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Abstract: The impact of reduced human activity on air quality in seven major Chinese
cities was investigated by utilizing datasets of air pollutants and meteorological conditions
from 2016 to 2021. A Generalized Additive Model (GAM) was developed to predict air
quality during reduced-activity periods and rigorously validated against ground station
measurements, achieving an R? of 0.85-0.93. Predictions were compared to the observed
pollutant reductions (e.g., NO, declined by 34% in 2020 vs. 2019), confirming model
reliability. Transfer learning further refined the accuracy, reducing RMSE by 32—44%
across pollutants when benchmarked against real-world data. Notable NO, declines were
observed in Beijing (42%), Changchun (38%), and Wuhan (36%), primarily due to decreased
vehicular traffic and industrial activity. Despite occasional anomalies caused by localized
events such as fireworks (Beijing, February 2020) and agricultural burning (Changchun,
April 2020), our findings highlight the strong influence of human activity reductions on
urban air quality. These results offer valuable insights for designing long-term pollution
mitigation strategies and urban air quality policies.

Keywords: air quality prediction; generalized additive model; transfer learning; urban
pollution

1. Introduction

Air quality is crucial for human health, e.g., PMjq (particulate matter smaller than
10 microns) can penetrate deep into the lungs, causing respiratory issues, blood disor-
ders, and neurodevelopmental problems such as autism, attention deficit disorders, and
cognitive delays [1]. Moreover, air pollution negatively impacts cognitive function in the
elderly and is linked to higher mortality rates [2]. The economic costs of air pollution are
substantial, underscoring the importance of reducing pollution [3], especially in densely
populated urban areas. Long-term exposure to PM;y and nitrogen dioxide (NO,) signifi-
cantly increases human'’s susceptibility to respiratory virus [4] and leads to higher fatality
rates among infected individuals [5]. Additionally, emerging evidence suggests that viral
particles can be detected in outdoor particulate matter, raising concerns about transmission
routes [6]. While further investigations are necessary to fully understand these dynamics,
it is increasingly clear that air pollution plays a crucial role in both the transmission and
severity of respiratory infections.

During the winter and spring of 2020, most cities in China implemented lockdown
measures of various durations and strictness levels to combat the spread of a virus, which
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proved effective in significantly slowing the transmission of COVID-19 [7,8]. Concurrently,
the widespread adoption of reduced mobility prompted researchers to examine the poten-
tial benefits of pollution reduction, which is particularly pertinent in the context of global
warming, as these shifts in behavior and operations might offer a blueprint for reducing
pollution while maintaining the essential functions of cities and nations. The pandemic
inadvertently provided a unique opportunity to rethink and reimagine urban planning and
environmental policies for a more sustainable future [9,10].

Despite multiple studies that have estimated pollution reductions during lockdowns
across different countries [11-16], these results often aggregate differences to various base-
lines without modeling the relationships between air pollution, local weather conditions,
time variations, and land-use patterns [17]. On the other hand, the short duration of the
lockdowns resulted in a scarcity of representative data, complicating detailed analysis.
Moreover, the strict initial lockdown measures in many countries were only implemented
for a few weeks, making it difficult to establish effective models for the lockdown period.
Addressing these challenges will help accurately measure the reduction in local pollution
during the lockdown and understand its spatiotemporal variations, as well as predict-
ing how pollution patterns might change if lockdowns occur in different seasons or are
extended in duration.

