across the drinking water supply chain (DWSC), represents a multifaceted
challenge. MP contamination exhibits multi-source characteristics, with release occurring
throughout the lifecycle of plastic materials, and their presence can be detected across all
stages of the DWSC—from raw water sources to end-user consumption (Figure 2). The
shapes of MPs primarily include fibrous, fragmental, film-like, foamy, and granular forms.
There is significant methodological heterogeneity in the current field of MP research. This
heterogeneity is not only reflected in differences in sampling strategies and sample pre-
treatment procedures but, more crucially, in the divergent definitions of particle size ranges
for MP analysis. Some studies use the abundance of MPs larger than 1 µm as an indicator
to characterize drinking water pollution levels [12,13], while others only include particles
larger than 20 µm in their abundance statistics [14,15]. Such methodological inconsistency
directly hinders the cross-comparison of results from different studies and may introduce
false-positive errors due to limitations in detection ranges or variations in operational
procedures, thereby impeding the accurate assessment of the actual level of MP pollution
in drinking water.

Figure 2. Sources and migration of MPs in drinking water.

2.1. Inputs from Raw Water Sources

Raw water sources (surface water and groundwater) are primary reservoirs of MPs,
with contaminants originating from tires, road markings, marine coatings, synthetic textiles,
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personal care products, plastic pellets, and urban dust. These particles enter aquatic envi-
ronments via three main pathways: treated wastewater discharge [16], atmospheric deposi-
tion [17], and surface runoff [18]. In addition, combined sewer overflow events triggered by
heavy rainfall directly discharge insufficiently treated plastic-containing wastewater into
aquatic environments, acting as an episodic supplementary pathway for MP input [19].

Groundwater, protected by geological strata, exhibits lower MP contamination com-
pared to surface water [14,20]. Some authors have found MP concentrations from ground-
water with values lower than 0.2 MPs/L [21,22]. In addition, open groundwater exhibits a
greater diversity of MP colors and larger particle sizes than closed groundwater [23].

Wastewater treatment plants (WWTPs) play dual roles as barriers and emission sources.
During treatment, MP-containing wastewater undergoes primary, secondary, and tertiary
processes, with approximately 90% transferring to sludge [24]. However, trace amounts of
MPs are still discharged into aquatic environments, with Wolff et al. [25] reporting daily
emissions of 3000–5900 MPs/L from a German WWTP. Treated wastewater is occasionally
used for agricultural irrigation, while sludge is managed through landfilling, composting,
or incineration, which leads to MPs from wastewater and sludge migrating into soil,
subsequently migrating to surface or groundwater via runoff.

The fate and transport of MPs in raw water are governed by multiple factors, including
the particle size, seasonal variations, morphological characteristics, wind velocity, exter-
nal pressures, and wave energy [26]. Hydrodynamic forces, physical abrasion, thermal
fluctuations, and the water column depth accelerate their mobilization into fluvial and
lacustrine systems [27]. Buoyant low-density plastics accumulate at water surfaces, en-
hancing their exposure to photodegradation and chemical weathering, thereby influencing
their environmental fate [27]. The socio-economic characteristics, the aquatic environ-
ments, physical–chemical characteristics, and hydrodynamic conditions could alter the
spatial distribution of MPs in surface water [28]. Li et al. [29] conducted a reanalysis of
53 studies (19 lakes and reservoirs and 35 rivers) and revealed that Asian rivers, lakes,
and reservoirs had more MP pollution (2.6 × 103 items·m−3) than sources from Europe
(1.4 × 102 items·m−3) and North America (2.7 × 102 items·m−3).

2.2. Generation and Transformation During Drinking Water Treatment

Drinking water treatment plants (DWTPs) are designed to purify water but can also
be a point of MP generation and transformation. Drinking water treatment processes
cannot fully remove MPs, with superior removal efficiencies observed for larger particles
(>500 µm). However, the fragmentation of these macroplastics during treatment generates
smaller MPs, leading to an increased proportion of smaller particles in effluent compared
to influent. Dronjak et al. [15] reported that the proportion of 20–50 µm MPs rose from 8%
in influent to 15% in effluent, while larger particles (500–2000 µm) decreased from 19% to
<1%. Similarly, Wu et al. [30] demonstrated a significant increase in granular MPs ≤ 20 µm
post-treatment.

