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Abstract: Black carbon (BC) aerosols are important for absorbing aerosols, affecting global climate
change and regional air quality, and potentially harming human health. From March to May 2023, we
investigated black carbon aerosol levels and air pollution in Beijing. Employing methods such as linear
regression, Potential Source Contribution Function (PSCF) and Concentration-Weighted Trajectory
(CWT), we analyzed the characteristics and sources of black carbon aerosols in the region. Results
indicate that the light absorption coefficients of BC and BrC decrease with increasing wavelength, with
BrC accounting for less than 40% at 370 nm. Daily variations in BC and PM2.5 concentrations exhibit
similar trends, peaking in March, and BC displays a distinct bimodal hourly concentration structure
during this period. Aethalometer model results suggest that liquid fuel combustion contributes
significantly to black carbon (1.08 ± 0.71 µg·m−3), surpassing the contribution from solid fuel
combustion (0.31 ± 0.2 µg·m−3). Furthermore, the significant positive correlation between BC
and CO suggests that BC emissions in Beijing predominantly result from liquid fuel combustion.
Potential source area analysis indicates that air masses of spring in Beijing mainly originate from the
northwest (40.93%), while potential source areas for BC are predominantly distributed in the Beijing–
Tianjin–Hebei region, as well as parts of the Shandong, Shanxi and Henan provinces. Moreover, this
study reveals that dust processes during spring in Beijing have a limited impact on black carbon
concentrations. This study’s findings support controlling pollution in Beijing and improving regional
air quality.

Keywords: black carbon; optical characteristics; concentration characteristics; linear regression;
potential source area

1. Introduction

In recent years, widespread atmospheric aerosol pollution characterized by significant
spatial variation and complex chemical composition has emerged as a pressing global
concern. This issue affects both China and the world at large [1], influencing global and
regional climate dynamics and posing risks to public health [2]. Consequently, aerosols
have garnered substantial attention within the field of atmospheric science. Among these
aerosols, BC is a dominant anthropogenic source and plays a pivotal role in shaping the
global atmospheric climate [3].

Black carbon aerosols primarily originate from the incomplete combustion of carbon-
containing fossil fuels and biomass, which can be classified into natural and anthropogenic
sources. While natural events such as volcanic eruptions and forest fires constitute sig-
nificant natural sources of black carbon emissions, their sporadic occurrences contribute
minimally to long-term background concentrations of black carbon in the atmosphere [4].
In contrast, anthropogenic sources release black carbon on a broader and more persistent
scale. BC, often a component of PM2.5, possesses chemical inertness, typically exists at
sub-micron sizes, and has an extended atmospheric lifespan. Thus, BC serves as a valuable
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indicator of human impact on the atmosphere and facilitates the tracking of polluted air
masses originating from diverse source regions. Moreover, due to its small particle size
and suspension capabilities, BC can directly infiltrate human respiratory tracts and alveoli,
leading to a range of health issues and posing a significant threat to public well-being [5–7].

