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Abstract: With the acceleration of urbanization, the diffusion mechanism of urban non-
point source (NPS) pollution caused by extreme rainfall is not clear, which leads to high
cost and difficulty in water environment treatment. In view of the shortcomings of dynamic
diffusion simulations of mesoscale pollution, this paper proposes a simulation framework
based on cellular automata, GIS geographic technology, and a two-dimensional shallow
water model. Taking the 500 m × 500 m grid as the unit, we explore the migration laws
of nitrogen and phosphorus pollutants and the response relationship between pollutant
diffusion and land use under extreme rainfall scenarios. The results show that (i) the
pollution risk increases significantly with diffusion, with the maximum pollution load in
high-risk areas increasing by 181%, and the diffusion rate is positively correlated with
the rate of change in rainfall intensity; (ii) forest land has the highest grid pollution load
loss rate, whereas the water grid has the highest accumulation rate; (iii) this method can
accurately identify the hot spots of pollution diffusion, providing a basis for the precise
control of high-risk areas. This study can support the targeted governance of pollution
sources and land planning optimization in urban storm and flood management, and help
reduce environmental health risks in extreme climates.

Keywords: cellular automata; export coefficient model; extreme rainfall; land use;
non-point source of pollution; risk assessment

1. Introduction
The surface runoff formed during heavy rains brings many pollutants into water bod-

ies in a short period of time, causing serious non-point source (NPS) pollution and adversely
affecting the quality of the urban water environment [1,2]. As urbanization accelerates,
the natural permeable ground in urban regions continues to decrease, the impermeable
underlying surface continues to increase, and the process of surface runoff creation speeds
up [3,4], further exacerbating the risk of NPS pollution. Furthermore, NPS pollution has
also been significantly impacted by changes in land use, particularly the expansion of
downtown areas and the elimination of natural spaces [5–7]. As a result, NPS pollution
caused by rainfall is now the primary source of the decline in urban water quality [8]. The
resulting pollution risks have a negative impact on the urban natural environment and
human well-being [9]. Due to the complex characteristics of NPS pollutants, numerous
influencing factors (such as land use, rainfall intensity, topography, etc.), and diverse types
of urban surface coverage, the distribution of pollution is difficult to clarify, making it
difficult and costly to control NPS pollution incidents [10,11]. Consequently, investigating
the urban NPS pollution risk aggravating process after heavy rainfall is essential to develop
a theoretical framework for urban water pollution mitigation [12,13].
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Previous studies on NPS pollution in cities under extreme rainfall have been conducted
from multiple perspectives. Regarding simulation methods, previous studies mainly
used two categories: lumped models (mainly empirical models) and distributed models
(physical models and GIS-based hydrological models). Lumped models like the Long-Term
Hydrologic Impact Assessment (L-THIA) reduce internal spatial heterogeneity, address
the research region as a whole, and improve computational efficiency by simplifying the
model structure [14,15]. Distributed models such as the Soil and Water Assessment Tool
(SWAT), Water Erosion Prediction Project (WEPP) model, Storm Water Management Model
(SWMM), etc., can map the spatiotemporal distribution characteristics of NPS pollution
loads and more clearly describe the spatial heterogeneity of pollution distribution [16,17].
They divide the watershed into multiple sub-units (such as sub-watersheds, grids, etc.) for
separate simulations and then summarize them to obtain the overall results [18,19], so that
the simulated pollutant migration and diffusion process is more accurate. From a research
scale perspective, there are both macro-scale studies and micro-scale studies. Macro-scale
studies mainly focus on the pollution load and pollutant migration and transformation
processes in watersheds or urban areas [11,20], while micro-scale studies are primarily
concerned with the identification of pollution sources, pollutant production, and emission
mechanisms within a single plot or block [21–23].