The infrastructure may also act as an endogenous source of MP pollution. Membrane
filtration systems, widely implemented in global water treatment facilities as final barriers
against micropollutants, utilize synthetic organic membranes composed of polyethersul-
fone (PES), PVC, PP, and polyvinylidene fluoride (PVDF). The structural degradation
of these membranes may release MPs into treated water [31]. Ding et al. [32] analyzed
membrane integrity risks from prolonged operational stresses (physical cleaning, chemical
agents, mechanical strain, aging, and abrasion), concluding that aged membranes can
release nanoplastics and MPs into distribution networks based on material properties and
degradation mechanisms. MPs released from the membrane system originated not only
from the membrane material and its additives but also from plastic-made equipment and
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even the other polymers used in the system [33]. Chu et al. [34] observed that while only ny-
lon and PET were detected in raw water, PVDF emerged post-coagulation/sedimentation,
with PVC and PP further identified in treated effluent. The presence of PP and PMMA may
originate from polyacrylamide-based flocculants [35].

2.3. Release from Distribution Network

As a critical component of the drinking water supply chain, water distribution systems
serve as both the terminal barrier for water quality assurance and a critical carrier for the
endogenous release of MPs. Pipes and fittings, predominantly made of PVC, PE, PA, and
PP, exhibit corrosion resistance but may undergo minor fragmentation and abrasion during
water transport, releasing MP particles into drinking water [14,36–38]. Beyond mechanical
abrasion, interactions between disinfectants and plastic pipes can exacerbate MP release,
modulated by the material properties, hydraulic pressure, temperature, pH, disinfectant
concentration, and exposure duration [34,39]. The presence of PE pipes with an age of
more than 10 years had a considerable effect on the abundance of MPs in the distribution
system [6].

MPs released from water distribution systems exhibit significant characteristics of
particle size differentiation and regional heterogeneity. An investigation by Tong et al. [40]
across 38 tap water samples across Chinese cities revealed maximum MP concentrations
of 1247 MPs/L (mean: 440 MPs/L); 1–50 µm particles predominated (78.2%), followed
by 100–300 µm (12.1%), 300–500 µm (6.5%), and 500–5000 µm (3.2%). Further analysis
demonstrated that a daily consumption of 1500 mL of water would result in an average
intake of 660 MP particles per person [40]. Temporal variations in MP concentrations were
observed, attributed to variations in the water quality and the heterogeneous distribution
of these microparticles in tap water [41].

2.4. Release from Bottled/Barreled Water Packaging

Intrinsic release from packaging materials constitutes the primary source. The plastic
bottle/barrel bodies are mainly composed of polycarbonate, PE, PET, and HDPE, while
the bottle caps are typically made of PS, HDPE, and LDPE [42]. The deformation of plastic
water bottles during transportation, usage, and capping due to mechanical effects can also
lead to MP release. Studies confirm that the polymer types of bottles and caps correspond
to the dominant MP polymers found in bottled water [4,43,44]. Bottle cleaning processes
and mechanical actions during filling further contribute to MP contamination. Weisser
et al. (2021) [45] collected five sample types from four mineral water bottling lines: raw
water, de-ironed water, cleaned post-washing bottles, filled bottles, and capped products.
Results showed that MP concentrations increased from <1 MP/L to 317 ± 257 MP/L
during bottling, with 81% identified as PE, which is highly consistent with the materials
of production equipment. Environmental stress during transportation and storage drives
MP release. Vibrations cause friction between bottles/barrels and caps, as well as wear
at the interface between barreled water and water dispensers. Temperature fluctuations
disrupt polymer molecular forces, triggering MP shedding. Dissolved CO2 in carbonated
beverages increases internal pressure, amplifying stress on bottle walls and enhancing
MP shedding [44], which explains the higher MP levels in carbonated water compared to
still water.

Additional factors like sunlight exposure and the chemical properties of the water
further contribute to MP contamination [5]. Rigid plastics tend to release larger plastic
particles, while deformable plastics and weakly alkaline pH values increase the number
of smaller-sized plastics [5]. The frequent opening and closing of bottle caps generates
mechanical stress, causing particles or fragments from both the bottle body and caps
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to detach and enter the water, increasing MP contamination [46,47]. Notably, reusable
PET water bottles undergo more cycles of washing, filling, and mechanical stress due to
their repeated use, resulting in a typically significantly higher abundance of MP release
compared to single-use PET bottles [4,44]. Even in glass-bottled water, MPs primarily
originate from abrasion at the interface with plastic caps, causing an increasing number of
MPs to enter the water, highlighting the cross-contamination risks associated with mixed-
material packaging [4,44]. MPs in glass-bottled water are higher than that in single-use
PET bottles [4].

3. Microplastic Removal in Drinking Water Treatment
While current water treatment processes have not generally established dedicated

removal units targeting MPs, various conventional treatment units can exert a synergistic
removal effect on MPs through their inherent functions. Various treatment processes exhibit
distinct removal efficiencies depending on their mechanisms and operational conditions
(Table 1).