While atmospheric BC concentrations are generally low and exhibit uneven global dis-
tribution, BC exerts a potent solar radiation absorption effect across the visible and infrared
spectra. By absorbing and scattering light at varying wavelengths, black carbon alters local
atmospheric stability and vertical structures, thereby influencing regional weather patterns
and global atmospheric circulation [8]. Current research, both domestic and international,
has predominantly explored temporal variations in BC concentration, key influencing
factors, source analyses, as well as the radiative forcing and climatic implications of BC
aerosols. Analyzing BC concentrations across different locations in Mexico, Peralta et al. [9]
found a strong correlation between BC and CO concentrations in urban areas, with the
correlation being more pronounced than in suburban and high-altitude regions. Similarly,
Barman and Gokhale [10] used BC data obtained from 2016 to 2017 in Guwahati, India,
to study the deposition of BC concentration under different meteorological conditions,
and applied the mixed single-particle Lagrangian integral trajectory (HYSPLIT) model
to analyze the area and source distribution of BC possible deposition. Furthermore, Li
et al. [11] conducted continuous BC and BrC measurements during the heating season
in Beijing. They employed trajectory calculations via the HYSPLIT model and employed
the Concentration-Weighted Trajectory (CWT) model, as well as the MODIS fire point
map, to analyze potential pollution sources. Several studies have highlighted the role of
black carbon aerosols in impeding the development of the atmospheric boundary layer
by altering surface radiation energy balances and heating the boundary layer top, thereby
exacerbating severe haze pollution in urban centers [12–14]. Given its status as one of the
world’s major black carbon emission centers [15,16], China plays a pivotal role in shaping
global atmospheric conditions and climate dynamics. Beijing, as China’s political, cultural
and technological epicenter and the core city of the Beijing–Tianjin–Hebei economic zone,
is characterized by extensive industrial development, a substantial population and a high
volume of motor vehicles. The substantial consumption of fossil fuels has led to increased
BC aerosol emissions [17,18]. Moreover, Beijing’s warm temperate monsoon climate, char-
acterized by minimal spring rainfall and dry, windy conditions, exacerbates the occurrence
of pollution-related weather events [19]. Therefore, a comprehensive analysis of BC aerosol
pollution characteristics and potential sources in the atmosphere of Beijing’s urban area
during spring holds profound significance for improving regional atmospheric conditions.

In this study, we employed observational data, encompassing BC concentrations,
to scrutinize the optical characteristics of aerosols and the concentration patterns of BC
during the spring season in Beijing’s urban area. We conducted linear regression analyses
correlating BC concentrations with atmospheric pollutants (NO2, CO, O3). Subsequently,
we applied the Potential Source Contribution Function (PSCF) and CWT methods to
delineate the potential source regions of BC and assess whether dust weather exerts an
influence on BC concentrations in Beijing.

2. Materials and Methods
2.1. Study Region and Data Collection

The instrument was positioned on the third-floor platform of the experimental building
at Beijing Capital Normal University (39.9302◦ W, 116.3034◦ E). It is situated at an elevation
of approximately 10 m above ground level. The sampling site (Figure 1) is surrounded by
residential areas and schools, with its eastern side in close proximity to the main road. To a
considerable extent, the data collected from this monitoring site serves as a representation
of the atmospheric black carbon aerosol pollution levels within Beijing’s urban area. In this
research, a black carbon meter (AE33, Magee Scientific, Berkeley, CA, USA) was employed
to measure the light absorption and the corresponding aerosol absorption concentration at
seven distinct wavelengths (370, 470, 520, 590, 660, 880 and 950 nm). About the instrument,
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it adopts two parallel point measurement technology and dynamic zero-point calibration,
which provides almost real-time compensation for point loading effect. The detection
limit is less than 0.005 µg·m−3 per hour, the detection accuracy of 0.03 µg·m−3 per minute
and the concentration resolution of 0.001 µg·m−3. The measurements were conducted
at a constant flow rate of 5 L/min and a temporal resolution of 1 min. Given that the
absorption effect of BC dominates and the absorption efficiency of other aerosols can be
disregarded at the 880 nm wavelength, the BC concentration was determined by monitoring
the attenuation of the aerosol beam as it passed through a quartz fiber filter at 880 nm. Data
collection occurred during the spring season of 2023, spanning from March 1 to May 22.
After eliminating data recorded during special meteorological conditions, power outages
and other factors, a total of 78,840 min of valid data was retained for analysis. The daily
and monthly mean values of BC, PM2.5 and PM10 are calculated from the hourly mean
data. Meteorological parameters such as temperature (◦C), wind speed (m/s) and wind
direction were measured using the automatic weather observation equipment (CAWS600,
HuaYun Group, Beijing, China) situated at the campus weather station. Concentrations of
air pollutants (PM10, PM2.5, NO2, O3, CO) were sourced from the automatic observation
instrument (MW600, HuaYun Group, China) set up near the campus automatic weather
station, and the time resolution is 1 h. Of these, the error range of PM2.5 and PM10 is less
than 10%, and the error range of CO, O3 and NO2 is less than 3%. These instruments are
only 300 m away from the sampling site.

