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Abstract: Soil pollution with cadmium (Cd) poses serious health and environmental consequences.
The study investigated the incubation of several soil samples and conducted quantitative soil char-
acterization to assess the influence of biochar (BC) on Cd adsorption. The aim was to develop
predictive models for Cd concentrations using statistical and modeling approaches dependent on soil
characteristics. The potential risk linked to the transformation and immobilization of Cd adsorption
by BC in the soil could be conservatively assessed by pH, clay, cation exchange capacity, organic
carbon, and electrical conductivity. In this study, Long Short-Term Memory (LSTM), Bidirectional
Gated Recurrent Unit (BiGRU), and 5-layer CNN Convolutional Neural Networks (CNNs) were
applied for risk assessments to establish a framework for evaluating Cd risk in BC amended soils to
predict Cd transformation. In the case of control soils (CK), the BiGRU model showed commendable
performance, with an R2 value of 0.85, indicating an approximate 85.37% variance in the actual Cd.
The LSTM model, which incorporates sequence data, produced less accurate results ( R2 = 0.84

)
,

while the 5-layer CNN model had an R2 value of 0.91, indicating that the CNN model could account
for over 91% of the variation in actual Cd levels. In the case of BC-applied soils, the BiGRU model
demonstrated a strong correlation between predicted and actual values with R2 (0.93), indicating
that the model explained 93.21% of the variance in Cd concentrations. Similarly, the LSTM model
showed a notable increase in performance with BC-treated soil data. The R2 value for this model
stands at a robust R2 (0.94), reflecting its enhanced ability to predict Cd levels with BC incorporation.
Outperforming both recurrent models, the 5-layer CNN model attained the highest precision with an
R2 value of 0.95, suggesting that 95.58% of the variance in the actual Cd data can be explained by
the CNN model’s predictions in BC-amended soils. Consequently, this study suggests developing
ecological soil remediation strategies that can effectively manage heavy metal pollution in soils for
environmental sustainability.
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1. Introduction

Natural and synthetic processes release heavy metals (HMs) into the environment,
including volcanic eruptions, weathering, wastewater irrigation, sewage sludge disposal,
smelting, and pesticide application [1,2]. Furthermore, ingestion and inhalation absorption
are the main routes by which HMs can accumulate in the human body [3]. The soil–crop
system provides an additional route by which HMs can accumulate in humans [4–6]. In
organisms, Cd can accumulate for 50 years, and its half-life is 10 to 30 years. According
to a 2019 Environmental Protection Agency (EPA) report, Cd and its compounds were
considered hazardous metals and toxic water pollutants [7]. Approximately 7.0% of the soils
of China was found to contain excess Cd, which ranked first among inorganic pollutants [8].

The physiochemical composition and texture of soil determine its quality and pro-
duction [9]. These characteristics form the foundation of the natural environment and
crops [10]. HM pollution is a significant by-product of industrialization in various countries
worldwide [11]. China’s rapid industrialization has inevitably produced similar problems,
and governments at all levels are committed to remediating HM-contaminated soils [12].
In addition to microbial activity, organic matter can contribute to the immobilization of Cd
through precipitation and complexation processes in soil [13,14]. Standard methods used
for HM analysis include ultraviolet-visible spectrophotometry, gas chromatography–mass
spectrometry, inductively coupled plasma emission spectrometry, and atomic fluorescence
spectrometry [15]. While these technologies possess high sensitivity and accuracy, their
short detection range, labor-intensive and time-consuming detection techniques, and com-
plex preparation of samples contribute to their being unsuitable for quick, non-intrusive,
and batching testing [16,17].

In recent years, artificial intelligence (AI) deep learning approaches have conquered
the limitations of conventional diagnosing methods [18]. Such approaches improve effi-
ciency and adaptability by reducing the amount of initial processing and incorporating the
required extract [19]. Deep learning is a hierarchical structure that uses machine learning
techniques to identify and collect significant characteristics [20]. It improves its perfor-
mance via training, resulting in high precision. Statistical and CNN approaches estimate
tangible qualities from the input [21]. Among the emerging soil amendment materials
in recent years, BC has been regarded as one of the most effective [22]. Several studies
have demonstrated that BC, a charcoal derived from organic matter, is highly effective as
an adsorbent for Cd in soil [23]. It has been found that clay minerals and organic matter
in soil can enhance BC’s performance in the adsorption of Cd [24]. Consequently, clay
minerals and organic matter increase the soil’s surface area. This leads to an increase in
the surface area accessible for the adsorption of Cd and facilitates the elimination of Cd
from the soil [25]. The highly porous structure of BC increases the surface area [26], which
could contribute to the adsorption of Cd through increased adsorption sites and surface
complexation [27]. Due to ion exchange sites in clay minerals and organic matter, Cd cannot
leach into groundwater or be absorbed by plants [28].

