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Abstract: The present study applied a non-invasive method to analyse anthropogenic particles and
prey items in white stork (Ciconia ciconia) pellets. Pellets (n = 20) were obtained from white stork
nests during the 2020 breeding season from two sites in Croatia. In total, 7869 anthropogenic particles
were isolated. The majority of particles were fragments, while previous studies on other birds
often reported fibres. An ATR–FTIR polymer analysis detected glass and construction and building
materials, as well as several compounds associated with plastic masses. Polymer investigation
revealed the presence of dotriacontane and octacosane, which are by-products of polyethylene (PE)
degradation and transformation. Additionally, the detection of vinylidene chloride (VDC) highlights
the historical contribution of polyvinylidene chloride (PVDC) to plastic pollution. Significant variation
in particle quantity and size between the sampling sites was detected, with larger particles found at
sites associated with the metal mechanical engineering industry and agriculture. Prey assessment
revealed chitin remains of large insects such as Orthoptera and Coleoptera. This research confirms
the potential of pellet analysis as a valuable tool for assessing the presence of anthropogenic particles
in the environment. However, further research is needed to fully understand the extent of particle
ingestion, particle sources and potential impact.

Keywords: regurgitated pellets; anthropogenic particles; pollution monitoring; dietary assessment

1. Introduction

Emerging pollutants comprise a wide category of dangerous substances, such as
nanomaterials, nanoplastics, microplastics, soot and wear from roads and tyres. These
anthropogenic particles are produced by human activities, resulting in their broad spatial
range [1]. They are manufactured in millions of metric tonnes per year and can be released
into the environment, potentially causing adverse effects on biota, the environment and
public health [2]. Awareness and interest in their potentially harmful consequences have
increased, especially for those at the micro- and nanoscale, e.g., organic and inorganic an-
thropogenic fragments [3,4]. Once in the environment, anthropogenic particles degrade into
smaller particles via biotic and abiotic mechanisms, e.g., biodegradation, photodegradation,
oxidation and/or abrasion [5].

Research regarding anthropogenic particle pollution has been primarily focused on
the aquatic system, mainly regarding the transfer of anthropogenic particles through
food webs and their effects on apex predators [6,7]. Anthropogenic particle ingestion
has been previously investigated in aquatic systems via aquatic bird species, both marine
(e.g., Cassin’s auklet, Ptychoramphus aleuticus [8] and little auks, Alle alle [9]) and freshwa-
ter (e.g., Clapper rails, Rallus crepitans and Seaside sparrows, Ammospiza maritima [10]).
However, recent studies have shown that anthropogenic particle pollution is a current ubiq-
uitous issue [11,12]; therefore, advances have been made by analysing plastic particles in
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terrestrial birds. Several studies have assessed the environmental burden of anthropogenic
particles in terrestrial ecosystems via white stork carcasses, focusing on general plastic
ingestion [13], rubber band ingestion [14] and ingestion of plastic objects due to feeding
at urban refuse dumps [15]. An additional aspect of monitoring could be accomplished
by examining the quantity of anthropogenic materials utilised in the nest construction, as
they can exhibit a correlation with the degree of urbanisation [16,17]. The incorporation of
anthropogenic materials into nests could be affected by mating behaviour as well. Bower-
birds (Ptilonorhynchidae) construct bowers to allure potential mates [18]. The decoration
of bowers plays a pivotal role in female mate selection, with bowerbirds embellishing
their bowers with a variety of items, including flowers, plants and human debris such as
bottle tops and straws [18]. Males with more elaborately decorated bowers are deemed
more attractive and enjoy enhanced reproductive success, potentially leading to an increase
in the prevalence of anthropogenic materials within bowers [18]. On the other hand, an
aspect of the negative effects of anthropogenic particles was investigated, namely, the
occurrence of anthropogenic materials in white stork nests, which are often associated with
better breeding success. However, on the other hand, a higher risk of nestling mortality is
possible due to ingestion and/or entanglement of particles [19]. Apart from lethal effects,
as previously described, anthropogenic particles can cause sublethal effects, reflected in an
increase in oxidative stress, overall redox imbalance and cholinesterase activity [20]. Moni-
toring of anthropogenic particles and their possible effects as well as integrated biomarker
assessment have been used in Japanese quail, Coturnix japonica [20], common blackbird,
Turdus merula, song thrush, Turdus philomelos [21] and tree swallow, Tachycineta bicolor [22],
indicating the use of the aforementioned species as bioindicators of anthropogenic particle
pollution in terrestrial ecosystems.