Toxics 2024, 12, x FOR PEER REVIEW 3 of 18 
 

 

a representation of the atmospheric black carbon aerosol pollution levels within Beijing’s 
urban area. In this research, a black carbon meter (AE33, Magee Scientific, Berkeley, CA, 
USA) was employed to measure the light absorption and the corresponding aerosol ab-
sorption concentration at seven distinct wavelengths (370, 470, 520, 590, 660, 880 and 950 
nm). About the instrument, it adopts two parallel point measurement technology and dy-
namic zero-point calibration, which provides almost real-time compensation for point 
loading effect. The detection limit is less than 0.005 μg·m−3 per hour, the detection accuracy 
of 0.03 μg·m−3 per minute and the concentration resolution of 0.001 μg·m−3. The measure-
ments were conducted at a constant flow rate of 5 L/min and a temporal resolution of 1 
min. Given that the absorption effect of BC dominates and the absorption efficiency of 
other aerosols can be disregarded at the 880 nm wavelength, the BC concentration was 
determined by monitoring the attenuation of the aerosol beam as it passed through a 
quartz fiber filter at 880 nm. Data collection occurred during the spring season of 2023, 
spanning from March 1 to May 22. After eliminating data recorded during special mete-
orological conditions, power outages and other factors, a total of 78,840 min of valid data 
was retained for analysis. The daily and monthly mean values of BC, PM2.5 and PM10 are 
calculated from the hourly mean data. Meteorological parameters such as temperature 
(°C), wind speed (m/s) and wind direction were measured using the automatic weather 
observation equipment (CAWS600, HuaYun Group, Beijing, China) situated at the cam-
pus weather station. Concentrations of air pollutants (PM10, PM2.5, NO2, O3, CO) were 
sourced from the automatic observation instrument (MW600, HuaYun Group, China) set 
up near the campus automatic weather station, and the time resolution is 1 h. Of these, 
the error range of PM2.5 and PM10 is less than 10%, and the error range of CO, O3 and NO2 
is less than 3%. These instruments are only 300 m away from the sampling site. 

 
Figure 1. Location of the sampling site in this study. 

2.2. Black Carbon Measurements 
The formula for the absorption coefficient (Abs) of carbonaceous aerosols at specific 

wavelengths is as follows: Abs(𝜆) = 𝜎 × 𝑀 ( ) × 10   (1)

In the formula, 𝜎  represents the mass absorption cross-section. Measured 𝜎  
values at seven different wavelengths (370, 470, 520, 590, 660, 880 and 950 nm) are as fol-
lows: 18.47, 14.54, 13.14, 11.58, 10.35, 7.77 and 7.19 m2·g−1, respectively. 𝑀 ( ) denotes the 
black carbon mass concentration specific to a given wavelength, ng·m−2. 

Assuming negligible light absorption by dust, Abs(λ) can be separated into BC ab-
sorption and BrC absorption. Given the dominant absorption effect of BC at 880 nm and 

Figure 1. Location of the sampling site in this study.

2.2. Black Carbon Measurements

The formula for the absorption coefficient (Abs) of carbonaceous aerosols at specific
wavelengths is as follows:

Abs(λ) = σair × MBC(λ) × 10−3 (1)

In the formula, σair represents the mass absorption cross-section. Measured σair values
at seven different wavelengths (370, 470, 520, 590, 660, 880 and 950 nm) are as follows:
18.47, 14.54, 13.14, 11.58, 10.35, 7.77 and 7.19 m2·g−1, respectively. MBC(λ) denotes the black
carbon mass concentration specific to a given wavelength, ng·m−2.

Assuming negligible light absorption by dust, Abs(λ) can be separated into BC ab-
sorption and BrC absorption. Given the dominant absorption effect of BC at 880 nm and
the negligible absorption efficiency of other aerosols, AbsBC(λ) and AbsBrC(λ) at other
wavelengths can be estimated using the following formulas.