However, there are still some limitations of previous research. With reference to the
simulation methodology, lumped models can obtain an overall quantitative relationship
but it is difficult to reflect the spatial distribution characteristics of pollution [24,25]. The
implementation of a distributed model requires a large amount of data, and many data
are difficult to obtain, which limits its application scope [26,27]. In this issue, cellular
automata (CA) models have been proven to streamline the required parameter data while
accurately simulating contaminant diffusion [28,29]. The CA model can realize complex
spatiotemporal dynamic simulation of pollutant migration and diffusion [30]. The model is
founded upon cellular bases, each of which represents a specific area. Depending on the
research area, the size of the basic cell varies. The size-related constraints of most existing
studies can be successfully addressed by adjusting the cell size in CA. In addition, through
flexible modification of the CA model generation program to consider the influence of
rainfall intensity, terrain, land use type, and other parameters, the simulation results can be
brought closer to reality. At the same time, the CA model can be integrated well with GIS
and other distributed hydrological models, thereby enabling multi-dimensional analysis
to make spatial analysis more powerful and intuitive and clearly display the time and
geographical dispersion results of NPS pollution [31–33].

In terms of the research scale, macro-scale research cannot accurately describe the
detailed characteristics of the pollution process [34], while micro-scale research is difficult to
analyze the overall environmental change trend. In addition, due to limitations in research
scale, when studying the impact of urban land use changes on pollutant diffusion, more
research focuses on the correlation between the overall land use amount and pollutant
diffusion, while there is less research on the impact of various land types on pollutant
diffusion [35–37]. In solving the problem of research scale limitations, a grid scale of
500 m × 500 m is considered to be appropriate when using cellular automata to simulate
pollutant diffusion. It is neither too microscopic to analyze the overall environmental
change trend nor too macroscopic to ignore local pollution details. Compared with the
micro scale, this scale makes it easier to obtain geographical data such as terrain and land
use, does not require too much detailed data, and can reduce a certain number of samples to
reduce the model running time and running costs [38]. Compared with macro scales such
as urban or watershed scales, this scale can more accurately reflect the spatial differences
in each research plot, thereby more accurately representing the process of migration and
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diffusion of NPS pollution. Regarding the management and prevention in urban areas, this
scale is more conducive to risk warning and regulation for high-risk areas and potential
risk areas [32,39,40].

In order to make up for the limitations of previous research, this study uses the cellular
automata (CA) model combined with GIS technology to simulate NPS pollution in urban
areas under rainfall scenarios. The cell size used in this investigation was 500 m by 500 m,
which is a medium scale. In addition, a two-dimensional shallow water model accelerated
by a general-purpose graphics processing unit (SW2D-GPU) model was also coupled with
the CA model to simulate extreme rainfall scenarios as a prerequisite rainfall intensity
condition for urban NPS pollution simulations [41,42]. The primary goal of this research is
to propose a risk analysis method for urban NPS pollution transport and diffusion under a
medium-scale extreme rainfall, and to investigate the effects of urban land utilization upon
pollutant diffusion. Regarding the current situation of increasing urban NPS pollution
caused by extreme rainfall, the findings can furnish technical assistance in pinpointing
pivotal pollution hotspots and provide a theoretical basis for rationally regulating land use
attributes to mitigate the impact of NPS pollution.

2. Materials and Methods
The research subjects were nitrogen and phosphorus nutrients, which are major pol-

lutants in NPS pollution. To replicate the larger-scale dynamic diffusion of total nitrogen
(TN) and total phosphorus (TP), the study area was subdivided into 676 grids, each mea-
suring 500 m by 500 m. This study first uses the export coefficient model to quantify
the initial pollution load of TN and TP, and implements risk zonation through ArcGIS to
obtain the initial pollution risk zoning maps. Next, a pollution dynamic diffusion simu-
lation model was constructed based on cellular automation and the SW2D-GPU model.
This study used this model to replicate the continual diffusion of NPS pollution under
an extreme rainfall scenario that occurs once every 1000 years, and used the simulation
result to analyze the pollution risk changes of TN and TP. Figure 1 is an illustration of the
methodology framework.
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2.1. Quantitative Estimation of Initial Pollution Load

We evaluated the initial pollutant load (L) using the modified Johnes export coefficient
model [14,43]. The following is the calculating formula:

L = X·Y
n

∑
i=1

Ei[Ai(Ii)]+p, (1)

The rainfall influence factor is represented by X, and the geographic influence factor by
Y. The i-th land use type’s output coefficient is denoted by Ei (kg/(ha·a)), which represents
the mass of pollutant output per unit area of land per year. The area of the i-th land use
type is denoted by Ai (m2), the input intensity of the various land use types is indicated
by Ii (kg/a), and the loads generated by atmospheric deposition in the research region is
denoted by p (kg/a). Since the input pollutant mass p from precipitation is very small, the
influence of this factor was not considered.

Coefficients are used to quantify the contribution of different land use types to non-
point source pollution (NPS), and these coefficients reflect the amount of pollutant output
per unit area generated by a particular land use type. Combined with the geographical
characteristics of the watershed, the pollution export coefficients ( Ei) were obtained by
consulting the literature; the export coefficients were determined as shown in Table 1. Based
on the geographical characteristics of the watershed, we searched the literature to obtain
the pollution export coefficients ( Ei) [44]. The export coefficients are shown in Table 1.

Table 1. The pollution export coefficients.

Grassland Cropland Construction Land Forest Land Water Body

TN 1.00 2.90 1.10 0.24 1.50
TP 0.02 0.09 0.02 0.02 0.04

2.2. Extreme Rainfall Scenario Simulation with a Recurrence Period of 1000 Years

This study calculates rainfall intensity based on the revised Nanjing rainstorm intensity
formula and outdoor drainage design standards [45]. In addition, since this study needs to
examine the pollution risk under extreme rainfall scenarios, the recurrence period is set
to 1000 years and the simulation duration is 120 min. Figure 2 represents the calculated
rainfall intensity data within 120 min. And, then, the Chicago rain pattern generator is used
to form the corresponding precipitation distribution. Software such as VISUAL STUDIO
and CUDA/C++ are adopted to run the SW2D-GPU model to generate extreme rainfall
scenarios [1]. In light of the simulation’s findings, flood depth, flow velocity, flow direction,
and other inundation data of the study area at each time within 120 min are obtained,
which provides a data basis for subsequent simulation of the dynamic diffusion process of
TN and TP.

2.3. Simulating the Dynamic Diffusion of NPS Pollution Based on Cellular Automata

The cellular automaton model (cellular automata, CA) is a dynamic model that is
discrete in time and space. CA mainly includes four parts: cellular space, neighborhood,
state, and rules [29]. The cellular rules are the core of CA, which mainly define the rules
for the evolution of the cell from the current state to the next moment and determine how
to perform local transformations between cells. The cell neighborhood adopts a typical
Moore-type neighborhood, as shown in Figure 3.

To simulate pollutant diffusion process, this study split the research region into
500 m × 500 m grid cells and defined contaminant transmission rules between cells and
neighboring units or neighborhoods in CA. We assumed that there is no chemical reaction
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between pollutants and water, and only changes in the mass of pollutants are considered.
The diffusion is only affected by factors such as water flow direction, flow velocity, and
flow rate, and satisfies the principle of mass conservation.
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First, considering the water flow velocity and the grid cell area of 500 × 500 m, when
the iteration time step is set to 5 min, the pollutant diffusion conversion between local areas
is more complete. After setting the local conversion rules for the output of the central cell
to the surrounding cells and the input of the surrounding cells, the parameter data such as
water flow and pollutant quality required in the diffusion process are imported. According
to the diffusion rules, the amounts of pollutants transferred from the central cell to the
surrounding cells are allocated, and, then, the state of TN and TP in the cell is updated
at the next moment. After iterating a certain number of times, the final diffusion result
is obtained.

Second, the cell conversion rule is to determine flow direction between the core cell
and the surrounding eight cells through assessing water level, and then judge flow direction
according to the area with a high water level flowing to the area with a low water level.

The flow direction of cells is determined based on the rule that cells with high
water levels flow to cells with low water levels [46]. The flow direction judgment is
shown in Figure 4.