Table 1. Summary of MP removal efficiency in DWTPs.

Sources Detection Polymer Type Treatment Removal
Efficiency (%) References

Czech SEM + FTIR + Raman
spectroscopy PET, PP, and PE Coagulation–sand filtration 70.0 [35]

Czech SEM + FTIR + Raman
spectroscopy PET, PP, and PE Coagulation–sedimentation–sand

filtration–activated carbon filtration 81.0 [35]

Czech SEM + FTIR + Raman
spectroscopy PET, PP, and PE

Coagulation–dissolved air
flotation–sand filtration–activated

carbon filtration
83.0 [35]

China SEM + Raman
spectroscopy

PET, PE, PP, PAM, PS,
and PVC

Coagulation–sedimentation–GAC
filtration–sand filters–ozone tank 88.6 [48]

Switzerland
Nanoparticle

tracking analysis
(NTA) + turbidimeter

PS Coagulation–sedimentation–sand
filtration–GAC filter 99.2 [49]

China Micro-Raman
spectrometer PP, PET, PE

Coagulation–sedimentation–sand
filtration–ozonation integrated with

GAC filtration–disinfection
82.3 [50]

China Micro-Raman
spectrometer PP, PET, PE Coagulation–sedimentation–sand

filtration–disinfection 73.3 [50]

Iran SEM + µ-Raman
spectroscopy

PP, PET, PE, PS,
PTFE, PU

Screen–coagulation–sand
filtration–disinfection 50.1 [13]

Iran SEM + µ-Raman
spectroscopy

PP, PET, PE, PS,
PTFE, PU

Screen–coagulation–sand
filtration–disinfection 48.4 [13]

Iran SEM + µ-Raman
spectroscopy

PP, PET, PE, PS,
PTFE, PU Coagulation–sand filtration–disinfection 55.2 [13]

3.1. Coagulation/Sedimentation

Coagulation is the first step in the coagulation process, referring to the destabilization
of colloidal particles and their initial aggregation into smaller clusters. Flocculation in-
volves the addition of flocculants, which cause the initially aggregated particles to coalesce
into larger flocs through bridging, net capture, and electrostatic neutralization, thereby
accelerating the sedimentation rate of the particles. Due to the diverse shapes and low
density of MPs in water, they cannot be completely removed through the coagulation–
sedimentation process. Pivokonsky et al. [12] found that the overall removal efficiency
of MPs in water treatment plants was 88%, with the coagulation process accounting for
approximately 70.5% of the total removal efficiency, followed by the deep bed filtration and
the granular activated carbon filtration, which contributed 22.7% and 6.8%, respectively.
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Mao et al. [51] used a random forest to quantify the relative importance of factors influenc-
ing the MP removal by coagulation: MP shape > coagulant type > coagulant dosage > MP
concentration > MP size > MP type > pH.

Aluminum salts and iron salts are commonly used coagulants in WWTPs. Aluminum
salts are reported to be more effective than iron salts in removing MPs from water through
aggregation and solidification. For example, Wang et al. [52] compared the removal effects
of low-molecular-weight metallic salt coagulants and high-molecular-weight polymeric
metallic salt coagulants on MPs and found that when the coagulant was 50 mg·L−1, the
removal efficiency of PS was in the following order: PAC (86.1%) > FeCl3 (85.6%) > PFS
(65.1%) > alum (50.4%) > Al2(SO4)3 (41.3%) > FeSO4 (25.5%). However, under acidic and
neutral conditions, Fe13 has a higher net capture and electrostatic neutralization capacity
than Al13, achieving an 80% removal rate for PS [53]. Additionally, some researchers
believe that the removal mechanisms of inorganic coagulants are similar, and thus the
removal effects of aluminum salts and iron salts on PS are not significantly different [54,55].
Fibrous MPs have a larger surface area and therefore a higher removal rate than other
shapes of MPs [39]. Moreover, MPs with rough surfaces are more asymmetric and have
stronger adsorption forces, making them easier to remove through coagulation [56]. Some
researchers argue that larger MPs are more easily removed [54,56,57]. However, other
researchers believe that smaller MPs are more easily removed [58,59], as the flocs formed
by aluminum salts and iron salts are only a few hundred micrometers in size and cannot
capture larger MPs at the millimeter level [29]. The removal of larger MPs is related
to the adsorption capacity of flocs for particles, while the removal efficiency of small-
sized MPs is predominantly governed by adsorption and electroneutralization interactions
with coagulants [60]. Additionally, changes in the physicochemical properties of MPs
during aging, such as the color, morphology, size, crystallinity, charge, hydrophobicity, and
surface functional groups, also affect the removal efficiency of MPs during coagulation–
sedimentation [61]. Aged MPs exhibit superior removal efficiency compared to pristine
MPs, as new functional groups (such as -OH, -COOH, and -C=C-) formed on the surface of
aged MPs enhance their interactions with coagulants [59].