Monitoring strategies for anthropogenic particles as alternatives to bird remains in-
clude their undigested prey residues—regurgitated pellets. Pellet analysis provides infor-
mation regarding prey composition as well as the occurrence of anthropogenic particles.
A species that regurgitates pellets and is representative of the terrestrial ecosystem is the
white stork, Ciconia ciconia. The species is distributed in continental Croatia [23], with
opportunistic dietary habits, feeding predominantly on earthworms, grasshoppers, fish,
frogs and small mammals [24]. Foraging near landfills has also been recorded [25–27].
White storks are diurnal predators, with habitat preferences in open lands, e.g., agricultural
areas, wet grassland and arable lands [28]. Breeding white storks are conservative in their
habitat selection, with significantly smaller home ranges, when compared to non-breeding
white storks [29]. Moreover, white storks have low reproductive dispersal and usually
return to the same nest as in previous years [30]. Therefore, the content of anthropogenic
particles in the pellets could reflect the local environmental burden and trophic transfer.

The present research considered the white stork pellets by reporting qualitative and
quantitative analysis of anthropogenic particles and fibres (plastics, textiles, construction
and demolition waste and glass) in pellets from white storks. Although white stork
pellets have been used for investigation to quantify their exposure to indigestible litter of
anthropogenic sources and diet assessment [31], the novel aspect of this research is reflected
in polymer analysis of the isolated anthropogenic particles. Therefore, the objectives of the
research are as follows:

(I) Investigate the application of white stork pellets for anthropogenic particle monitor-
ing. Since the white stork is an undomesticated species that is ecologically associ-
ated with urban settlements, their habits (behavioural and dietary) could potentially
make them effective indicators of micro-anthropogenic particle pollution caused by
anthropogenic activities;

(II) Perform polymer analysis on suspected anthropogenic and other non–biological particles;
(III) Examine if there is a spatial variation in the number of micro-anthropogenic particles

isolated, as the assumed polluted sampling site is an area surrounded by a major river,
industry and agricultural land, and is adjacent to the urban centre;
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(IV) Investigate the prey composition of pellets to determine the prevalence of food sources
and feeding habits of white storks in sampling locations.

2. Materials and Methods
2.1. Sampling Locations

Regurgitated pellets were obtained from white stork nests during the breeding season
in June and July 2020. In total, 20 pellets were collected and analysed from two sampling
areas (Figure 1). Each pellet represented one nest. Pellets from selected nests for sampling
in Study Site 1 (n = 10) lay along the Sava River, just downstream from an urban centre
(Slavonski Brod) known for its highly developed metal engineering industry. The nests are
surrounded by agriculture, small villages, alluvial forests and pastures regularly flooded
by Sava. Furthermore, an oil refinery is situated at Bosanski Brod, which is adjacent to
the town of Slavonski Brod. Pellets sampled from nests in Study Site 2 (n = 10) were
located in small villages, surrounded by large grassland pastures, meadows, arable land
and woodland habitat.
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Figure 1. The geographical location of sampling sites.

2.2. Isolation and Analysis of Anthropogenic Particles

Following the field sampling, all pellets were kept at −20 ◦C to prevent microbial
growth until analysis. Thawed pellets were weighed and dissected. Potential anthro-
pogenic particles were visually detected with a high-quality stereomicroscope Leica MZ6
and categorised by size into microanthropogenic (< 0.50 mm) and macroanthropogenic
particles (>0.50 mm). Another category of the particles was shape (e.g., fragment, filament).
Suspected isolated particles were subsequently corroborated with the hot needle method.
The hot needle method has been used as the visual verification prior to advanced polymer
identification. To expand, a histological needle was heated on a glass alcohol burner and
put on the suspected particle of anthropogenic origin. A positive response was observed
if the particle melted or curled, rather than charred [32,33]. The detection of microplastic
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particles smaller than 0.5 mm was performed based on shape and colour with an optical
microscope (Leica MZ6). The isolated micro– and macroanthropogenic particles were
transferred to glass vials with metal tweezers and stored until analysis.