BC can impact the adsorption of Cd through the processes of chemical bonding, pH
modification, and microbial activity, resulting in the formation of less toxic forms [29].
Learning complicated representations at different levels of abstraction is made possible
by layer-wise layering of several nonlinear and linear computational modules [30]. Re-
searchers have developed predictive algorithms that minimize errors in prediction versus
experimental data for evaluating substance qualities [31]. Learning algorithms are devel-
oped using marked or unmarked data, or mixtures of data, to generate artificial intelligence
algorithms. Data scientists utilize several machine-learning techniques for categorization
and predictive modeling [32,33]. However, using quantitative analysis techniques to char-
acterize soil’s properties and BC’s influence on Cd adsorption using advanced prediction
methods is still unclear. Given the above problems, there is still a lack of quantitative
and general guiding research, which limits the precise application of BC in improving
HM-contaminated soil using advanced prediction models.
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To assess soil sensitivity, the research assembled representative soil samples across
the country with an extensive range of physicochemical properties. The present study
assessed the potential of Cd bioaccumulation in soils to evaluate the efficacy of several
prediction models, including LSTM, BiGRU, and 5-layer CNN, for risk assessments. The
objective was to provide an analytical approach to evaluating the impact of BC addition on
Cd retention in soil characteristics, including pH, OC, CEC, EC, clay, and P. Additionally,
AI algorithms were used to estimate the initial basic associations of soil parameters to
enhance prediction models for BC-Cd soils and explore the contributing factors of Cd
immobilization in soils. The analytical methodologies used in this investigation consisted
of internationally recognized standards and innovative technologies that have emerged in
recent years.

2. Materials and Methods
2.1. Soil Samples Description

This study was intended to select 44 soil samples from different areas of China (Ta-
ble S1). The soil samples were collected from the upper layer of about 20 cm of the soil
profile and brought to the Guangdong Academy of Agricultural Sciences. A composite
sample was formed by thoroughly blending and homogenizing each subsample. After
air-drying, a 2 mm sieve was used to collect debris from the composite soil sample [34].

2.2. Biochar Preparation

Rice straw biomass was purchased from the local commercial market and washed with
distilled water (10–15 s) to remove dust particles. Subsequently, biomass was air-dried at
room temperature and then oven-dried overnight with a constant hot air supply at 105 ◦C
to remove moisture, after which it was mechanically ground. Rice straw BC at 450 ◦C was
prepared with a retention time of 2 h. Afterward, it was cooled and passed through a 1 mm
sieve [35]. The basic properties of BC are given in Table S2.