3.2. Filtration

In water treatment processes, granular filter media, such as quartz sand, anthracite,
and ceramic particles, are commonly used to retain suspended particles in water. Studies
have confirmed that sand filtration has a lower removal rate for smaller MPs but a higher
removal rate for larger ones. According to Na et al. [57], the sequential process of coagula-
tion/sedimentation and sand filtration could completely remove 45 µm and 90 µm MPs,
whereas 1.2% of 20 µm MPs and 16.6% of the 10 µm MPs passed through the sand media.
The removal mechanism of MPs < 10 µm involved interception, capture, entanglement, and
adsorption [62]. The presence of biofilms in natural environments aids in the deposition of
MPs in porous media, possibly due to the hydrogen bonds that can form between the O-H
and N-H groups on cell surfaces and plastic particles [63]. The removal efficiency of MPs of
different shapes also varies during sand filtration. For example, Wang et al. [48] studied the
characteristics of MPs in each treatment process of an advanced DWTP and found that after
sand filtration, the removal efficiencies for fibrous, spherical, and fragment-shaped MPs
were 30.9–49.3%, 23.5–50.9%, and 18.9–27.5%, respectively. Other studies have also found
that fragment-shaped MPs are more easily removed than fibrous ones during filtration
processes [12]. In summary, the removal of MPs during filtration is influenced by multiple
factors, and the mechanisms and influencing factors of MP removal during filtration in
DWTPs still require further investigation.
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The removal of MPs by sand filtration is limited. The addition of biochar to sand filtra-
tion systems can enhance the removal performance of MPs. For example, Wang et al. [64]
added biochars to a sand column (accounting for 70% of the total column height) and
found that 95% of MPs with a particle size of 10 µm could be retained in the column.
Biochar derived from lignin and cellulose has a more complex surface morphology and
thus exhibits a higher capture capacity for MPs [65].

Membrane filtration is commonly used for the advanced treatment of drinking water
and is classified into microfiltration, ultrafiltration, and nanofiltration based on the pore
size of the membrane. It is worth noting that the particle size of MPs is larger than that
of ultrafiltration membranes, so ultrafiltration can effectively remove MPs from water.
However, during the filtration, since the average pore size of the membrane is smaller
than that of MPs, a large number of MPs pose the risk of surface contamination and pore
clogging, thereby reducing the performance of the membrane filtration [58]. MPs larger
than the membrane pore size can be easily repelled by coagulation–ultrafiltration mem-
branes [66]. The separation of microfiltration and ultrafiltration is based on the mechanisms
of intermolecular repulsion and electrostatic attraction between MPs and the membrane
surface [66]. Once implementing microfiltration and ultrafiltration for MP removal, the
strict control of membrane fouling is imperative [67]. The separation mechanism in these
processes relies on the interplay between intermolecular repulsion and electrostatic attrac-
tion at the membrane–MP interface [66]. Notably, MPs may engage in π-π conjugation with
humic substances present in raw water, followed by surface attachment through carboxyl
and carbonyl linkages. These interactions facilitate the formation of composite foulants
that exacerbate scaling phenomena and induce membrane pore blockage [68]. The study
by Li et al. [69] showed that MPs have a synergistic effect with substances in raw water,
exacerbating membrane fouling, and that transmembrane pressure is positively correlated
with the load of MPs. Therefore, how to effectively alleviate membrane fouling is a key
issue that needs to be urgently solved in membrane filtration processes.

3.3. Disinfection

Chlorination, ozonation, and ultraviolet radiation are commonly employed disin-
fection methods in DWTPs. MPs can be degraded or fragmented into smaller sizes and
even converted into nanoplastics. The effectiveness of different disinfection methods in
degrading MPs varies. Ozonation was more effective in removing nanoplastics, achieving
99.9% degradation and 42.7% mineralization within 240 min, whereas chlorination only
reached 7.1% degradation and 4.3% mineralization [70].