Generalized Additive Models (GAMs) have been widely adopted in environmental
epidemiology and air quality forecasting due to their flexibility in handling non-linear
relationships between pollutants and meteorological factors [18,19]. For instance, Pearce
et al. [20] demonstrated GAM’s effectiveness in quantifying meteorology’s influence on
PM, 5 across Australian cities, achieving R? > 0.8 when validated against monitoring
stations. Similarly, transfer learning approaches [21] have proven valuable for adapting pre-
trained models to new scenarios with limited data, as shown by Bauwens et al. [22] in their
analysis of NO, reductions during European lockdowns using satellite-derived datasets.
Recent studies highlight the utility of these methods for policy-relevant analysis, which
enables disentangling anthropogenic impacts from meteorological variability—a critical
need identified by Venter et al. [14] in their global assessment of lockdown effects. Our
work extends these applications by integrating transfer learning to address data scarcity
during abrupt activity reductions, a methodological advance validated against ground
measurements from seven Chinese megacities. The choice of GAM was motivated by its
demonstrated success in handling log-normal pollutant distributions [23], accommodating
temporal autocorrelation via spline functions [18], and providing interpretable smooth
terms for policy design [19].

This study developed a predictive model (LD model) to analyze air quality during
periods of reduced human activity in Chinese cities with three specific objectives: (1) es-
tablishing a GAM-based pre-LD model using 20162019 historical weather and pollution
data, (2) employing transfer learning to adapt predictions for lockdown conditions through
parameter refinement, and (3) quantifying pollutant variations (NO,, CO, PMy() across
seven cities through comparison of model outputs with ground-station measurements.
The framework addresses key challenges in air quality analysis during atypical activity
reductions while maintaining model interpretability for policy applications.

2. Study Area and Datasets
2.1. Study Area

The study area encompasses seven Chinese cities: Beijing, Changchun, Chonggqing,
Guangzhou, Hangzhou, Wuhan, and Xiamen. Boasting substantial populations, high

levels of urbanization and robust economic prowess, these metropolises represent ma-
jor urban centers across different geographical regions and experience significant daily
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traffic volumes leading to motor vehicle emissions that impact local air quality. Notably,
Changchun is a prominent industrial hub in China where industrial emissions significantly
contribute to urban air pollution. The onset of stringent lockdown measures in early 2020
resulted in a marked reduction in traffic flow and industrial emissions across various
cities in China—providing an opportunity for our research endeavors. Consequently, these
seven cities were strategically selected as representatives for studying the influence of the
epidemic-induced lockdown on Chinese urban air quality.

2.2. Datasets

Training pre-LD and LD models utilized hourly datasets of air pollutants and mete-
orology conditions from 1 January 2016 to 31 December 2021 across the aforementioned
seven Chinese cities with one site designated per city. The lockdown period is from 23 Jan-
uary to 7 April 2020. Air pollutant data, encompassing NO, concentration (ug/m?), CO
concentration (ug/ m?), and PM; concentration (ug/ m?), as well as meteorological records,
including temperature T (°C), pressure P (hPa), relative humidity RH (%), wind direction
WD (°), and wind speed WS (m/s), were both sourced from the China Meteorological Data
Center.

3. Methods

To estimate air pollution levels in Chinese urbans unaffected by pandemic-related
lockdown measures, the pre-LD and LD models should be with high accuracy and robust
predictive power for data forecasting during the lockdown period, while also maintaining
a high level of interpretability. A more interpretable model facilitates better comprehension
of the impact of traffic patterns on air quality, enabling effective measures to mitigate air
pollution through adjustments in relevant traffic flows. Previous studies [18-20] have
demonstrated the success of GAM in predicting air pollution. Therefore, as illustrated
by Figure 1, this work adopted the GAM as the pre-lockdown module. Subsequently, a
transfer learning mechanism was employed for training the LD model. Given variations
in pollutant concentrations across different regions, certain parameters were adjusted and
optimized to enhance prediction accuracy.

‘Datetime and Weather
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Figure 1. Workflow for air quality analysis during lockdown periods. Station records, including

PMj9, NOy, and CO concentrations, along with datetime and weather variables, were input into the
pre-LD and LD phases.
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3.1. Pre-LD Model

Hastie et al. [24] expanded the application of additive models [25] to include the
Generalized Additive Model (GAM) as a versatile and flexible statistical tool for identifying
non-linear regression effects:

g(u) = s1(x1) +s2(x2) +53(x3) + -+ - +5p(xp) (1)

where y = E (Y|x1, Xp,X3,% ", xp) and s(-) represents a non-parametric smooth function
such as a smooth spline function, kernel function, or local regression smooth function. The
distribution of air pollutant concentration closely follows a lognormal distribution [23]. The
non-parametric nature of GAM provides significant flexibility to the model and facilitates
the elucidation of nonlinear effects arising from derived variables.