Abs(λ) = AbsBC(λ) + AbsBrC(λ) (2)
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AbsBC(λ) = Abs(880)×
(

λ

880

)−AAEBC

(3)

AbsBrC(λ) = Abs(λ)− Abs(880)×
(

λ

880

)−AAEBC

(4)

AbsBC(λ) signifies the light absorption attributable to BC at a particular wavelength λ,
while AbsBrC(λ) represents the light absorption contribution of BrC at the same wavelength.
AAEBC refers to the Ångström index, which characterizes the spectral dependence of BC.
In this study, a value of 1.1 was employed based on previous research [11].

Some scholars [20] contend that the incomplete combustion of liquid fuels (e.g., traffic
emissions) and solid fuels (e.g., coal and biomass) are the two primary sources of black
carbon aerosols in the atmosphere. The total absorption coefficient of BC at a specific
wavelength can be expressed as follows:

Abs(λ) = Abs(λ)liquid + Abs(λ)solid (5)

In this equation, Abs(λ)liquid and Abs(λ)solid represent the black carbon absorption
coefficient resulting from liquid fuel and solid fuel emissions, respectively.

Abs(370 nm)liquid

Abs(880 nm)liquid
=

(
370
880

)−AAEliquid

(6)

Abs(370 nm)solid
Abs(880 nm)solid

=

(
370
880

)−AAEsolid

(7)

BCliquid = MBC(880 nm)
Abs(880 nm)liquid

Abs(880 nm)
(8)

BC = BCliquid + BCsolid (9)

Additionally, AAEliquid and AAEsolid are the wavelength exponents of the BC absorp-
tion coefficients associated with liquid fuel and solid fuel. Based on the findings of Jing
et al. [18], this study adopts the assumptions AAEliquid = 1.0 and AAEsolid = 2.2. Conse-
quently, the mass concentration of BC generated by liquid fuel and solid fuel emissions can
be calculated using the above formula.

2.3. PSCF and CWT Models

CWT model is a method used to compute the potential pollution source regions
for air pollutants and assess the degree of pollution along specific trajectories [21]. This
approach involves the calculation of weighted concentrations for each grid point, taking
into account the trajectories passing through the grid and the corresponding black carbon
(BC) concentrations associated with each trajectory.

Cij =
1

∑N
l=1 nijl

∑N
l=1 Clnijl (10)

Cij represents the average weighted concentration at grid point (i, j). N stands for the
total number of trajectories passing through the grid (i, j), while Cl denotes the BC mass
concentration linked to the trajectory labeled as “l” that passes through the same grid and
nijl represents the residence time associated with the ‘l-th’ trajectory as it passes through
the grid.

PSCF model is computed based on a spatial grid and is defined as the ratio of the
number of endpoints (mij) of pollution air trajectories passing through a specific grid (ij)
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in the study area (when the feature values exceed a set pollution threshold) to the total
number of endpoints (nij) passing through that grid.

PSCFij =
mij

nij
(11)

As PSCF is a conditional probability function, the uncertainty of PSCF values increases
when the airflow residence time within each grid is short (indicating smaller mij values).
Therefore, it is necessary to introduce an empirical weighting function, W(nij), for interval
weighting and error reduction. The weight function, W(nij), is defined as follows:

Wij =


1.0, nij > 120

0.8, 120 ≥ nij > 40
0.4, 40 ≥ nij > 20

0.2, nij ≥ 20

(12)

Consequently, weighted calculations can be applied to PSCF:

WPSCFij = PSCFij × Wij (13)

During CWT and PSCF analyses, air trajectories are divided into a 0.2◦ × 0.2◦ grid.
Different colors represent the size of the weighted concentrations and weighted contribution
functions within each grid cell. The results of both methods are visualized. PSCF and CWT
analyses were calculated using Meteinfo Map 3.7.0 software. Meteorological parameters
used by the software are sourced from NOAA’s website (ftp://arlftp.arlhq.noaa.gov/pub/
archives/gdas1 (accessed on 20 October 2023)), and fire point data are obtained from
NASA’s website (FIRMS—Creating Archive Download Request (nasa.gov) (accessed on 21
October 2023)).