2.3. Spectroscopic Analysis

Polymer analysis of isolated particles was performed with attenuated total reflection
Fourier transform infrared spectroscopy (ATR–FTIR). In total, 642 particles were selected
for analysis based on the hot needle test, size, shape and colour. Anthropogenic particles
were analysed with ATR–FTIR in a wavenumber range of 4000–450 cm−1. Each sample was
measured in six technical replicates. The obtained spectrum for each sample was recorded
as % transmittance (T) using a Perkin-Elmer Spectrum Two with Universal ATR, controlled
by the software Spectrum 10.5.2.636.

2.4. Prey Remains Isolation and Determination

In parallel with anthropogenic particles, prey remains were isolated with dry method
pellet analysis, according to Horváth et al. [34]. The identification of prey was based
on the morphological characteristics of the remains. Prey items were identified at the
lowest possible taxonomic level. Chitinous pieces of insects were identified according
to Chinery [35] and by comparison with entomological collections of species commonly
present in the studied areas.

2.5. Quality Control

Quality control precautions were implemented during the isolation and polymer
analysis of anthropogenic particles. Plastic materials were intentionally avoided throughout
the process of pellet collection, sample isolation and sample analysis. Instead, preference
was given to the use of glass vials and Petri dishes, as well as aluminium and stainless-steel
utensils, for all equipment. Additionally, lab coats and nitrile gloves were worn, samples
were covered with aluminium foil when not being used or processed and procedural blanks
were used. Particles were isolated in a laminar flow cabinet equipped with vertical HEPA
filters (MINIFLO Type 90, Milan, Italy). The laboratory workspace as well as tweezers,
needles, glass vials and Petri dishes were meticulously cleaned with 70% ethyl alcohol.

2.6. Statistical Analysis

Statistical tests were performed using R version 4.2.2 and Statistica version 14.0.0.15.
To identify the patterns and/or trends in the data that may indicate variations in poly-
mer composition with regard to sampling sites, principal component analysis (PCA) was
performed. To compare the number of isolated anthropogenic particles with regard to
sampling sites, the number of particles per mass of the pellet (nparticle gpellet

–1) was used.
To test the normality of the data distribution, the Shapiro–Wilks test was applied. Data
were not normally distributed; therefore, the non-parametric, unpaired, two-tailed Mann–
Whitney U test was applied by comparing the ranks. The level of statistical significance
(p-value) was 0.05 throughout the study.

3. Results
3.1. Isolated Anthropogenic Particles

Anthropogenic particles were detected in all analysed pellets. Particles such as mi-
croplastic fragments, filaments, building materials and glass were isolated and morpholog-
ical characteristics were determined. More than 90% of anthropogenic particles were clear
fragments, followed by filaments (Figure 2). Microanthropogenic particles were detected in
all pellets, while macroanthropogenic particles were reported in 60% of analysed pellets.
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Figure 2. The most common anthropogenic particles found in white stork (C. ciconia) pellets
were clear fragments (left; compound dotriacontane) and coloured filaments (right; compound
paraffin oil).

3.2. ATR–FTIR Results of Analysed Particles

We detected substances associated with plastic masses, which are shown in Table 1.
Out of 7869 isolated particles, we detected polymers associated with plastic masses in
519 particles, namely, in Study Site 1, 321 (4.23%) particles and, in Study Site 2, 198 (49.38%)
were associated with plastic masses. PCA analysis was performed on 499 spectra. The
results showed similarities among samples collected from different locations. The results of
PCA showed that two principal components account for 80% of the total variance in the
data (Figure 3).

Table 1. Results of polymers detected with ATR–FTIR. For each polymer, a use was described as well
as whether it is associated with plastic masses.