2.3. Incubation Experiment

An incubation experiment was conducted to evaluate the physicochemical character-
istics of the soil by adding BC to enhance the adsorption of Cd. The significance of soil
parameters and the sensitivity of BC-Cd adsorption were examined in various types of
soils. Analytical-grade chemicals were employed. All chemical reagents were purchased
from Sigma-Aldrich (Shanghai, China) and Sinopharm Chemical Reagent Company Ltd.,
Shanghai, China. De-ionized water (ultrapure) was used. Cd-contaminated soils were
prepared artificially with Cd (NO3)2 (purity of 99.9%) aqueous solution (1000 mg/L). The
purpose of soil spiking was to achieve a target concentration of about 3.3 mg/kg. The
spiked soils were kept for 15 days to equilibrate Cd-contaminated soils. Afterwards, BC
amendment was applied to soil at a rate of 1% (w/w). The moisture was maintained at
60–70%. The total duration of this experiment was 45 days. Before and after the incubation
experiment’s completion, soil physicochemical analysis, which evaluated the pH (1:2.5
(w/v)) using Mettler Toledo (Chengdu, China, model: Seven Compact 8210); the OC using
the volumetric method (titration and colorimetric) by [36]; the EC (1:2.5 (w/v)) using FOSS
(model: TFS/YS-203) from Shanghai Hongyi Instrumentation Co., Ltd. (Shanghai, China);
CEC using the ammonium acetate extracts method; and the total Cd (mg/kg) using Agilent
Technologies (Chengdu, China) model: 7800 ICP-MS (inductively coupled plasma mass
spectrometry), as well as tri acids (HNO3:H2SO4:HClO4) [2]. For soil texture, 40 mL of 1%
sodium hexametaphosphate was applied to the soil (40 g). After waiting overnight, the
soil was shifted to a dispersion cup (mechanical stirrer). The reading was taken using a
Bouyoucos hydrometer. The texture of the soil was evaluated using the textural triangle.
For diethylenetriaminepentaacetic acid (DPTA) analysis, the soil (8 g) was weighed, and
an extraction solution of 16 mL of DTPA (pH 7.3) was added. After 60 min of shaking, the
sample was filtered, and Cd was measured using ICP-MS [37].



Toxics 2024, 12, 535 4 of 17

2.4. Proposed Machine Learning Methods
2.4.1. LSTM Model

LSTM models are specialized recurrent neural networks (RNN) capable of learning
long-term dependencies in sequence data (Figure 1). Unlike standard feedforward neural
networks, LSTMs have feedback connections that make them powerful for processing
single data points and entire data sequences. A key feature of LSTM units is their ability to
remember information for long periods, which is achieved through a complex mechanism
of gates, including input, forget, and output gates. These gates effectively allow the network
to add information to or remove it from the cell state, which is carefully regulated to prevent
the vanishing gradient problem often encountered in traditional RNNs. LSTMs are widely
used in various applications, such as time series prediction, natural language processing,
and sequence generation tasks [38].
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Figure 1. Long Short-Term Memory (LSTM).

The LSTM model was applied to estimate the concentration of Cd (mg/kg) with
various soil properties as input parameters. These properties included sand%, clay%, silt%,
EC measured in µS/cm, pH, OC content in g/kg, CEC in cmol+/kg, and available P in
mg/kg. The choice of LSTM for this task leverages its ability to process and learn from
the sequential or structured nature of the input data, even though soil parameters are
not sequential in the traditional sense. The model evaluated complex relationships and
interactions between these soil properties to predict the Cd levels accurately. The sequential
examination of various soil properties using LSTM has the potential to reveal patterns of
Cd availability that are essential to environmental monitoring and agriculture. The LSTM’s
architecture, including its memory cells and gates, can effectively learn from the intricacies
of soil data, providing a powerful tool for predicting the HM contamination in soils.

2.4.2. BiGRU Model

In this research, BiGRU networks were employed to estimate Cd concentration based
on a set of soil parameters. Figure 2 presents the block diagram of BiGRU. BiGRU models,
an advancement of traditional GRU networks, process data in both forward and backward
directions, allowing them to capture dependencies and patterns that might be missed
when data are processed in a single direction. This dual-direction processing is particularly
beneficial for understanding the complex interactions between soil properties and their
impact on Cd availability. The study’s utilization of BiGRU networks enhanced the effi-
ciency of parameterization and increased the ability to simulate the spatial and temporal
relationships between BC-amended soils and Cd. Unlike LSTMs, GRUs simplify the gating
mechanism without compromising the model’s ability to manage long-term dependen-
cies. The bidirectional nature of BiGRUs offers a comprehensive perspective on the data,
ensuring that the temporal dynamics and interdependencies of soil characteristics are
thoroughly analyzed. This methodological approach underscores the potential of BiGRU
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models in environmental sciences, particularly for predicting HM concentrations in soils,
thus providing valuable insights for soil management and remediation strategies. The
use of BiGRU models highlights the innovative application of deep learning techniques in
tackling complex environmental challenges [39].
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2.4.3. 5-Layer CNN