3. Results and Discussion
3.1. Light Absorption Characteristics

Figure 2a presents a box plot of the aerosol optical absorption (Abs) coefficient within
the wavelength range of 370–950 nm. It is evident that the Abs value is highest at 370 nm
and decreases as the wavelength increases. This trend has been confirmed in numerous pre-
vious studies [11,22]. The average absorption coefficients for the seven wavelengths were as
follows: 38.34 ± 33.39 Mm−1 (370 nm), 27.33 ± 22.66 Mm−1 (470 nm), 22.51 ± 8.05 Mm−1

(520 nm), 17.89 ± 13.12 Mm−1 (590 nm), 15.69 ± 11.52 Mm−1 (660 nm), 11.1 ± 8.17 Mm−1

(880 nm) and 10.28 ± 7.52 Mm−1 (950 nm), respectively. Figure 2b displays AbsBC and
AbsBrC at various wavelengths, showing a consistent gradual and steady decrease from
ultraviolet to visible light, with AbsBrC being virtually non-existent at 880 and 950 nm.
Consequently, previous studies have generally considered AbsBC at 880 nm as pure BC
absorption, while AbsBrC at 370 nm represents BrC absorption [23,24].

The AbsBC at 880 nm and AbsBrC at 370 nm in spring were 10.82 ± 6.8 Mm−1 and
11.47 ± 10.87 Mm−1, respectively. Figure 3 illustrates the daily average proportion of BrC
and BC at 370 nm. Throughout the study period, the proportion of AbsBrC, 370 nm was
consistently less than 40%, with only a few exceptional days exceeding this threshold. The
average proportion during spring was 28.57% ± 5.47%, a result consistent with the spring
online monitoring findings in Lanzhou [22]. Additionally, changes in aerosol sources, such
as shifts in solid fuel combustion, may contribute to variations in Abs values [25,26].

3.2. BC Concentration Characteristics

Figure 4a illustrates the temporal evolution of daily average concentrations for BC
and PM2.5 in Beijing during the spring of 2023. The daily average BC concentration stands
at 1.39 ± 0.87 µg·m−3, with a concentration range spanning from 0.36 to 3.83 µg·m−3. In
comparison, the daily average concentration of PM2.5 is recorded at 29.23 ± 29.19 µg·m−3,

ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas1
ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas1
nasa.gov
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fluctuating between 2.62 and 141.88 µg·m−3. Overall, the temporal trends in the daily
average concentrations of BC and PM2.5 exhibit a notable alignment. This coherence is
attributed to the characteristic particle size of black carbon, ranging from 0.001 to 1.000 µm,
which predominantly adsorbs onto PM2.5 particles. The linear analysis (Figure 4b) estab-
lishes a statistically positive relationship between the hourly mean concentration of the BC
and the PM2.5 (r = 0.544), indicating that the trend of their concentration changes over time
is basic consistent.
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AE33. (b) Average values of AbsBC and AbsBrC at different wavelengths.
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Figure 4. (a) Variation of BC and PM2.5 daily average concentration (b) the linear regression in Beijing
urban area in spring.

Moreover, this study aggregates BC concentration data from diverse domestic and
international cities during the same temporal window (Table 1). In contrast to Lanzhou,
where BC concentrations in spring mirror those observed in Beijing, cities such as Xuzhou,
Nanjing, Chongqing and Mexico City exhibit springtime average BC concentrations sur-
passing 3.0 µg·m−3. Notably, in New Delhi, India, characterized by heightened pollution
levels, BC concentrations during spring reach a peak of 6.33 µg·m−3. This underscores that,
relative to global urban centers, Beijing experiences relatively subdued levels of BC pollu-
tion during the spring, underscoring the efficacy of implemented atmospheric pollution
control measures.
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Table 1. Comparison of BC concentrations in various local regions.