In the context of model selection, this study employs the forward selection method,
which has been utilized in related fields of environmental science with promising out-
comes [26]. The model incorporates two key indicators: the Akaike Information Criterion
(AIC) [27] and the Variance Inflation Factor (VIF) [28].

AIC serves as a standard for assessing the adequacy of statistical model fitting, which
is defined as follows:

AIC =2k —Inl )

where k is the number of model parameters, and I denotes the maximum value of the
model likelihood. A small k indicates a parsimonious model, whereas a large [ signifies
a precise model. AIC emphasizes the significance of data fitting while endeavoring to
mitigate overfitting. Consequently, the preferred model for consideration is the one with
the lowest AIC value.

VIF is a number that characterizes the degree of complex collinearity between obser-
vations of the independent variable as follows:

1

VIF= ——
1-R?

)

where R? marks the coefficient of determination for the regression analysis of the i-th
variable with all other explanatory variables. Multicollinearity is a linear or approximate
linear relationship between regression variables. The general criteria of VIF are: 0 < VIF <5,
no multicollinearity; 5 < VIF < 10, weak multicollinearity; 10 < VIF < 100, moderate or
strong multicollinearity; VIF > 100, severe multicollinearity. The VIF threshold is typically
set at 2.5 for processing meteorological data [29]. Thus, this study excluded variables with
VIF > 2.5.

For each explanatory variable, a GAM containing only one variable is fitted, and the
model with the lowest AIC was chosen. Subsequently, an iterative process was employed
to identify the next optimal variable to be added to the existing model. In order to accom-
modate the weekly variations in pollutants resulting from the pandemic lockdown, the
explanatory variable ‘weekday’ was artificially incorporated into cities where it had not
been selected.

3.2. LD Model

The pre-LD model (GAM) was trained using the pre-LD data. Tied to the limited
duration of the lockdown, it is unfeasible to employ the same GAM for training during
this period; hence, transfer learning [21] was employed. Given the consistent relationship
between weather conditions and air pollution, insights gained from studying how weather
impacts air pollution prior to the lockdown can be leveraged during this period. In
conducting experiments, it becomes imperative to adjust model variables, particularly with
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regard to the ‘weekday’ variable that signifies fluctuations in traffic intensity—a pivotal
factor influencing air pollution.

4. Results and Discussion
4.1. The Impact of Lockdown on Air Pollutants and Weather

As depicted by Figures 2—4, the concentrations of NO,, CO, and PMy in the seven
cities during the 2020 lockdown were consistently lower than those recorded during
the same period in 2019 [30,31]. While the dataset spans 2016-2021 and were used for
training and validating the predictive models, only the 2019-2020 period was visualized to
highlight year-over-year changes. Quantitatively, NO; levels declined by 42% in Beijing,
38% in Changchun, and 36% in Wuhan, while PM;( decreased by 25-35% across most
cities. CO concentrations also showed moderate reductions ranging from 10% to 20%. The
reduction highlights the significant impact of decreased human activities, such as reduced
vehicular traffic and industrial operations, on mitigating air pollution in Chinese urban
areas. Particularly, there was a significant reduction in NO; levels in Beijing, Changchun,
and Wuhan during the lockdown (Figure 3). NO; primarily originates from automobile
exhaust [32] and industrial emissions, and Beijing experienced prolonged and widespread
traffic congestion [33]. The substantial decrease in traffic volume during the lockdown
resulted in a marked decline of NO; levels. Changchun’s extensive industrial emissions
were notably reduced as a result of the lockdown measures, leading to a direct decrease
in nitrogen dioxide emissions. In comparison to other cities, Wuhan's stringent lockdown
measures significantly lowered its pollutant concentration.
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Figure 2. Measurement of CO in different cities across China from 1 January to 30 June in 2019 and
2020. Green zones show the activity-reduction period from 23 January to 7 April 2020.
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Figure 3. Same as Figure 2 but for NO,.
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Figure 4. Same as Figure 2 but for PMyg.