This study also explored CNN use by integrating a 5-layer CNN model equipped with
max-pooling and fully connected (FC) layers. CNNs, known for image processing and
machine learning, can computationally and adaptively learn spatial feature frameworks
from the input for the purpose of analyzing complex, multivariate environmental data. The
structure of the employed CNN model comprises five convolutional layers, each followed
by a max pooling layer. Convolutional layers act as feature extractors from the input data,
using learnable filters to identify and capture patterns such as edges, textures, or more
complex features in deeper layers. After each convolutional operation, max-pooling layers
are applied to reduce the dimensionality of the feature maps. This operation helps to make
the representation smaller and more manageable and introduces translational invariance to
the features, making the model more robust. The sequence of the convolutional and max
pooling layers is designed to progressively refine the feature maps, ensuring that only the
most relevant spatial features are retained and highlighted. A fully connected (FC) layer
incorporates high-level, filtered data into the prediction model after decoding and merging
layers are applied. The FC layer serves as a classifier, mapping the learned features to the
output, which in this case is the estimated concentration of Cd [40].

Figure 3 shows the structure of the 5-layer CNN model. Applying a 5-layer CNN
model to estimate Cd concentrations from soil parameters is innovative, as it transfers
profound learning principles from their conventional domains to environmental science.
By adapting CNN architectures, known for their efficiency in handling spatial data, to
analyze and learn from soil property data, this study opens new pathways for advanced
soil contamination analysis. The CNN model’s ability to discern intricate patterns within
complex datasets could provide more accurate and reliable predictions of HM contam-
ination, offering significant contributions to environmental monitoring and soil health
assessment strategies.
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2.5. Statistical Analysis

All data, including the soil’s physiochemical and amendment parameters, were de-
rived from replications. A significance level of p < 0.05 was established for the descriptive
data using a 95% confidence interval. The tables and graphical representation were gen-
erated using Sigma Plot 15.0, Microsoft Excel 2021, and Origin Pro 8.5. The experimental
simulation for this study used AMD CPU Ryzen R7-4800H, along with an NVIDIA GeForce
RTX 2060 6 GB GPU operating on Windows 10. The neural network model was developed
using Python 3.8 and implemented using the Keras framework, with TensorFlow-GPU
serving as the backend for deep learning computations.

3. Results and Discussion
3.1. Effect of the Amendment on Incubation Soil Physiochemical Characteristics Relates to
Cd Concentrations

BC can immobilize HMs in soils, potentially aiding in the remediation of contaminated
soils [41]. Solubility in the soil is attributed to precipitating, redox reactions, formation of
complexes, and adsorption processes, which are facilitated by binding HMs to soil compo-
nents and minerals [26]. The effect of BC additives on the physiochemical characteristics of
incubated soils and Cd availability are detailed below.

3.1.1. Soil pH Affects Cd Availability

The influence of applied BC on soil pH and Cd availability is given in Figure 4a. Soil
pH was divided into three categories: (i) pH < 6.25, (ii) pH 6.25–7.75, and (iii) pH > 7.75.
According to Figure 4a, the results indicated that the concentrations of available Cd were
decreased in applied BC soils in all three categories of pH as compared to the control. The
results revealed that applied amendment significantly decreased Cd availability in soils
pH > 7.75 compared to pH < 6.25 and pH 6.25–7.75. Meanwhile, Figure 4a depicts that
the highest Cd availability among control soils was observed at pH < 6.25. BC can alter
several soil physicochemical properties owing to its varied composition and biodiversity
activities [42]. BC usually has a pH range of 7–10, indicating an alkaline nature. BC
is generated due to the pyrolysis of biomass, which has a higher pH than the original
biomass [43]. Decontamination of HMs involves surface functional groups consisting
of oxygen and the formation of complexes with BC, including electrostatic interactions,
exchange of ions, and precipitation of chemicals [44]. Carbon sources, the formation of
minerals, hydroxyl ion generation, and basic cation discharge may all be attributed to
an increase in pH due to organic matter [10]. Reducing soil acidity and decelerating soil
acidification are essential for preventing Cd accumulation in soil systems. Enhancing the
buffering ability of soil pH can efficiently inhibit the process of soil acidification, diminish
the concentration of accessible HMs in acidic soils, and hinder the soil–plant system
absorption of HMs [45,46].
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3.1.2. Changing Soil Organic Carbon Affects Cd Availability