Place Observation Period BC Concentration
(µg·m−3) Study

Beijing, China 2 March 2023 to 22 May 2023 1.39 ± 0.87 This study
Xuzhou, China Spring, 2014 3.308 [4]
Nanjing, China Spring, 2018 3.351 ± 0.919 [27]

Chongqin, China 17 January 2020 to 1 April 2020 3.8 ± 3.0 [28]
Lanzhou, China Spring, 2019 1.42 ± 0.63 [22]

New Delhi, India April to June 2016 6.33 [29]
Mexico City, Mexico April to June 2016 3.22 ± 1.54 [9]

Figure 5a displays the monthly average concentration changes of BC and PM2.5 in
Beijing’s urban area during the spring of 2023. It is evident that the average concentration
of BC and PM2.5 was highest in March, while the average concentration of BC remained
relatively stable in April and May. This pattern is linked to the prevalence of dust events
in Beijing during March, with external dust transport indirectly contributing to elevated
PM2.5 concentrations. Figure 5b reveals a distinct bimodal structure in the hourly mean
BC concentration, consistent with previous research [4,30,31]. The morning peak buildup
commences at 6 o’clock, peaks at 9 o’clock and subsequently declines rapidly. This gradual
accumulation of BC corresponds to increased traffic volume during the morning commute
to work, coupled with the development of surface inversions a few hours after sunrise,
leading to the reduced vertical mixing of primary pollutants [32,33]. Moreover, the diurnal
variation in BC concentration manifests lower values during the afternoon period from 14:00
to 16:00. This phenomenon is attributable, firstly, to the diurnal fluctuations in boundary
layer activity. As solar radiation intensifies over the course of the day, ground temperature
gradually ascends, fostering heightened atmospheric turbulence and an elevation in the
atmospheric boundary layer. Simultaneously, a marginal increase in wind speed facilitates
the vertical transport and dispersion dilution of BC. Secondly, during this timeframe, a
discernible reduction in vehicular traffic is observed in comparison to the morning and
evening peak hours. In the evening, spanning from 17:00 to 23:00, BC concentrations exhibit
a gradual ascent, stabilizing from 23:00 to 05:00 with a slight decline. This shifting trend is
ascribed to lower nighttime temperatures, inducing an inversion in atmospheric conditions.
Additionally, the influence of evening rush hour traffic contributes to the accumulation of
BC within the boundary layer. During the nocturnal period until early morning, marked
by diminished human activities, BC undergoes a settling process, resulting in a marginal
reduction in its concentration [31,34].
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Figure 5. (a) Monthly average concentrations of BC and PM2.5; (b) diurnal variation of BC concentration.
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In this study, the aethalometer model was employed to estimate the contributions
of solid fuel (coal and biomass combustion) and liquid fuel (traffic emissions) to total BC
emissions. As depicted in Figure 6, the concentration of BCliquid during spring in Beijing
was 1.08 ± 0.71 µg·m−3, exceeding that of BCsolid (0.31 ± 0.2 µg·m−3). The BCsolid/BC ratio
was consistently less than 40%, a finding consistent with the results presented in Figure 3,
indicating that liquid fuel combustion is the primary source of black carbon during spring in
Beijing. According to the Beijing Municipal Bureau of Statistics (https://tjj.beijing.gov.cn/
(accessed on 30 October 2023)), as of the end of 2022, Beijing had 7.128 million motor
vehicles, with less than 10% being new energy vehicles. Diesel and gasoline are the primary
liquid fuels, with transportation being their largest consumer [35,36]. This further supports
the idea that urban BC emissions primarily originate from liquid fuels. Moreover, the
heating season in Beijing has ended, resulting in reduced coal consumption, and significant
biomass burning activities that typically occur in spring, such as forest and grassland fires,
as well as the burning of uncultivated and cultivated fields, have been rigorously controlled
in the surrounding areas of Beijing.
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Figure 6. The characteristics of BC concentration by solid fuel and liquid fuel produced, as well as
the trend of BCsolid/BC ratio in spring in Beijing urban area.

3.3. The Relationship between BC and Air Pollutants

The sources of black carbon emissions in urban areas are generally stable, primarily
stemming from industrial fossil fuel combustion and traffic-related emissions. However,
estimating black carbon emissions on a monthly or daily scale presents various challenges
and uncertainties, including the determination of emission factors, maintaining emission
inventories and the lack of monthly energy consumption data. Therefore, this study
employs the correlation between hourly mean concentration of the BC and the atmospheric
pollutants (NO2, O3, CO) to elucidate the potential sources of black carbon emissions in
Beijing (Figure 7). The relationship between black carbon mass concentration and other
pollutants can, to a certain extent, reflect the characteristics of emission sources. In general,
the higher the correlation coefficient, the greater the similarity of emission sources [18,37].