Polymer Uses Associated with Plastic Masses

(3-aminopropyl)triethoxysilane thermoplastic polymer yes
1,2-octadecanediol personal care products no
1,3,5-trimethylcyclohexane by-product of PE yes
1-chlorohexadecane additive used in plastic production yes
3-(2-imidazolin-1-YL)propyltriethoxysilane resin and plastic production yes
3-methylheptane product of PS degradation yes
Butyl stearate additive used in plastic production yes
Dioctyl sebacate additive used in plastic production yes
Dotriacontane by-product of PE yes
Enzacryl polyacetal thermoplastic polymer yes
Ethyl palmitate product of PU degradation yes
Hexacosanol plastic production yes
Hexatriacontane petroleum product no
L(-)-glyceraldehyde unnatural forms naturally occurring no
Methyl linoleate PVC plasticiser yes
Octacosane by-product of PE yes
Octadecylamine product of PU degradation yes
Paraffin oil plastic production yes
Polystyrene plastic polymer yes
Tetradodecylammonium bromide surfactant and catalyst no
Toluene-4-sulfonic acid surfactant and catalyst no
Vinylidene chloride plastic production yes
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3.3. Spatial Variability

In total, 7869 micro- and macroanthropogenic particles were isolated from the pellets.
An overview of the results is shown in Table 2. In particular, there were 7869 particles in
Study Site 1 and 401 in Study Site 2, confirming the significant spatial variation in particle
quantity (p < 0.0001). Regarding particle size, significantly larger particles were detected in
Study Site 1 compared to Study Site 2 (Table 2).

Table 2. Number, mass and diameter of isolated anthropogenic particles from white stork (C. ciconia)
pellets sampled during breeding season 2020 in continental Croatia.

nparticle Mass (g)
nparticle
gpellet

–1 Min Max Mean ± SD

Study Site 1
(npellet = 10)

284 13.23 21.47 <0.50 20.00 2.54 ± 1.68
239 6.25 38.22 1.00 40.00 2.27 ± 3.10
33 11.26 2.93 1.00 10.00 3.12 ± 1.68

105 12.28 8.55 1.00 10.00 2.10 ± 1.21
86 12.28 7.00 <0.50 10.00 2.37 ± 1.30

660 9.00 73.37 1.00 22.00 2.39 ± 0.93
1411 27.93 50.51 <0.50 13.00 2.33 ± 0.93
796 7.20 110.49 <0.50 7.00 2.02 ± 0.93
1996 22.08 90.39 <0.50 20.00 1.80 ± 1.29
1858 13.51 137.51 <0.50 12.00 2.32 ± 1.26
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Table 2. Cont.

nparticle Mass (g)
nparticle
gpellet

–1 Min Max Mean ± SD

Study Site 2
(npellet = 10)

51 9.63 5.30 <0.50 5.00 1.37 ± 0.91
27 10.73 2.52 <0.50 3.00 1.28 ± 0.71
35 17.16 2.04 <0.50 1.00 0.73 ± 0.24
33 7.53 4.38 <0.50 2.25 0.93 ± 0.46

125 11.51 10.86 <0.50 4.25 1.32 ± 0.83
12 8.24 1.46 <0.50 1.20 0.76 ± 0.22
12 4.80 2.50 <0.50 2.50 1.25 ± 0.58
4 11.87 0.34 <0.50 1.20 0.85 ± 0.31
9 8.95 1.01 <0.50 35.00 5.83 ± 11.23
93 7.23 12.87 <0.50 9.00 1.84 ± 1.46

nparticle—number of isolated anthropogenic particles; Mass—the mass of the whole dry pellet; nparticle

gpellet
–1—number of isolated anthropogenic particles per gram of the pellet; Min—minimum diameter of particles

in the pellet; Max—maximum diameter of particles in the pellet.

3.4. Dietary Assessment

Pellet analyses showed that white storks from study locations fed on insects (Insecta),
spiders (Arachnida), snails (Gastropoda), earthworms (Clitellata) and mammals (Mam-
malia). In all analysed pellets, remains of mammals’ hair and earthworms’ chaetae were
found (Table 3), along with different blades of grass and other plants. Among insects, the
most abundant prey remains belonged to beetles (Coleoptera), grasshoppers, locusts and
crickets (Orthroptera). Differences between prey remains from the two study sites are
presented in Table 3.