Ht
i,j = hi,j + dt

i,j, (2)
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where Ht
i,j is the water level height (m) of the cell in the i-th row and j-th column at time t,

hi,j is the terrain elevation value of the cell in the i-th row and j-th column (m), and dt
i,j is

the water depth (m) in the cell of the i-th row and j-th column at time t.

Toxics 2025, 13, x FOR PEER REVIEW 6 of 19 
 

 

updated at the next moment. After iterating a certain number of times, the final diffusion 
result is obtained. 

Second, the cell conversion rule is to determine flow direction between the core cell 
and the surrounding eight cells through assessing water level, and then judge flow 
direction according to the area with a high water level flowing to the area with a low water 
level. 

The flow direction of cells is determined based on the rule that cells with high water 
levels flow to cells with low water levels [46]. The flow direction judgment is shown in 
Figure 4. 

Hi,j
t =hi,j

 +di,j
t , (2)

where Hi,j
t  is the water level height (m) of the cell in the i-th row and j-th column at time 

t, hi,j
  is the terrain elevation value of the cell in the i-th row and j-th column (m), and di,j

t  
is the water depth (m) in the cell of the i-th row and j-th column at time t. 

 

Figure 4. Flow judgment rules. 

Finally, to determine the amount of pollutants carried away at each moment, the 
rainfall intensity already determined is employed. Predicated on the idea that the quantity 
of water flow and pollution transmission are proportionate [29,47], the existing water flow 
diffusion data are used as a benchmark to calculate the amount of pollution transfer. The 
previously simulated rainfall data are obtained for this study, and based on the changing 
trend of the water flow data at the present time and the water flow data at subsequent 
times in each central cell, the inflow and outflow of pollutants between the central cell and 
neighboring cells are calculated. 

Within the unit time step, when shifting to the horizontal/vertical direction, the 
formula for the mass of pollutants flowing from the central cell to neighboring cells ∆Mi,j

t   
is as listed below: 

∆Mi,j
t =

Mi,j
t ×vxi,j

t ൬vyi,j
t ൰ ×ts

b  (3)

When shifting diagonally, the mass of pollutants flowing from the core cell to the 
surrounding cells ∆Mi,j

t   is as listed below: 

∆Mi,j
t =

Mi,j
t ×ට(vxi,j

t )2+(vyi,j
t )2×ts√2b

 (4)

where Mi,j
t   is the mass of pollutants contained in the core cell at time t (kg), vxi,j

t , vyi,j
t  are 

flow velocity (m/s) in the x and y directions, ts is time step (s), and b is side length of the 
grid unit (m). 

  

Figure 4. Flow judgment rules.

Finally, to determine the amount of pollutants carried away at each moment, the
rainfall intensity already determined is employed. Predicated on the idea that the quantity
of water flow and pollution transmission are proportionate [29,47], the existing water flow
diffusion data are used as a benchmark to calculate the amount of pollution transfer. The
previously simulated rainfall data are obtained for this study, and based on the changing
trend of the water flow data at the present time and the water flow data at subsequent
times in each central cell, the inflow and outflow of pollutants between the central cell and
neighboring cells are calculated.

Within the unit time step, when shifting to the horizontal/vertical direction, the
formula for the mass of pollutants flowing from the central cell to neighboring cells ∆Mt

i,j
is as listed below:

∆Mt
i,j =

Mt
i,j × vX

t
i,j

(
vY

t
i,j

)
× ts

b
(3)

When shifting diagonally, the mass of pollutants flowing from the core cell to the
surrounding cells ∆Mt

i,j is as listed below:

∆Mt
i,j =

Mt
i,j ×

√(
vX

t
i,j

)2
+(vY

t
i,j

)2
× ts

√
2b

(4)

where Mt
i,j is the mass of pollutants contained in the core cell at time t (kg), vX

t
i,j, vY

t
i,j are

flow velocity (m/s) in the x and y directions, ts is time step (s), and b is side length of the
grid unit (m).