However, despite the overall decline in pollutant levels, there were notable exceptions.

For instance, a marked increase in pollutant concentrations was observed in Beijing in 2020
mid-February, with concentrations temporarily exceeding 250 yg/m?>. This anomaly can be
attributed to the extensive use of fireworks during the Spring Festival, which significantly
increased PM;g concentrations due to combustion-derived particulate emissions [34]. While
fireworks may minimally elevate other pollutants like NO, or SO,, their impact is negligible
compared to PMjg in this context. Furthermore, low wind speeds during this period
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exacerbated the situation by trapping pollutants close to the ground, further intensifying
air quality issues. Similarly, a significant rise in pollutant levels occurred in Changchun
in 2020 early April was attributed to the burning of agricultural straw in rural areas
surrounding the cities [35], which released substantial quantities of particulate matter and
other pollutants into the atmosphere. The reduction in pollution levels during the lockdown
provides a compelling argument for the potential long-term benefits of sustained reductions
in human activities. Nevertheless, the occasional spikes in pollutant concentrations during
specific events highlight the need for targeted air quality management strategies that
address both routine and exceptional situations of pollution.

To further assess the role of meteorological changes in influencing air quality patterns,
paired t-test was conducted for each variable across all cities (Figure 5), which reveals that
relative humidity (p < 0.01) and wind direction (p < 0.001) exhibited the most consistent
and statistically significant differences between 2019 and 2020. These two parameters likely
played dominant roles in modulating pollution levels, as consistent humidity and wind
direction in 2020 may have limited vertical mixing and horizontal dispersion of pollutants
during the lockdown period. Overall, a significant majority of cities experienced cooler
temperatures during the lockdown in 2020 compared to the same period in 2019. While
reduced human activity may have contributed to a weaker urban heat island effect [36],
pollutant concentrations are also strongly influenced by atmospheric stability and boundary
layer dynamics, which can vary unpredictably. Meteorological variables (temperature, pres-
sure, dew point, wind speed/direction) were measured at ground-level stations from the
China Meteorological Data Center (Section 2.2). Notably, the observed lower temperatures,
slower wind speeds, and higher air pressure in 2020 likely suppressed vertical mixing,
further inhibiting pollutant dispersion.
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Figure 5. Comparison of normalized meteorological variables between the activity-reduction period
in 2020 and the counterpart in 2019 across cities. * denotes statistically significant differences between
the two years under paired t-test: * for p < 0.05, ** for p < 0.01, *** for p < 0.001.
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4.2. Model Predictions

The pre-LD model’s predictions utilized data from training periods of 3, 6, 9, 12, 18,
and 24 months prior to the lockdown, with subsequent testing against the next month’s
data. As shown by Figure 6, the model’s performance improves with shorter training
durations, achieving optimal results when trained on 3 months of data. For example,
NO, RMSE in Beijing dropped from 19.78 ug/m?3 (24-month training) to 16.06 ug/m?3
(3-month training), while PMjy RMSE in Changchun decreased from 60.48 pg/m?3 to
42.77 ug/m?3. This indicates that a shorter training period allows the model to better capture
complex temporal patterns, enhancing predictive accuracy. However, the increased RMSE
of PMj in Beijing, despite extended training, can be attributed to the frequent occurrence
of sand and haze weather, leading to extreme PM;q values prior to the lockdown [37].
The inclusion of these extreme values during the extended training period influenced the
model’s accuracy. Table 1 further reveals that the choice of training duration substantially
influenced the model performance across different cities and pollutants. One-way ANOVA
results demonstrate statistically significant differences in RMSE values for several pollutant—
city pairs, underscoring the critical role of temporal sampling in model calibration. Notably,
cities such as Chongging and Xiamen exhibited high sensitivity in CO prediction accuracy
across training lengths, suggesting that areas with various emission patterns may benefit
from extended training periods. These findings emphasize the need to tailor model training
strategies based on local pollutant characteristics and temporal dynamics, which can
enhance the robustness and generalizability of predictive frameworks under varying
environmental conditions.
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Train Length [months]

Figure 6. Performance of the pre-LD model depending on training data with different lengths.