Table 3. Taxonomic groups of prey items determined in the pellets of white stork (C. ciconia) and
their occurrence in Study Site 1 and Study Site 2.

Class Order Family Species Study Site 1 Study Site 2

Mammalia Rodentia x x
Arachnida Araneae x
Clitellata Opisthopora Lumbricidae x x
Mollusca Gastropoda Gastropoda terrestria sp. x
Insecta Diptera x

Hymenoptera Formicidae x
Orthoptera Gryllidae x x

Tettigoniidae x
Acrididae x
Gryllotalpidae Gryllotalpa gryllotalpa x x

Coleoptera Chrysomelidae x
Silphidae/ x x
Lucanidae Dorcus parallelipipedus x x
Cerambycidae x
Tenebrionidae Blaps mortisaga x
Scarabaeidae Melolontha sp. x

Melolontha melolontha x
Oryctes nasicornis x
Cetonia aurata x

Carabidae Carabus sp. x x
Abax sp. x x
Calosoma sp. x
Harpalus sp. x
Abax sp. x x
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Table 3. Cont.

Class Order Family Species Study Site 1 Study Site 2

Carabus ullrichi Germar x x
Carabus granulatus x
Carabus violaceus x
Carabus coriaceus x
Carabus intricatus x
Calosoma auropunctatum x

4. Discussion

The present study implemented the method of collecting and analysing white stork pel-
lets for the purpose of anthropogenic particle monitoring. Among species that regurgitate
pellets, anthropogenic and plastic particles have been detected in white stork, kingfisher,
Alcedo atthis and barn owl (Tyto alba) [31,36,37]. That being said, our results correspond with
the study by Mikula et al. [26], as we detected anthropogenic particles in all analysed pellets
as well. Anthropogenic particles were also detected in earlier examinations of white stork
pellets collected in Bulgaria during the non-breeding season, albeit at far lower frequencies
in pellets for glass (2.7%) and plastic (4.1%) [38]. Nessi et al. [37] analysed microplastics in
the pellets of a nocturnal bird of prey, barn owl. The authors associated the microplastic
from the pellets with prey due to degradation of habitat, i.e., agricultural lands [37]. In
research on kingfisher, a piscivore top predator in river ecosystems, the authors suggested
that the ingestion was more likely derived from their food rather than from abiotic ele-
ments such as sediment and water [36]. Research on waterbirds suggests the ingestion of
microplastics likely originates from sediment particles and water rather than from their
food, although this has yet to be conclusively proven [39]. Regarding shape, most detected
particles from other studies were fibres [36,37,40], while, in the present study, most de-
tected particles were fragments. Anthropogenic micro–fragments can be derived from the
breakdown, fragmentation or degradation of larger anthropogenic particles [41]. Although
results from the present study are difficult to compare to other studies due to different
avian foraging strategies, pellet regurgitation, habitat, research methodology and pollutant
accumulation, continuous detection of anthropogenic particles in pellets, digestive tract and
faeces indicates environmental pollution, warranting design of mitigation measures. When
interpreting results, several sources of anthropogenic particles in pellets should be taken
into account. For example, particles can be ingested primarily by accident together with
smaller food items such as insects or secondarily if the anthropogenic particles are digested
by their prey. An additional source of particles in sampled pellets could be atmospheric
deposition [42].

PCA results did not show any significant clustering of the polymer compounds based
on the sampling site variable. Anthropogenic pollution appears similar in a polymer
sense but differs in quantity, as seen by the number of isolated particles per site. Accord-
ing to Moore [43], the polymers found in microplastic pollutants can undergo degrada-
tion and possible chemical changes due to exposure to the environment. Furthermore,
Lundquist et al. [44] suggest that microplastic pollutants consist of various inorganic fillers,
plasticisers and UV stabilisers, which may also undergo alterations caused by environ-
mental conditions. The ATR–FTIR spectra of a microplastic particle will reflect all the
chemical changes it has experienced, including the presence of non–polymer compounds
from the pollutant. However, it is crucial to consider the presence of typical additives and
co–polymers that might also be present when interpreting the results.