Ozone, a strong oxidant, can roughen the surface of MPs and introduce oxygen-
containing functional groups, thereby increasing their hydrophilicity and facilitating fur-
ther oxidative degradation into products such as formic acid and phenol [70]. Ozone
oxidation can kill chlorine-resistant microorganisms by attacking their cell membranes [71].
However, MPs can interact with ozone, reducing the number of ozone molecules available
to react with bacteria and leaving unaffected pathogens in the water [72]. It has been
reported that ozonation can increase the removal rate of MPs to 89.9% [73]. Nevertheless,
Pivokonsky et al. [12] reported that ozone treatment in DWTPs reduced the abundance
of MPs from 243 ± 17 MPs/L to 224 ± 3 MPs/L, achieving a removal rate of only 7.8%.
Additionally, some studies have suggested that ozonation can accelerate the aging and
catalytic breakdown of MPs, leading to their fragmentation into smaller particles and fibers
under external stress [30,64].

Chlorination is the most widely employed disinfection method. During the chlori-
nation process, MPs undergo substitution or oxidation reactions with hypochlorous acid
(HOCl), resulting in the degradation of their original functional groups. The chlorine-
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induced oxidation of MPs primarily proceeds through two pathways: (1) HOCl decom-
position generates molecular oxygen that facilitates MP oxidation, and (2) HOCl gen-
erates reactive oxygen species (HO·) and chlorine radicals (Cl·) that interact with MPs,
forming carbonyl groups on their surfaces and enabling subsequent auto-oxidation pro-
cesses [74]. The removal efficacy is influenced by multiple factors, including the chlorine
concentration, contact time, water quality parameters, and MP characteristics [75]. Kelkar
et al. [76] reported that PP, HDPE, and PS exhibit chlorine resistance with minimal alter-
ations to their chemical and physical structures. However, contradictory findings by Miao
et al. [77] demonstrated significant morphological and functional group modifications
in MPs during chlorination. Chlorine resistance varies among polymer types, showing
an ascending order of PE > PLA > PS when exposed to chlorine concentrations ranging
from 2.5 to 5000 mg·L−1 [78]. The increase in small-sized MPs may originate from the
fragmentation of larger particles during chlorination processes [64].

Photochemical reactions during UV disinfection enhance MPs’ brittleness by reducing
elasticity and promoting light absorption [79]. UV disinfection facilitates a 1% removal
efficiency through the oxidative breakdown of MPs into smaller fragments [80]. Abrasion,
increased hydrophilicity, surface oxidation, the accumulation of oxygen-containing func-
tional groups, and dechlorination can be observed during MP aging. These transformations
collectively amplify specific surface areas, shift the organic matter equilibrium toward
net release over adsorption, and establish MPs as functional precursors for disinfection
byproduct formation [81]. Low-dose UV irradiation increases oxygen-containing functional
groups on MP surfaces, whereas a high-dose UV exposure degrades C=O bonds [82].

Current research on MP removal during disinfection predominantly focuses on sur-
face characteristics. However, in DWTPs, co-existing constituents such as heavy metals,
organic matter, and particulate matter may interfere with disinfectant–MP interactions.
Consequently, the impacts and mechanistic pathways of MPs before and after drinking
water disinfection remain insufficiently characterized, necessitating comprehensive investi-
gations into their environmental behavior and transformation dynamics under complex
aqueous matrices.

3.4. Advanced Microplastic Removal Technologies

Some research efforts have been explored in recent years to develop advanced tech-
niques for the removal of MPs from water, demonstrating considerable potential in both
efficacy and innovation. Advanced treatment technologies enhance the overall MP removal,
particularly for smaller particles [50,64]. The MP removal rate reached 83% under ozona-
tion combined with granular activated carbon (GAC), which is higher than the removal
rate of MPs in conventional water treatment plants (73.3%) [50]. Advanced oxidation
processes refer to the generation of highly reactive hydroxyl radicals (•OH) to oxidize and
degrade various organic pollutants [83]. Electrochemistry-driven techniques (e.g., electro-
coagulation, electroadsorption, electrokinetic separation, and electrochemical degradation)
have attracted significant attention due to their high efficiency, operational simplicity, and
environmental compatibility [84,85]. Among these, electrocoagulation uses a sacrificial
metal anode to electrically generate coagulants in situ and has emerged as a particularly
robust and convenient process. Laboratory studies by Perren et al. [86] demonstrated that
electrocoagulation can achieve removal efficiencies exceeding 90% for PE, with a peak
efficiency of 99.24% observed at pH 7.5.

Magnetic extraction represents another promising approach which uses magnetic
seeds and acid with an external magnetic field to improve the separation speed. Nearly
a 90% removal of 100–1000 nm particles and a 100% removal of MPs sized 2–5 mm can
be achieved by magnetizing MPs with a simple 2-inch permanent NdFeB magnet [87].
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Additionally, novel adsorbent materials show great promise. Recently, Kollofrath et al. [88]
designed a buoyancy-driven hybrid hydrogel (BDS-gel) that functions as a self-regulating
shuttle, capable of transporting and decomposing MPs without external intervention. In
simulated seawater, it can degrade 98.7% of polystyrene with only 2 h of light irradiation
and maintain efficacy after more than three cycles of reuse.