2.4. Case Description

The research area is situated within the main urban zone of Nanjing City, Jiangsu
Province, China. Since most of the main urban areas are urban construction land and
the categories of land usage are relatively single, we selected the area with the largest
number of land use types as the research area (Figure 5). The watershed covers an area
of 169 square kilometers, covering 5 land use types: cropland, grassland, forest land, con-
struction land, and water bodies.
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The fundamental data needed are land cover statistics (30 m × 30 m), DEM data
(30 m × 30 m), and 44 years of Nanjing meteorological station rainfall monitoring data.
Among them, the 30 m resolution data are resampled and summarized into a 500 m grid
through ArcGIS, and spatial heterogeneity is preserved through the average method. In this
study, land cover statistics in Nanjing produced based on Landsat remote sensing images
were obtained through commercial procurement. The rainfall meteorological data were
obtained through commercial procurement, and the data source provider is the National
Meteorological Information Center. This data set contains daily rainfall observation records
of various meteorological sites in Nanjing from 1979 to 2022. The above data are critical
for quantitative estimates of pollutant load. For the rainfall scenario simulation module,
more detailed data are needed, including road network data, building profile data and
administrative boundaries, etc. These are obtained through BIGEMAP (www.bigemap.com,
accessed on 6 May 2025).

2.5. Sensitivity Analysis of Extreme Rainfall Simulation Results

Previous studies [48] have validated the SW2D-GPU model through case studies in-
volving urban flood simulations and lake water level simulations, including case validation,
numerical stability validation, and parallel performance validation, ensuring the accuracy
of the model for urban flood simulations. This prior validation confirms the applicability
of the SW2D-GPU model for urban flood modeling. To further investigate the stability
and reliability of the model under different conditions, this study assesses the robustness
of key parameters involved in the model. The parameters validated include Manning’s
roughness coefficient, permeability coefficient, iterative computation time step, and grid
refinement level.

By systematically varying the values of each parameter and analyzing their impact
on the model outcomes, we aimed to understand the model’s stability in response to
parameter fluctuations. The baseline scenario parameters are listed in Table 2. The SW2D-
GPU model was executed sequentially with these parameters to obtain model outputs,
and the inundation extent and maximum depth of the study area at the 120th min were
compared. The results are summarized in Table 2.

www.bigemap.com
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Table 2. Results of sensitivity analysis.

Parameter Value
Setting Maximum Depth (m) Inundation Area (km2) Baseline Scenario

Parameter

Manning’s
Coefficient

0.01 4.452 116.459
0.0120.02 4.438 117.589

0.03 4.419 117.593

Permeability
0.3 4.569 11.589

0.52340.5 4.453 116.954
0.7 4.428 114.892

Iteration Time Step (s)
0.02 4.412 114.694

0.040.06 4.536 115.558
0.08 4.539 115.694

Grid Refinement (m)
5 4.442 116.062

520 3.864 102.489
50 3.156 98.544

Analysis of the simulation results obtained by adjusting each target parameter indi-
vidually revealed that grid refinement has a more significant impact on the accuracy of the
model’s simulation results. To ensure high accuracy in the model’s simulation outcomes,
this study considered the appropriate grid refinement level for the study area’s size and
selected a 5 m grid data for analysis. The 5 m data were then aggregated into a 500 m grid
network using ArcGIS (Version 10.8) to facilitate subsequent data analysis at 500 m grid
cell units. Given the robustness of the other three parameters, it can be concluded that the
model results in this study are stable and reasonable, providing a reliable data foundation
for subsequent analyses.

3. Results
3.1. Quantitative Characterization of Initial NPS Pollution

Since there is currently no unified standard for pollutant risk zoning, the natural
breakpoint method in ArcGIS is used for risk zoning, and the risk is divided into five levels,
which is extremely low-risk, low risk, medium risk, high risk, and extremely high risk.
This method was applied to the pollution load data to generate the initial pollution risk
zoning maps. Figure 6 shows the initial pollution risk zoning map, and the pollution load
indicates the level of pollution risk. Tables 3 and 4 show the specific pollution risk zonation.
The pollutants have similar characteristics in that the areas with the largest proportion
of risks are extremely low-risk areas and low-risk areas, while medium-risk, high-risk,
and extremely high-risk areas have a comparatively small percentage of area. Comparing
the quantity of pollution load, the pollution load in the extremely high-risk areas is much
greater than that in the low-risk areas.