The most common chemical compounds when analysing isolated microparticles were
dotriacontane and octacosane. According to Abraham et al. [45], dotriacontane is a by-
product of plastic polymer polyethylene (PE) degradation by fungi, Aspergillus nomius. Oc-
tacosane and 1,3,5-trimethylcyclohexane are by-products of low-density PE transformation
under high temperatures [46,47]. Since PE is a polymer that is primarily used for packaging,
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e.g., plastic bags, films and containers, this represents the first association with microplastic
particles in white stork pellets. Several other compounds associated with plastic masses
have been detected. Compound 3-(2-imidazolin-1-YL) propyltriethoxysilane is used in
resin and plastic production [48] and methyl linoleate is a plasticiser used for polyvinyl
chloride (PVC) [49]. Enzacryl polyacetal is a synthetic polymer, a thermoplastic used in
engineering. Previously, it has been characterised only in aquatic ecosystems, namely, two
fish: Spotted Tail goby, Synechogobius ommaturus, and Seabass, Lateolabrax japonicus [6]. An-
other thermoplastic compound detected was (3-aminopropyl)triethoxysilane. Additionally,
we detected vinylidene chloride (VDC, 1,1-dichloroethylene), a compound used in the pro-
duction of the polymer polyvinylidene chloride (PVDC). PVDC is well known for its barrier
properties and is used extensively as a coating for various packaging materials, especially
in the food industry. It is often used in combination with other polymers to create materials
with enhanced barrier properties against moisture, oxygen and other gases [50]. While
PVDC itself is not as commonly used today due to environmental and health concerns
related to the release of vinyl chloride monomer during production and incineration, it
has historically been a significant contributor to plastic pollution [51]. Polymer analysis
revealed paraffin oil on the analysed particles. Paraffin oil has many uses in the plastic
industry and is associated with agriculture, e.g., petroleum-based insecticides and as a
part of diesel fuel for tractor engines [52]. White storks are frequently associated with
foraging on arable lands; therefore, it is no surprise the residues of agricultural and farming
equipment have been detected. Chemicals obtained by bacterial degradation of chlori-
nated paraffins were observed. Dioctyl sebacate and 1-chlorohexadecane are examples
of additives used in plastics to modify certain properties or facilitate the manufacturing
process, namely, 1-chlorohexadecane was detected and its main purpose is industrial. It
is frequently added in plasticisers and flame retardants [53]. Apart from chemicals asso-
ciated with plastic degradation, compounds (hexacosanol) used in plastic production as
molecular lubricants for plastic polymers were detected [54]. In particular, butyl stearate is
used as a functional additive, acting as a lubricant in the plastic polymer polystyrene (PS).
Volatile organic compounds (VOCs; e.g., 3-methylheptane) have been detected. VOCs are
usually released in the environment by photodegradation of various plastic polymers, such
as PS [55]. As previously mentioned, visual inspection of macroanthropogenic particles
showed construction and building materials in the pellets. This was additionally confirmed
by ATR–FTIR analysis of particles that contained octadecylamine. Octadecylamine is a
compound associated with the improvement of the hydrophobic properties of polyurethane
(PU) foam for the purpose of oil spill clean-up [56]. Ethyl palmitate was detected as well.
The compound is a degradation product of PU [57]. Hydrocarbons were detected in the
pellets as well. Hexatriacontane indicates the presence of these persistent organic pollutants
(POP) derived from petroleum and contributes to environmental pollution and adverse
effects on biota [58,59]. Potential sources of hexatriacontane are motorised activities and
the petrochemical industry [58,60].

Anthropogenic particles obtained from regurgitated pellets from white storks’ nests at
Study Site 1 and Study Site 2, varied significantly in particle quantity (Table 1). Regarding
particle size, significantly larger particles were detected in Study Site 1 compared to Study
Site 2 (Table 1). The white stork forages on open grasslands and floodplains, habitats often
transformed into agricultural and farming lands. Agricultural soils may become long–term
‘sinks’ and reservoirs for anthropogenic particles [61,62]. This indicates that agricultural
areas are vulnerable to pollution, reflected in anthropogenic particle detection in both study
areas. However, a greater number of (and larger) man-made particles were detected in
pellets from Study Site 1. We assume that the city and the urban residential area actively
contribute to the anthropogenic particle pollution, based on the fact that microplastic
particles have been detected in soil and surface road dust in urban cities [63,64]. Since
the foraging area is in proximity to the urban centre of Slavonski Brod, the wastewater
treatment plant (WWTP) in Slavonski Brod can be a potential source of anthropogenic
particles via the release of effluent plants [65]. Furthermore, the metallurgic industry in
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Slavonski Brod and the oil refinery in Bosanski Brod could be major potential sources of
pollution in the Sava River and the surrounding soil.