Although these emerging technologies demonstrate excellent potential for MP re-
moval at laboratory- and even pilot-scale stages, the vast majority still encounter significant
challenges in terms of cost-effectiveness, process stability, byproduct control, and scalability.
Currently, most have not yet achieved a mature or widespread application in large-scale
DWTPs. Future research should focus on advancing the translation of these technologies
from laboratory settings to engineering applications, as well as exploring integrated solu-
tions that combine multiple techniques in a synergistic manner to address MP pollution in
an economically efficient and effective manner.

4. Identification of Microplastics
MPs exhibit high heterogeneity, potentially comprising one or multiple polymer

types, resulting in variability in the size, morphology, and chemical composition. Primary
detection methodologies include microscopy, spectroscopy, and thermal analysis, each with
distinct advantages and limitations.

4.1. Microscopy Techniques

Microscopic methods utilize optical or electron microscopy to magnify and analyze
MP particles/fibers, determining their shape, size, color, and surface features. Scanning
electron microscopy (SEM) and atomic force microscopy (AFM) achieve spatial resolutions
of 30 nm and 20 nm, respectively, enabling the precise differentiation of MPs from inorganic
particulates. Fluorescence microscopy coupled with dye staining enhances the detection
specificity, where stained MPs emit green fluorescence [89]. However, this approach risks
false-positives. SEM combined with energy-dispersive X-ray spectroscopy (EDS) provides
chemical and morphological characterization, distinguishing carbon-dominant MPs from
mineral particles [90]. AFM generates high-resolution 3D topographical maps of MP
surfaces with nanoscale precision.

4.2. Spectroscopic Techniques

Spectroscopic methods identify the polymer composition by comparing sample spectra
against reference libraries. MP characterization predominantly utilizes mid-infrared spec-
troscopy (4000–400 cm−1; 2.5–30 µm wavelength range) [91]. Fourier-transform infrared
spectroscopy (FTIR) exploits vibrational/rotational absorption bands of chemical bonds to
generate polymer-specific “fingerprints,” enabling the identification of particles >10 µm.
A quantitative analysis is feasible via absorption peak intensity/area measurements.
Mukotaka et al. [41] applied FTIR to trace MP sources in treated water, detecting post-
treatment contaminants such as >100 µm polyester fibers and >50 µm PVC fragments. Ra-
man spectroscopy offers superior sensitivity, detecting particles down to 1 µm (or ~300 nm
with confocal microscopy) [21]. Surface-enhanced Raman spectroscopy (SERS) employs
noble metal nanostructures to amplify Raman signals by 106–1014-fold via localized surface
plasmon resonance, enabling nanoplastic detection [92].

4.3. Thermal Techniques

A thermal analysis identifies polymers via degradation byproducts by measuring
physicochemical property changes under controlled heating, though its destructive nature
imposes limitations on the sample recovery and subsequent analysis. Principal techniques
include pyrolysis–gas chromatography/mass spectrometry (Py-GC/MS) and thermal
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desorption–gas chromatography/mass spectrometry (ATD-GC-MS). Unlike spectroscopic
methods, Py-GC/MS requires a minimal sample pre-treatment and effectively analyzes
<1 µm. However, its destructive protocol and small sample capacity (~0.5 mg) restrict
high-throughput applications. ATD-GC-MS combines a thermogravimetric analysis (TGA)
with thermal desorption. Degradation products and oligomers are captured on sorbent
traps, desorbed at elevated temperatures, and analyzed via GC-MS. Compared to Py-
GC/MS, ATD-GC-MS accommodates complex matrices and larger sample masses (up to
100 mg), enabling nanoplastic polymer identification. However, it demands higher MP
concentrations (>1% w/w) and a ~200× greater sample mass.