Table 3. Initial pollution risk zoning for TN.

Risk Zoning Pollution Load Range (kg/a) Area Proportion

Extremely low-risk (8476.44, 207,310.26) 33.48%
Low-risk (207,310.26, 567,696.57) 51.78%

Medium-risk (567,696.57, 1,251,187.84) 7.85%
High-risk (1,251,187.84, 2,133,512.93) 4.29%

Extremely high-risk (2,133,512.93, 3,177,390.51) 2.67%
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Table 4. Initial pollution risk zoning for TP.

Risk Zoning Pollution Load Range (kg/a) Area Proportion

Extremely low-risk (706.37, 7617.12) 74.11%
Low-risk (7617.12, 20,286.83) 14.94%

Medium-risk (20,286.83, 41,786.94) 4.88%
High-risk (41,786.94, 64,054.82) 3.25%

Extremely high-risk (64,054.82, 98,608.67) 2.81%
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3.2. Analysis of Risk Changes in NPS Pollution Under Extreme Rainfall Senarios

Figures 7 and 8 present the pollution risk changes in NPS-TN and NPS-TP under
extreme rainfall scenarios, which are the results simulated using cellular automata, and
the selected moments for analysis are the 0th, 25th, 50th, 75th, 100th, and 120th min,
respectively. The pollution risk zoning range in the dynamic diffusion process is set with
reference to the risk zoning range in the initial pollution state. It is evident that the risk
change trends of TN and TP are generally consistent. The pollution risk zoning maps have
changed greatly: more and more medium-risk grids appear in the low-risk area of TN, and
more and more low-risk grids appear in the extremely low-risk area of TP. At the same time,
high-risk areas are more dispersed and the number of grids increases. From the 0th min to
the 120th min, the risk change trend first becomes larger and then becomes smaller. Among
them, the pollution risk changes most significantly from the 25th min to the 50th min and
from the 50th min to the 75th min.

Figure 9 shows the area proportion of each risk area in TN and TP and the pollution
load changes in extremely high-risk areas. The areas of extremely low-risk, medium-risk,
and extremely high-risk all show an upward trend. Among them, the extremely low-risk
area has the highest growth rate (increasing from 33.48% to 51.48%), and the extremely
high-risk area shows a weak growth trend in area (increasing from 2.67% to 3.10%). Judging
from the changing trend of the maximum pollution load, although the area of the extremely
high-risk area has not increased much, its maximum pollution load has increased from
3,177,390.51 to 8,932,640.19 kg. The increased pollution risk is extremely serious, and the
growth trend first became larger and then flattened. Judging from the average risk of the
extremely high-risk area, it shows a clear upward trend, increasing from 2,605,548.3 to
3,875,402.604 kg. However, compared with the maximum pollution load, the growth trend
is relatively gentle.
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Compared with previous studies, this study combines the cellular automaton model
to characterize the local migration and diffusion process of pollutants on the basis of
characterizing static pollution risks, and evaluates the dynamic risks of surface pollutants
under extreme rainfall conditions. Based on the characterization of dynamic risks, grid
areas with excessive load growth during the pollution diffusion process can be screened
out from the risk maps of TN and TP, thereby providing technical guidance and governance
suggestions for precise control of areas prone to pollution. As shown in Figure 10, in this
simulation, TN is used as an example to accurately locate grids with excessive pollution
load growth. It can be seen that after the diffusion process of risk partitions in these grid
areas, the pollution risk has greatly increased.
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3.3. Spatial Correlation Characteristics Between NPS Pollutant Diffusion and Land Use Attributes

During the dynamic diffusion process of NPS pollution, since the time scale studied in
this study is small and land changes are negligible, the emphasis is on the spatial correlation
characteristics between NPS pollutant diffusion and land use attributes. The MAXs method
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among the dimensionless processing methods is used to process average pollution load
data; then, the data are fitted to a curve as shown in Figure 11, and analysis is performed
on how different land use types affect the dynamic diffusion of NPS pollutants.