White storks regurgitate pellets daily or even more times per day, depending on
prey abundance [66]. Foraging flights of the majority of white storks are within 1.5 km of
nests [67,68], but foraging radius can be up to 5 km from nests [69]. The diversity of prey
items depends on the conditions prevailing in their habitats—if the habitats are dry and
there is no larger prey available, white storks will feed on insects [70]. Depending on the
type of prey, white storks have different hunting strategies. They catch their prey with
their long beaks, and, if it is a larger animal, they first kill it with a beak strike and then
tear it apart. Insects are collected by searching through low vegetation [66]. In the dietary
assessment, we found only small mammal hairs (from which it is not possible to determine
species, number of specimens or their size) and no remains from fishes, amphibians or
reptiles. Studies of white stork feeding habits show that the deficiency of prey remains
of mammals, amphibians, reptiles or fishes in pellets does not reflect a lack of them in
the feeding habitats, but rather that their remains are almost entirely digested [68,70]. We
found numerous chitin remains of large insects—mandibles from Orthoptera and elytrons
from Coleoptera. Our results comply with diet studies in Europe showing that insects are
important prey for white storks, especially in southern parts of Europe where habitats are
drier [71–73].

5. Conclusions

The present research successfully applied the pellets of an opportunistic terrestrial
apex predator for anthropogenic particle monitoring. The findings suggest that pellet
analysis offers a non–invasive method to assess the presence of various pollutants in the
environment while reducing disturbance and minimising ethical concerns. Following
a polymer analysis, we detected construction and building materials, glass and several
compounds associated with plastic masses. The ATR–FTIR analysis of isolated particles
revealed the presence of dotriacontane and octacosane, which are by-products of PE degra-
dation and transformation. Additionally, the detection of VDC highlights the historical
contribution of PVDC to plastic pollution. Regarding quantity, spatial variation was con-
firmed, as a higher number of fragments was detected from pellets in Study Site 1. It is
assumed that the wastewater treatment plant in Slavonski Brod contributes to the high
number of fragments. Diet assessment of the white stork revealed a lack of identifiable
remains from fishes, amphibians or reptiles, suggesting efficient digestion, while chitin
remains of large insects such as Orthoptera and Coleoptera were abundant. To conclude,
the presence of man-made fragments in white stork pellets highlights the problem of
widespread anthropogenic particles in the environment. By analysing the composition
and characteristics of the particles found in the pellets, it is possible to identify specific
pollutants, their origins and pollutant hotspots, making storks valuable indicator species
for environmental monitoring. Analysis of pellets over time offers a valuable means to
elucidate temporal variations in pollutant concentrations and trends, thereby facilitating a
comprehensive understanding of pollution dynamics within the ecosystem. Such insights
are instrumental in informing, formulating and refining policies and regulations that are
targeted at mitigating particle pollution, ultimately contributing to environmental man-
agement and public health enhancement efforts. Additionally, the chemical compounds
associated with anthropogenic and plastic debris and the analysis of anthropogenic parti-
cles (as well as microplastics) should be considered in future research to understand their
effect on biota and their role in the ecosystem, if any.
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21. Deoniziak, K.; Cichowska, A.; Niedźwiecki, S.; Pol, W. Thrushes (Aves: Passeriformes) as indicators of microplastic pollution in
terrestrial environments. Sci. Total Environ. 2022, 853, 158621. [CrossRef]

22. Sherlock, C.; Fernie, K.J.; Munno, K.; Provencher, J.; Rochman, C. The potential of aerial insectivores for monitoring microplastics
in terrestrial environments. Sci. Total Environ. 2022, 807 Pt 1, 150453. [CrossRef]
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