Studies on the occurrence characteristics of MPs in drinking water reveal signifi-
cant methodological discrepancies in detection outcomes. For example, Kirstein et al. [6]
assessed the MP contamination in drinking water using u-FTIR and Py-GC/MS. Both
methods successfully determined the content of MPs in drinking water, with a range of
0–0.022 ± 0.019 MPs/L. However, the polymer types identified by the two methods were
not consistent. u-FTIR identified eight polymer types, including PA, PES, acrylic com-
pounds, PVC, PS, and, the relatively less common, PE, PU, and PP. In contrast, Py-GC/MS
only detected five polymer types: PA, PES, PVC, PS, and PP. It is evident that a single
detection method often has limitations and cannot comprehensively and accurately re-
flect the full picture of MPs. Therefore, it is recommended to integrate various detection
methods to obtain valuable complementary information and effectively compensate for
the shortcomings of a single technology. Moreover, the limitations of existing detection
technologies are particularly evident when analyzing MPs in complex environmental sam-
ples. On the one hand, the sample pre-treatment process is complex, usually requiring
multi-stage filtration and manual sorting, which is not only time-consuming and labor-
intensive but also prone to human error. On the other hand, the spectral characteristics
of MPs are susceptible to interference from organic matter coverage or pigments, and the
interpretation of characteristic peaks highly depends on the experience of the operator,
which greatly restricts the accuracy and reliability of the detection results. In view of this,
machine learning, as a technology with powerful data processing and analysis capabilities,
provides a new solution to the above problems. Machine learning can be combined with
detection technologies to significantly improve the accuracy and detection efficiency of
MP analysis.

5. Potential Risk of Microplastics
The physicochemical properties of MPs play a significant role in influencing human

health. For instance, smaller-sized particles and ultrafine fibers are considered relatively
more hazardous types of MPs to humans. The health hazards posed by MPs can be
categorized into direct and indirect hazards (Figure 3). Direct hazards refer to the immediate
physical damage caused by the MPs themselves, such as physiological injuries to various
organs due to the ingestion of MP particles. Indirect hazards pertain to the risks associated
with additives used in the plastic manufacturing process, as well as the potential for MPs to
act as carriers that adsorb toxic chemicals, thereby posing risks to human health. In regions
where drinking water has a low abundance of MPs, some scholars argue that MPs do not
pose significant health problems to humans [93,94]. However, the potential health risks
associated with MPs should not be overlooked [93,94].
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Figure 3. Impact of MPs on health.

5.1. Direct Hazards

MPs with smaller particle sizes are more readily absorbed by the human body. It has
been reported that MPs smaller than 150 µm can easily traverse the gastrointestinal epithe-
lium, MPs of approximately 10 µm in size can cross the placental and blood–brain barriers,
and even smaller MPs of 2.5 µm can reach the systemic circulation through endocytosis [95].
Huang et al. [96] demonstrated that, under normal breathing rates, MPs can cover half of
the nasal cavity’s inner surface. Larger-sized MPs are more likely to deposit rapidly in the
upper respiratory tract, while smaller nanoplastics are more capable of escaping or reaching
deeper respiratory levels. Once absorbed by the human body, MPs can cause various types
of physiological damage, such as disrupting immune function, causing obstruction and
vascular inflammation through internalization, pulmonary arterial hypertension, systemic
inflammatory responses, and blood cell toxicity. They can also directly or indirectly alter
the human metabolism and energy balance and induce oxidative stress effects leading to
cytotoxicity, neurotoxicity, reproductive toxicity, and carcinogenicity [97].

Wu et al. [98] investigated the cytotoxicity and efflux pump inhibitory capacity of
two different sizes of PS particles on human colon cancer Caco-2 cells. They found that
5 µm PS particles induced stronger effects than 0.1 µm PS particles. Moreover, high con-
centrations of 5 µm PS particles could reduce the activity of ABC transporters by inducing
mitochondrial depolarization and potential ATP depletion. Jeon et al. [99] discovered
that polystyrene exhibited a more significant toxicity to THP-1 macrophages compared to
PP. PS nanoparticles (50 nm) could cross the blood–brain barrier and accumulate in the
brain, activating microglial cells and causing severe neuronal damage [100]. Lin et al. [101]
observed that 80 nm PS particles entering human normal liver cells and human normal lung
epithelial cells could induce mitochondrial dysfunction, such as mitochondrial damage,
excessive mitochondrial reactive oxygen species, changes in the mitochondrial membrane
potential, and the inhibition of mitochondrial respiration. A recent study indicated that the
concentration of MPs/nanoplastics in the brain is significantly higher than that in the liver
and kidneys [102].
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5.2. Indirect Hazards

The precursor plastics of MPs contain a vast array of chemical substances, among
which a common category is additives, including plasticizers, flame retardants, colorants,
stabilizers, and so on. Compared with other additives, plasticizers (especially phthalates
and bisphenol A) have been more extensively studied for their hazards. Eker et al. [103] re-
vealed a positive correlation between serum bisphenol A levels and non-functional adrenal
incidentalomas. Polybrominated diphenyl ethers (PBDEs), which serve as flame retardants,
can trigger oxidative stress, disrupt hormones, and induce molecular carcinogenesis in
tissues. Moreover, exposure to both MPs and flame retardants may enhance oxidative
stress-mediated neurotoxicity in mice [104].