 

Figure 11. Fitted curves of average load in each land use type of TN (a) and TP (b).

Based on the general pattern, the pollution load in cropland and forest land continues
to decrease, the pollution load in water bodies and grassland continues to increase, while
the pollution load changes in construction land are not significant. From the perspective of
the change rate, the pollution load loss rate in forest land is higher than that in cultivated
land, and the pollution load accumulation rate in grassland is higher than that in water
bodies. However, analyzing the average pollution load can only provide a general change
trend, and further analysis of local changes in different land use categories is required.

4. Discussion
In this study, we specifically focus on the diffusion of TN and TP, which are major

pollutants in urban NPS pollution. The sources of TN and TP in our study area are
primarily from urban surface accumulations, which are subsequently transported through
surface runoff during extreme rainfall events. In this paper, the pollution risk zoning maps
show that terrain factors greatly influence the diffusion of pollutants. Areas with high
terrain are more likely to lose pollutants, while areas with low terrain are more likely to
accumulate pollutants. However, the results of diffusion are not completely consistent with
the terrain distribution, variations in land use, and rainfall intensity, and other aspects all
have an impact on the spatiotemporal distribution of NPS pollution [36,49], which requires
further exploration.

During the 120 min diffusion phase, Figure 12 shows variations in the quantity of
rasters within each risk area. From the overall distribution point of view, the extremely low-
risk areas and low-risk areas of TN and TP are mainly distributed in grids with attributes
of forest land, construction land, and water bodies, while the medium-risk areas are mostly
spread in grids with attributes of construction land, cropland, and water bodies, and the
high-risk areas are primarily spread with rasters, attributes of which are cropland and
water bodies. From this, it can be seen that the overall pollution risk of forest land and
grassland is low, while the overall pollution risk of cropland and water bodies is high.
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1. Forest land: Analyzing the change characteristics of pollution risk, the forest land
raster is mainly distributed in extremely low-risk areas, while a small amount of
which is distributed in lower-risk areas, and a very small number is distributed in
medium-risk areas. It can be seen that the pollutant risk of the forest land is very low,
and combined with the fitting curve analysis of the forest land, the pollutants in the
forest land are still being lost under extreme rainfall, so the forest land grid continues
to maintain a low-risk state during the diffusion process.

2. Construction land: The pollution risk of the construction land grid is mainly dis-
tributed in the extremely low-risk area and low-risk area. Among them, the TN load
in the construction land grid shifts from the low-risk area to the extremely low-risk
area and the medium-risk area, while the TP load is slightly different, showing that
the number of grids in the extremely low-risk area decreases and shifts to the low-risk
area. Combined with the fitting curve of construction land load, the change in pol-
lution risk in construction land is not significant. Since the number of construction
land grids is the largest and the built environment elements in construction land are
complex, the uncertainty in the diffusion process is also greater, which may also be
the reason why the load change trends in TN and TP are different.

3. Cropland: It can be seen that the number of cropland grids in extremely low-risk areas
and low-risk areas gradually increases over time, and the pollution risk gradually
shifts from high-risk areas to low-risk areas. As shown in the fitted curve of cultivated
land, the risk in cultivated land is continuously decreasing.
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4. Grassland: Although the fitting curve of grassland shows that the pollution load in
grassland increases monotonically and has the largest change rate, this result needs
further verification in subsequent research for the small number of grassland grids
from the local analysis.