A comparison of BC amended and un-amended soils on organic carbon (OC) and
Cd availability is given in Figure 4b. All incubated soils (amended and un-amended)
were divided into three categories based on different ranges, such as low (OC < 7.5 g/kg),
medium (OC 7.5–15 g/kg), and high (OC > 15 g/kg). The findings showed that adding
BC to all soil samples significantly reduced the availability of Cd compared to the control.
According to the findings, the lowest Cd availability was found in the OC (<7.5 g/kg) range
of BC-amended soils compared to the control. The result indicated that the inclusion of BC
systematically decreases the concentration of Cd in soils at each OC level compared to CK
soils. BC minerals or surface groups illustrate inorganic components that mainly contribute
to the adsorption of Cd. The findings indicated that the presence of BC can reduce the
availability of Cd by binding to it or influencing the characteristics of the soil, thereby
mitigating the impact of organic material solely on Cd mobility in the soil. The results
demonstrated that using BC may enhance soil carbon sequestration and nutrient retention.
It was shown that BC substantially increased the organic matter content, which was
indirectly linked to changes in residual Cd concentration [47]. Organic matter is a significant
component of soil fertility, providing nutrients for sustainable agriculture to maintain soil
fertility. The OC level in the soil is essential for retaining nutrients and water, strengthening
the soil structure, and supplying energy to soil microorganisms [48]. BC enhances soil
fertility through the following mechanisms: retention of fertilizers, stimulation of microbial
activity, carbon dioxide emission reduction, and immobilization of organic and inorganic
pollutants [49]. The extensive integration of BC into soils would inevitably impact the
increase in the quantity and composition of soil OC [50]. The effective sorption of HMs
in contaminated effluents and soils has been associated with BC, which can potentially
eradicate environmental contamination on a global scale [51].
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BC possesses a substantial quantity of organic carbon, making it an exceptional asset in
soil particle aggregation. Soil pollutants were immobilized by modifying soil physicochem-
ical qualities, including carbon sequestration and fertility, with BC applied to the polluted
soil [52]. The high area-to-volume ratio of these plants contributes to soil structure, porosity,
water-holding capacity, aeration, nutrient availability, and buffering soil pH [53]. Moreover,
they can retain plant nutrients, such as calcium, potassium, and phosphorus, reducing
leaching [54]. Organic matter increases soil structure, porosity, and water-holding capacity,
contributing significantly to climate change mitigation and carbon sequestration [55,56].
By providing nutrients to the soil, it promotes nutrient cycling through the action of soil
microorganisms and serves as a source of nutrients. Additionally, it decomposes into stable
aggregates that support soil structure, which supports soil porosity and improves soil
structure [57].

3.1.3. Soils EC Affects Cd Availability

The comparison of amended and un-amended soil EC (µS/cm) and Cd availability is
shown in Figure 4c. EC (µS/cm) was divided into three different ranges: (i) EC < 75 µS/cm;
(ii) EC 75–125 µS/cm; and (iii) EC > 125 µS/cm. Soil ecosystems are intricate, and the
impact of added BC on soil EC-Cd availability can fluctuate based on various variables,
including ecological factors, BC quantity, Cd concentration, and the characteristics of the
soil. Figure 4c illustrates a particular set of scenarios in which the availability of Cd is
substantially influenced by the increase in BC-added soil EC, but only in comparison to
CK soils. The lowest Cd availability was found in EC (75–125 µS/cm) in BC-amended soil
compared to the control. However, the results indicated that all unamended soils increased
Cd availability with an increase in the EC range. EC is an indication of soil properties and
also shows the soil water’s electrical carrying capacity. The low EC levels indicate limited
nutrient availability and organic matter concentration. This finding further confirms the
consistent relationship between the variance in BC and EC contents and the effect of Cd
availability. The EC of soils has been shown to have a strong link with the movement of
metals inside the soil. Soil salinization and acidity are prevalent and substantially affect
Cd availability in soil systems [58,59]. BC played a crucial role in lowering the presence of
Cd in the polluted soil. It achieved this by raising the soil’s pH, OC, EC, and P availability.
Additionally, BC reduced the amount of Cd that can be easily exchanged in the soil by
changing it into less accessible forms. As a result, there was a considerable decrease in
Cd levels [60,61]. Excessive EC showed excess saline and inadequate nutrients, inhibiting
development and appropriate plant growth. This may lead to soil–plant toxicity. As
measured by EC, the ideal range for soil–plant nutrients is 0.2–1.2 (dS/m). However,
adding BC may enhance soil EC due to the substantial amount of dissolved salts it contains.
Recent research has shown that BC can increase the EC in soil [62].