MPs can adsorb other pollutants from the environment, such as heavy metals and
organic pollutants, and may subsequently interact with them in a synergistic or antago-
nistic manner. This can alter the overall toxicity and physicochemical properties, thereby
increasing the risk of human disease. Particularly, smaller-sized MPs, with their larger
surface area-to-volume ratio, possess a stronger capacity for adsorbing and releasing pollu-
tants, as well as penetrating and disrupting cells and tissues. These chemicals can interfere
with the human endocrine system, causing hormonal imbalances that may affect the im-
mune system, reproductive system, and other physiological functions of the human body.
Deng et al. [104] demonstrated that MPs contaminated with phthalates led to higher alter-
ations in sperm. PP loaded with 17β-estradiol posed a relatively higher risk of pollutant
release in the gastric fluid of marine organisms under constant temperature conditions,
potentially causing more severe harm [105]. Moreover, MPs of different particle sizes
exhibit varying adsorption capacities. For instance, 70 nm PS has an adsorption capacity
for PCBs that is 1–2 orders of magnitude higher than that of 10–180 µm PE [106]. MPs can
also act as carriers for a variety of microorganisms. The formation of biofilms on MPs may
influence microbial dissemination through microbe–MP–toxic chemical interactions. In
drinking water, once microorganisms grow on pipes, biofilms can form on MPs. These
biofilms may flake off due to aging and subsequently enter the drinking water.

6. Recommendations for Future Research
Despite significant advancements in MP research in aquatic environments, critical

challenges persist in comprehensively understanding the distribution, abundance, and
composition of MPs in drinking water. To address current methodological limitations,
future research should prioritize the following four strategic directions:

(1) Establishing standardized detection procedures and methods for MPs in drinking wa-
ter. Current studies exhibit pronounced methodological heterogeneity, manifesting in
inconsistent sampling strategies, pre-treatment approaches, and detection techniques.
These inconsistencies compromise data comparability and introduce false-positive
risks. Consequently, it is imperative to establish unified standardized protocols that
consider all the steps associated with the quantification and characterization of MPs,
ensuring data accuracy, reproducibility, and comparability.

(2) Enhancing treatment processes to remove MPs. Traditional processes in current
DWTPs are still insufficient in removing MPs and pose the risk of secondary release.
Given the potential threats of MPs to the environment and human health, there is an
urgent need to develop more efficient new water treatment technologies to enhance
the removal capacity of MPs. Exploring and applying new adsorbent materials that
can efficiently capture MP particles in water bodies, as well as the great potential of
membrane technology in MP removal, are important directions. Moreover, integrating
various water treatment processes to form a comprehensive treatment system is also
an effective way to improve the removal efficiency of MPs.
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(3) Developing health risk assessment methods for MPs in drinking water. Data on the im-
pact of MPs on human health are relatively limited, but their potential effects should
not be overlooked. Drinking water is an important source of human exposure to MPs.
By combining the absorption and metabolic conditions of MPs in the human body
with toxicological data on MPs, it is necessary to quantify the migration and metabolic
patterns of MPs in the human body, analyze their synergistic toxic effects with coexist-
ing pollutants, establish dose–effect relationship models, and comprehensively assess
the potential threats of MPs to human health.

(4) Constructing a multi-scale coordinated life cycle prevention and control system for
MPs in drinking water systems. Establish multi-level prevention and control barriers
from the four dimensions of “source reduction–process interception–end-of-pipe
treatment–recycling and regeneration” to form a systematic management plan for the
entire chain of “sources–water treatment plants–pipelines-users”, reduce the risk of
MPs in drinking water, and ensure public drinking water safety.

7. Conclusions
This study presents the current research on MPs in drinking water supply chains,

encompassing their sources, fates, removal technologies, detection methods, and potential
hazards to human health. MPs in drinking water systems exhibit multi-source input
characteristics, originating from environmental infiltration into water sources; leaching
from materials in water distribution systems; migration from bottled water packaging
interfaces; and re-release during water treatment processes. These pathways collectively
contribute to contamination across the entire supply chain, from raw water to end-user
consumption. It is noteworthy that current detection technologies are limited by non-
standardized sampling procedures and the limitations of identification methods, leading
to the questionable comparability of data across different studies. There is an urgent
need to establish standardized detection protocols that include quality control systems
and to construct a multidimensional detection system through the integration of various
technologies. The potential hazards of MPs remain a critical concern. Future work needs
to integrate research from environmental science, toxicology, and public health to clarify
the dose–effect relationships of MPs, improve risk assessment systems, and promote
technological innovation and policy regulation to effectively ensure drinking water safety
and public health.
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