5. Water body: Observing Figure 12, we can see that the number of water grids in both
the extremely low-risk area and the extremely high-risk area is increasing, which
means that the risk in some grids increases, while the risk in some grids decreases.
However, this is different from the monotonically rising trend of the water body fitting
curve. Judging from the water body fitting curve, the pollution load in the water body
grid will continue to rise, which is consistent with the increasing number of water
body grids in medium- and high-risk areas. However, due to the large raster area,
some rasters contain a variety of land use types, which may impact the changes in
risk. Some water body rasters located in low- and medium-risk areas contain a small
amount of forest land, cultivated land, construction land, and other land types, while
the risk of pollution in forest land and cropland tends to decrease, which may lead to
a reduction in the risk in the grid.

These research results demonstrate how different land uses affect the dynamic diffu-
sion process, which is crucial for rationally regulating the diffusion risk of urban surface
pollutants in the changing environment in the future.

Additionally, from the dynamic diffusion process of NPS pollution, we can know
that with the occurrence of extreme rainfall, surface pollutants migrate and diffuse to
a greater extent along with surface runoff, and the changes in the diffusion rate first
increase and then decrease. Considering that the total amount and intensity of rainfall
events greatly influence the spread of NPS pollution [25], there exists a positive correlation
between rainfall severity and the NPS pollution loss. The causes of the development of
the spatiotemporal distribution features of NPS pollution were also examined. Figure 3
illustrates that the rainfall intensity first increases and then decreases, and it reaches its
greatest value at 49 min. The NPS pollution diffusion state varies most before and after
50 min, coinciding with the rainfall intensity change process. That is to say, there is a
positive correlation between the change rate of NPS pollution spatial distribution and the
change rate of rainfall intensity.

It is important to note that our simulation did not incorporate the specific physico-
chemical properties of different contaminants, which could potentially affect their diffusion
rates and risks under extreme rainfall conditions. In future work, we plan to extend
our model to incorporate more detailed chemical processes, such as pollutant degrada-
tion, adsorption/desorption, and precipitation/dissolution, which could provide a more
comprehensive understanding of pollutant behavior in the water environment.

5. Conclusions
This study aims at the serious problem of NPS pollution during heavy rains. By

fusing the CA model and GIS technology, combined with an SW2D-GPU model, the study
systematically explores the migration and diffusion mechanism of urban NPS pollution
under extreme rainfall and its impact on land use changes, accurately detecting the changes
in pollution risk at each diffusion stage. The research results are as follows:

(i) Under extreme rainfall scenarios, the distribution status of NPS pollution becomes
more and more dispersed. The distribution area of high-risk and extremely high-risk
grids has increased, and the average pollution load and maximum pollution load of
high-risk areas increased greatly. The diffusion rate of NPS pollution is positively
correlated with rainfall intensity. The heavier the rainfall, the stronger the erosion of
pollutants, and the faster the pollution diffusion rate.
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(ii) Pollutant diffusion is significantly influenced by land use type: the pollution risk
in forest land and cropland is declining and the pollutant loss rate in forest land is
greater. The pollution load in waters continues to accumulate, and the pollution risk
continues to increase.

(iii) The pollution risk zoning results obtained through the simulation method in this paper
can provide targeted governance suggestions for urban storm and flood management.
This method can capture key areas of violent growth in pollution concentrations,
thereby effectively providing information to environmental management practitioners,
and helping to strengthen policy formulation in pollution control. At the same time,
the analysis of the responses of different land use types to non-point source pollution
under heavy rains can provide valuable insights for urban planning managers in
planning land use and avoiding environmental pollution.

Compared to previous research, this study realizes the refined simulation of NPS pol-
lution diffusion in areas where detailed data (such as actual monitoring data, river official
website data, road pipe network data, and so on) are missing, bridging the gap in scale se-
lection and model application, which were mostly employed in previous studies. However,
this study does not consider state changes of pollutants in water, nor does it characterize
the diffusion process of pollutants in a continuous manner. This will affect the accuracy
of the NPS pollution diffusion simulation results and requires further improvement in
future research.
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NPS Non-point source

SW2D-GPU
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L-THIA Long-Term Hydrologic Impact Assessment
SWAT Soil and Water Assessment Tool
WEPP Water Erosion Prediction Project
SWMM Storm Water Management Model
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