3.1.4. Changing Soil CEC Affects Cd Availability

A comparison of the effects of amended and un-amended soil CEC on Cd availability
is presented in Figure 4d. Soil CEC (cmol+/kg) was also divided into 3 different ranges
(i) CEC < 12 cmol+/kg; (ii) CEC 12–24 cmol+/kg; and (iii) CEC > 24 cmol+/kg. The results
revealed that Cd availability decreased and was observed in all amended soils. The findings
indicated that BC amendment significantly reduced Cd availability in soils compared to the
control. The results showed that CEC indirectly correlated with Cd availability compared
to the control. Application of BC led to enhancements in soil characteristics and resulted
in the transformation of the Cd in the soil into more stable portions [63,64]. The rise in
CEC may have led to the soil producing significant quantities of quinones, phenols, and
carbonyls, thus resulting in greater adsorption of Cd [65,66].

The efficacy of immobilization is affected by several processes and circumstances,
including precipitation, electrostatic contact, cation exchange, and complexation with func-
tional groups [67,68]. A high CEC and a high adsorption capacity are both characteristics
of BC which may have either negative or positive charges on its interface. The application
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of BC to enhance soil CEC resulted in a reduction in Cd through ion exchange and more
efficient complexation adsorption into the soil [69]. Because soil clay particles assimilated
more Cd as the CEC increases, the accessible Cd level in the soil was reduced signifi-
cantly [70]. BC-amended soil exhibited an increase in CEC, which was dependent on the
OC and clay along the surface area and electronegativity for ion adsorption sites capable
of immobilizing Cd [71]. CEC was the most critical parameter significantly impacting Cd
bioavailability and fractionation in soil [72].

3.1.5. Effect of Soil Clay on Cd Availability

A comparison of amended and un-amended soil clay on Cd availability is shown in
Figure 5. Soil clay was divided into three different categories: clay < 20%, clay 20–40%,
and clay > 40%. According to Figure 5, the results showed that the BC amendment
significantly decreased Cd availability compared to the control. The lowest Cd availability
(almost 40–60% reduction) was found in high-clay-content, BC-amended soil compared
to the control. However, the results indicated that all unamended soils had increased Cd
availability along with the increased clay content. Minerals such as clay are formed from
various elements, such as aluminum, silica, iron, etc. [73]. This finding further confirms
the synergic relationship between BC and soil clay content compared to the control. The
results revealed that soil clay was shown to have a strong link with the movement of Cd
availability in the soil. The finding indicated that soil clay’s direct relationship with Cd
availability and applied BC led to enhancements in soil characteristics and resulted in the
immobilization of Cd in the soil. BC also reduced Cd availability by increasing pH, which
increased the clay mineral surface negative charges and Cd ion adsorption [24]. Adding
BC to medium or coarse-textured soils may improve the consistency of aggregate size and
cationic retention.
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Clay minerals and organic matter are critical components of soil that significantly
impact the soil’s health, plant growth, and environmental sustainability [74,75]. Alumina,
silica, and other elements constitute earth crust clays, and these soil metal sorbents reduce
metal bioavailability [74]. Clay minerals’ exchangeable cations and anions contribute
to their efficient contamination mitigation tools. Clays, which are negatively charged,
absorb metal from soil solutions. Clay minerals use ion exchange, complexation, and direct
bonding to absorb HMs [75]. Natural clay minerals have a strongly negatively charged
layer to absorb cations. Minerals’ hydroxyl groups adsorb or combine HM to reduce its
availability. In soil profiles, this adsorption reduces HM leaching. HM contaminants in
soil have been successfully fixed in situ via adsorption and the formation of low-solubility
HM precipitates using organic materials, including BC, clay minerals, and functional
adsorbents [76]. Its considerable ecological and agronomic advantages render BC a highly
prospective soil remediation agent, which has led to its widespread acceptance as a soil
amendment.