Overall, training on 24 months of data generally provided better outcomes, as it
offered a richer context for predicting future conditions. This is consistent with the state-
ment that extended training periods promote model performance by incorporating more
comprehensive historical data [38].

Due to the scarcity of data during the lockdown period, only three consecutive days
of data were used as the test set in the experiment, and the remaining data during the
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lockdown were used to train the LD model. Table 2 provides a summarized performance
of pre-LD and LD models in predicting air pollutant concentrations (NO,, CO, and PMy)
across seven cities. The LD model outperformed the pre-LD model in nearly all cases,
particularly for NO, and PM;. For example, in Wuhan, the LD model reduced RMSE from
21.87 yg/m3 (pre-LD) to 9.03 ;4g/m3 for NO,, and from 36.13 yg/m3 to 24.20 yg/m3 for
PM;y. Among the seven cities, Xiamen's coastal location, high temperatures, strong wind
speeds, and open terrain promote the dispersion of air pollutants. The city also experiences
low industrial emissions and maintains smooth traffic year-round. Consequently, Xiamen’s
air quality remains generally high on non-lockdown days [39]. As a result, the level of air
pollution blocked by the epidemic decreased less than usual, and the predictions of the
pre-LD and LD models are more accurate than those of the other six cities. Generally, the
RMSE of CO exhibits a significantly lower value against the ones of the other two pollutants
and there was an average reduction of 14% for CO, 34% for NO,, and 28% for PM; across
the seven cities when comparing 2020 lockdown data to 2019 baseline measurements. In
contrast to the pre-LD model, the LD one estimated a reduction of 44%, 32%, and 30%
in the average RMSE for NO,, CO, and PM; predictions in the seven cities, respectively,
validating the effectiveness of transfer learning in low-data scenarios.

Similarly, Figures 7-9 support this behavior, proving that the LD model predicted more
accurately than the pre-LD model. The discrepancy between the predicted and the actual
values is notably reduced with the LD model, indicating enhanced predictive accuracy. This
improved performance can be attributed to the transfer learning that is crucial for enhancing
prediction accuracy. However, Figure 7 reveals a significant increase in CO concentrations
during the 2020 winter in Beijing and Changchun, leading to considerable deviations
between the LD model’s predictions and actual observed values. This discrepancy is likely
because of higher CO emissions resulting from increased heating activities in northern cities
during the winter [36,40]. Moreover, pollution levels were generally higher in 2019 than
2020, which can be explained by the higher emissions of air pollutants resulting from much
larger traffic volumes prior to the lockdown in the seven cities. In contrast, the lockdown
period, with its restrictions on movement and reduced industrial activity, contributed to a
significant improvement in overall air quality.

Table 3 presents the agreement between the LD model-predicted NO, reduction and
the measurements from satellite images. The model’s predictions fall within a reasonable
range, with those for Beijing (—35% vs. —25% and —33%, respectively) and Wuhan (—47%
vs. —43% and —57%) aligning closely with observations from both satellites. Moderate
deviations were observed in Chongqing and Guangzhou but the estimates remained within
the uncertainty ranges of satellite products. This validation against independent data
sources affirms the robustness of our modeling framework and highlights its applicability
for real-time or retrospective air quality assessments when ground-based data are limited.
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Table 1. Mean training RMSE of the three pollutants across training lengths for all cities. * marks statistically significant differences among durations based on
one-way ANOVA: * for p < 0.05, ** for p < 0.01, *** for p < 0.001.