The primary sources of CO in atmospheric pollutants are automobile exhaust emis-
sions, while the primary source of NO2 is industrial sources and traffic sources [9,18,38,39].
These two gaseous pollutants also exhibit a positive correlation with black carbon. How-
ever, the correlation coefficients for CO (r = 0.812) with black carbon aerosols are larger

https://tjj.beijing.gov.cn/
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than that of NO2 (r = 0.436), suggesting that automobile exhaust significantly influences
the concentration of black carbon in Beijing.
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Figure 7. Linear fitting of BC with atmospheric pollutants: (a) NO2 (Red), (b) O3 (Orange) and (c) CO
(Blue).

In contrast to other pollutants, O3 demonstrates a negative correlation with BC, al-
though this correlation is not statistically significant (r = −0.134). This is due to the fact that
O3 reacts with NOx in the atmosphere. When NOx concentrations are high, there is greater
O3 consumption in the chemical reaction. Conversely, when NOx concentrations are low,
O3 consumption is minimal, resulting in an inverse correlation between the concentration
trends of nitrogen oxides and ozone [40]. Therefore, O3 is mainly produced by NOx during
atmospheric photochemical reactions driven by solar radiation intensity, which differs
significantly from the source of BC, leading to a lack of a significant correlation.

3.4. Analysis of Potential Pollution Sources Region of BC
3.4.1. Potential Source Regions of BC in Spring

In addition to local source emissions, black carbon emissions from surrounding areas
are also significant factors influencing black carbon concentration within Beijing’s urban
areas. To assess the impact of regional transport on air pollution in Beijing, we employed
the HYSPLIT model to compute air quality trajectory data for Beijing during the spring of
2023. Trajectories were calculated every hour, extending up to 500 m above ground and
backtracked for 48 h. Subsequently, we clustered these trajectories (Figure 8a). The analysis
revealed that three clusters (7.56%, 22.64%, 10.73%) originated from Mongolia and Siberia
in the north and northwest of Beijing: one cluster (9.47%) was traced back to Shanxi and
Inner Mongolia to the west of Beijing; another cluster (20.43%) was attributed to Shandong
and Anhui in the south of Beijing; and one more cluster (29.17%) was linked to the Beijing–
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Tianjin–Hebei region near Beijing. This distribution is due to Beijing’s classification under a
warm temperate monsoon climate, with the primary spring monsoon wind direction being
northwest, followed by south winds (Figure 8c).
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Figure 8b presents the CWT analysis results for BC during the spring season in Beijing.
The potential source regions for BC during this period are predominantly concentrated
in the Beijing–Tianjin–Hebei region, as well as parts of Shanxi, Shandong and Henan
provinces. Shanxi provinces, being a pivotal mineral-producing region in China, hosts
significant coal and iron ore mines. In contrast, Hebei, Shandong and Henan provinces
exhibit high population density, a substantial number of motor vehicles and relatively
advanced industrial activities. Furthermore, notably elevated CWT values in the Tianjin
and Bohai Bay areas are observed. This phenomenon is attributed to Tianjin’s strategic role
as a vital transportation hub in North China, with Tianjin Port ranking as the largest trade
port in the northern part of the country. Additionally, the Bohai Bay experiences intensive
maritime traffic, where the combustion of liquid fuels from maritime sources significantly
contributes to BC concentrations.

3.4.2. Study on the Influence of Spring Dust Weather on BC in Beijing

During the spring of 2023, Beijing confronted the implications of recurring dust
weather events. This study systematically investigated three representative dust events
occurring in the spring season (dust event a: 3.21–3.22; dust event b: 4.9–4.11; dust event c:
5.19–5.21; https://yjglj.beijing.gov.cn/col/col2472/index.html (accessed on 28 November
2023)). Utilizing the PSCF model, an in-depth analysis of the potential source regions of BC
associated with these dust events was conducted (Figure 9). Concurrently, a comprehensive
examination of concentration trends for BC and PM10 during these events was carried
out (Figure S1). The primary objective was to elucidate the impact of dust weather on the
concentration of BC in Beijing.