3.2. Machine Learning-Based Soil Cd Concentration Prediction Models

The key goal of this research was to obtain representative soil samples from different
regions of the country, each with distinct physical and chemical characteristics, to investi-
gate the response of soils to the inclusion of BC and establish a prediction framework for
the transformation and immobilization of Cd. The comprehensive analysis of the predictive
modeling approaches was employed to estimate the concentration of Cd in soil based on
an extensive dataset encompassing a wide array of soil properties, including sand%, clay%,
silt%, EC, pH, OC, CEC, and available P. The significance of this study is underpinned by
the environmental and agricultural importance of accurately assessing Cd levels in soils,
given Cd’s known adverse effects on plant growth, soil health, and, ultimately, food safety.
Cd is a considerable environmental concern due to its persistence and bioaccumulation in
ecosystems, making its estimation in agricultural soils crucial for ensuring crop safety and
ecological health.

The LSTM model was used to estimate the concentration of Cd from soil properties
like sand%, clay%, silt%, EC, pH, OC content, CEC, and available P. The model learned
from the sequential nature of input data, evaluating complex relationships between soil
properties to predict Cd levels accurately. This sequential examination of soil properties
can reveal patterns of Cd availability that are essential for environmental monitoring and
agriculture. The LSTM’s architecture, including memory cells and gates, can effectively
learn from soil data, making it a powerful tool for predicting HM contamination in soils.
The research utilized BiGRU networks to estimate the concentration of Cd in soil param-
eters. BiGRU models process data in both forward and backward directions, capturing
dependencies and patterns that might be missed when processed in a single direction.
This dual-direction processing helps us to understand complex interactions between soil
properties and their impact on Cd availability. BiGRU networks enhance parameterization
efficiency and simulate spatial and temporal relationships between BC-amended soils and
Cd. This methodological approach highlights the potential of BiGRU models in environ-
mental sciences, particularly for predicting HM concentrations in soils, providing valuable
insights for soil management and remediation strategies. The study used a 5-layer CNN
model, which included max-pooling layers and a fully connected layer, to analyze complex
environmental data. The model consisted of five convolutional layers, each with a max
pooling layer, which extracted patterns from the input data. The model’s sequence refined
the feature maps, ensuring that only relevant spatial features were retained. The fully
connected layer incorporated high-level, filtered data into the prediction model, mapping
learned features to the output, such as the estimated concentration of Cd in soil param-
eters. This innovative approach could contribute to environmental monitoring and soil
health assessment strategies. The correlation heatmap was generated based on the dataset
(Figures 6 and 7). It provides a visual summary of the distributions of the soil proper-
ties and illustrates each feature’s spread and central tendency. The heatmap shows the
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correlation coefficients between all pairs of numerical variables, giving insight into the
relationships between soil properties and Cd levels. In the case of CK soils, the findings
showed positive relationships (Figure 6) between Cd content and silt% (0.42), organic
carbon (0.39), EC (0.15), and P (0.20). The correlation matrices of the data of CK soils and
Cd showed that there was a negative correlation with clay% (−0.32), sand% (−0.11), pH
(−0.30), and CEC (−0.23). However, for soils modified with BC (Figure 7), the findings
showed further evidence via negative relationships with sand% (−0.08), clay% (−0.35), pH
(−0.25), and CEC (−0.24). The positive correlation matrices of BC-treated soils’ cumulative
data revealed that the Cd levels were positively linked with the silt% (0.43), EC (0.13), OC
(0.42), and P (0.25) [77]. The comprehensive details are given in Section 3.1.
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3.2.1. Case 1: Assess CK Soils Using Machine Learning Models