Duration Beijing Changchun Chongqing Guangzhou Hangzhou Wuhan Xiamen
(Monthel €O Top Ml 0 T Mo 220 T2 T cor N2 e 0N pmp co N2 TMe 520 N2 MM
3 039 1606 5294 029 1481 4277  0.18 1366 2146 017 1582 19.13  0.19 1434 2975 028 19.78 2811 013 11.19 1562
042 1729 59.02 032 1528 4787 020 1439 2475  0.20 1652 2069 021 1518 3294 031 20.88 31.66 0.15 1197  17.45
9 044 1816 6293 0.33 15.61 50.03 0.21 1478 2620 0.21 17.07 21.70  0.23 1549 3425 033 2130 3404 015 12.37  18.59
12 046 1886 7276 034 1574 50.14 021 15.16 2735 0.21 1759 2253  0.23 1592 3480 034 2203 3677 016 12.64 1947
18 048 1927 8134 035 16.05 5074  0.23 1580 2976  0.21 1876 2387  0.23 1644 3544 033 2322 41.02 0.16 1332  21.24
24 050 1978 8590 038 1672 6048 024 16.03 3172  0.21 19.72 2495  0.24 16.83 3626 034 2400 4520 016 1429 2231

Table 2. Performances of the pre-LD and LD model in 10-fold cross-validation.
Beijing Changchun Chongqing Guangzhou Hangzhou Wuhan Xiamen

Model Measure -5 NO, pM;, CO NO, PMj; CO NO, PMy, CO NO, PM;; CO NO, PMj; CO NO, PMj, CO NO, PMyg

RMSE
Iirg [ng/md]
n-RMSE  0.046 0073 0.011 0034 0.063 0008 0022 0060 0.004 0020 0071 0.004 0023 0063 0005 0.033 008 0006 0.0150.051 0.003

RMSE
[ng/m3]

044 1824 69.15 034 1570 5034 021 1497 2687 020 1758 2214 022 1570 3391 032 2187 36.13 0.15 12.63 19.11

LD 041 9.07 4045 022 740 4229 014 816 2002 010 1023 1628 013 11.19 1896 0.19 9.03 2420 0.12 866 14.58
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Table 3. Estimated and satellite-observed NO, reduction in Beijing, Chongqing, Guangzhou,
and Wuhan.

Chongqing Guangzhou

Estimators Beijing [%] (%] (%] Wuhan [%]
LD -35 —18 -17 —47

TROPOMI [22] —25 (£10) —43 (£14) —30 (£14) —43 (£14)

OMI [22] —33 (£10) —11 (£32) —56 (£8) —57 (£14)

5. Conclusions

This study evaluated the impact of reduced human activity on urban air quality
across seven major Chinese cities during the COVID-19 lockdown period via a modeling
framework that combined GAM and transfer learning. The findings show that, compared
to the same period in 2019, concentrations of NO,, CO, and PM;g declined by an average
of 34%, 14%, and 28%, respectively, during the 2020 lockdown. The most substantial
reductions in NO, were observed in Beijing (—42%), Changchun (—38%), and Wuhan
(—36%), largely due to decreased vehicular traffic and industrial activity.

Model performance improved with decreased training duration, with RMSE decreas-
ing by up to 50% when models were trained on 3 months of historical data. Transfer
learning significantly enhanced the prediction accuracy under limited-data conditions,
with RMSE reductions of 44% for NO,, 32% for CO, and 30% for PM; across all the cities.
These results were validated against satellite observations, showing close agreement and
confirming the robustness of the modeling framework.

This study demonstrates the value of combining interpretable statistical models with
transfer learning to predict urban air quality under abrupt activity changes. The insights
are directly relevant to environmental policy, showing that substantial improvements in
air quality can be achieved through targeted reductions in anthropogenic emissions. The
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modeling approach also offers a transferable methodology for assessing future emission-
control strategies under both planned and unexpected disruptions.
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