Figure 9a elucidates that during dust event a, the predominant potential source areas
of BC (PSCF > 0.7) are predominantly situated in the southern regions of Beijing, encom-
passing Hebei and Henan province. Conversely, contributions from the northern and
northwestern directions of Beijing manifest negligible levels of black carbon. Insights
gleaned from the research of Chen et al. [41] suggest that the primary sources of spring dust
in northern China emanate from the deserts of Mongolia and the Taklamakan in Xinjiang.
Furthermore, observations derived from Figure S1a illustrate that as PM10 concentration
experiences a rapid increase, BC concentration undergoes a gradual descent.

In dust event b (Figure 9b), the principal potential source areas of BC are identified in
the southwestern direction of Beijing, encompassing regions such as Hebei Baoding and
Shanxi Datong. Interestingly, this direction does not align with the primary sources of dust,
and the concentration trends of PM10 and BC are notably consistent with those observed in
dust event a. Concerning dust event c (Figure 9c), the principal potential source areas of BC
are concentrated within the Beijing area. Notably, dust event c encompasses two distinct
dust processes (Figure S1c). During both of these episodes, PM10 concentrations exhibit
marked variability, while BC concentrations tend to remain stable, with a marginal increase
during the intervals separating the two dust processes.

In conclusion, contrary to expectations, springtime dust event does not result in an
escalation of BC concentrations in Beijing. Instead, the heightened wind speeds during
dust events contribute to an accelerated dispersion of pollutants.

https://yjglj.beijing.gov.cn/col/col2472/index.html
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4. Conclusions

Utilizing data obtained from the multi-wavelength aethalometer, coupled with me-
teorological and atmospheric pollutant datasets, our study provides a comprehensive
investigation into the optical absorption properties, concentration dynamics and potential
sources of BC in Beijing during the spring of 2023. Our findings reveal that both AbsBC
and AbsBrC exhibit maximal absorption at 370 nm, diminishing with increasing wave-
length. The values for Abs(880nm)BC and Abs(370nm)BrC are reported as 10.82 ± 6.8 Mm−1

and 11.471 ± 10.87 Mm−1, respectively, with Abs(370nm)BrC accounting for less than 40%
throughout the study period. The average concentration of BC during spring is documented
as 1.39 ± 0.87 µg·m−3, concurrently with PM2.5 registering an average concentration of
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29.23 ± 29.19 µg·m−3, both reaching their zenith in March. Furthermore, their concentration
trends exhibit a basic consistency, establishing a positive correlation (r = 0.544). The diurnal
variability of BC in Beijing manifests as a distinctive bimodal structure. Aethalometer model
outcomes suggest that BC concentration from liquid fuel combustion (1.08 ± 0.71 µg·m−3)
significantly surpasses that from solid fuel combustion (0.31 ± 0.2 µg·m−3). BC demon-
strates a substantial positive correlation with NO2 (r = 0.436) and CO (r = 0.813), while its
correlation with O3 (r = −0.134) lacks statistical significance, underscoring liquid fuel com-
bustion as the predominant source of BC in Beijing. Trajectory cluster analysis reveals that
the primary air mass trajectories in Beijing originate from the northwest. Simultaneously,
CWT analysis highlights that external sources of BC in Beijing during spring predominantly
concentrate in neighboring cities and regions, as well as parts of the Henan, Shandong
and Shanxi provinces. Importantly, dust processes do not engender drastic fluctuations
in BC concentrations in Beijing. This study contributes pivotal data on the daily average
concentration, optical characteristics and source distribution of BC in Beijing during the
spring, thereby laying a solid foundation for climate change simulations, public health
impact assessments and studies pertaining to relative emission reductions.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/toxics12030202/s1, Figure S1. The Mean hourly concentration trend of BC
and PM10 in the three dust events (a) 0:00, 21 March–23:00 22 March; (b) 12:00, 9 April–13:00, 11 April;
(c) 19:00, 19 May–7:00, 22 May.
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