Figure 8a compares the actual Cd concentrations against the predictions made by
three machine learning models. This comparison is made in the context of soil samples
without adding BC. The BiGRU model showed commendable performance, with an R2

value of 0.8537, indicating that the model’s predictions could explain approximately 85.37%
of the variance in the actual Cd data. The model’s mean absolute error (MAE) was reported
at 0.1986, and the mean squared error (MSE) was 0.0650, with a root mean square error
(RMSE) of 0.2550. These metrics suggest that the BiGRU model predictions were relatively
close to the actual values, with a moderate spread of errors. The LSTM model, which
also considered sequence data, yielded slightly less accurate results, with an R2 value
of 0.8473. The MAE for this model was 0.2127, the MSE was 0.0678, and the RMSE was
0.2605, which are all slightly higher than those for the BiGRU model, indicating a lower
performance in terms of capturing the variation in Cd concentrations. The 5-layer CNN
model, traditionally used in image processing but adapted here for sequence prediction,
outperformed both recurrent neural network models with an R2 value of 0.9107, showing
that over 91% of the variability in the actual Cd levels could be accounted for by the CNN
model’s predictions. Additionally, this model achieved the lowest MAE of 0.1602, the
lowest MSE of 0.0439, and the lowest RMSE of 0.2121, indicating the highest accuracy and
precision among the three models.
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Overall, Figure 8a demonstrates that, while all models were relatively proficient in
estimating Cd concentrations, the 5-layer CNN model appeared to be more effective in
this context. This might be due to its superior ability to capture the complex non-linear
relationships between the soil properties and the Cd levels without the influence of BC. The
success of the CNN model here suggests that it may be a promising tool for environmental
monitoring applications where understanding the baseline contamination levels is crucial.
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3.2.2. Case 2: Evaluated Applied BC Soils Using Machine Learning Models

Figure 8b showcases the effectiveness of machine learning models in estimating Cd
concentrations in soil, considering the addition of BC. BC, an amendment known for its
ability to absorb and immobilize HMs, provides a unique context for the machine learning
models to capture the altered relationships between soil properties and Cd availability. The
BiGRU model demonstrated a strong correlation between predicted and actual values, with
an R2 value of 0.9321, indicating that the model explained 93.21% of the variance in Cd
concentrations. The model improved its predictive accuracy in the presence of BC, with
an MAE of 0.1270, an MSE of 0.0165, and an RMSE of 0.1286, all lower than the values
reported in Case 1. Similarly, the LSTM model showed a notable increase in performance
with BC-treated soil data, yielding an MAE of 0.1105, an MSE of 0.0161, and an RMSE of
0.1256. The R2 value for this model stood at a robust 0.9413, reflecting its enhanced ability
to predict Cd levels with BC incorporation. Outperforming both recurrent models, the
5-layer CNN model attained the highest precision, with an R2 value of 0.9558, suggesting
that 95.58% of the variance in the actual Cd data could be explained by the CNN model’s
predictions in BC-amended soils. The model registered the lowest error metrics, with
an MAE of 0.0983, an MSE of 0.0145, and an RMSE of 0.1206, underlining its superior
predictive power in this scenario.

The results in Figure 8b reinforce the potential of advanced deep learning models
in environmental applications, especially for assessing the impacts of soil amendments
such as BC on HM contamination. The improved accuracy and lower error rates across
all models with the addition of BC suggest that these models can capture the complex
interactions that BC induces in the soil matrix, subsequently affecting Cd bioavailability.
These insights are valuable for designing strategies to mitigate soil contamination and
evaluating BC’s effectiveness as a remediation tool. The superior performance of the 5-layer
CNN model, in particular, highlights the adaptability and robustness of convolutional
networks in handling diverse and complex environmental datasets.

4. Conclusions

The study compared the effectiveness of deep learning machines like LSTM, BiGRU,
and 5-layer CNN in forecasting Cd concentrations. A significant negative association
between the two variables was found, mainly due to the impact of BC on soil characteristics
and Cd immobilization. BC effectively mitigates the presence of HMs in soil and inhibits
their penetration into the soil system. The BiGRU model explained 93.21% of the Cd
concentration variance after adding BC, while the LSTM model improved with BC-treated
soil data. The 5-layer CNN model predicted 95.58% of the variance in Cd data in BC-
amended soils. The study highlights the significance of machine learning models that
can predict the impact of BC amendments on soil’s chemical and physical properties,
such as pH, OC, clay minerals, and Cd availability. Machine learning models are capable
of generating precise assessments of soil Cd content and predicting the probability of
soil Cd transformation and immobilization. These data could establish sustainable soil
management and environmental protection strategies. The study proposes the development
of ecological soil remediation systems to efficiently address heavy metal contamination in
soils, with the goal of promoting environmental sustainability.
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