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Pesticides, a major group of biocides, are designed to control harmful and/or un-
wanted organisms [1]. Pesticides are used in large amounts and play a crucial role not only
in agriculture but also in public and veterinary practices to kill or impair the multiplication
of weeds, insects, fungi, and other pests. These chemical products are designed to exert
toxicity on the target species, but they may also inadvertently pose unintended harmful ef-
fects on human health [2]. This Special Issue explores the hazardous effects of pesticides on
human health, focusing on the diverse pathways of exposure and the complex toxicological
profiles of pesticide formulations.

According to a systematic review, an estimated 385 million people suffer unintentional
acute pesticide poisoning globally each year, causing 11,000 deaths; two-thirds of these
cases occur in East and South Asia [3]. The number of people who are chronically exposed
to low doses is even higher. Pesticide applicators face primarily occupational exposure,
but ingredients in pesticide formulations can also reach the general public through various
environmental pathways [4]. Although the health effects of pesticides have long been
studied and a multitude of toxicological paths of mechanisms have been explored, ongoing
research is essential due to the wide and expanding array of pesticides. New ingredients,
adjuvants or co-formulants, novel formulant compositions, and complex product structures,
such as encapsulated pesticide products, are continuously being developed [5,6]. The
chemical industry pursues maximizing agricultural output against the evolving resistance
of target organisms and human activity-driven environmental changes.

Climate change and the consequent alterations in the local ecosystems necessitate
continuous innovation, including new technologies in pesticide production [6,7]. Climate
change is expected to increase the use of pesticides with growing total amounts, higher
local doses, increased application frequencies, and a wider scope of varieties of applied
pesticide products, which is necessitated by the changing distribution of pests and reduced
environmental concentrations of pesticides due to increased volatilization and accelerated
degradation as a consequence of increased humidity, elevated temperatures, and direct
exposure to sunlight [8,9]. Hence, increased exposure levels, prolonged exposure, and
reduced susceptibility to pesticide absorption can be expected in an occupational setting,
especially during heat waves [9].

In recent years, numerous studies have repeatedly proven that the toxicological pro-
file of pesticide formulations can differ from their active ingredients [10]. The complex
chemical mixtures of product formulations that contain adjuvants in addition to their
active ingredient are frequently found to be more toxic than the active ingredient alone. A
systematic review by Nagy et al. found that the majority of studies comparing the toxicity
of pesticide active ingredients to their product formulations observed an increased toxicity
of formulations, which in most cases was attributable to the adjuvants and their interac-
tions [10]. This phenomenon is well exemplified by the debate around the carcinogenicity
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of the most widely used herbicide, glyphosate. The International Agency for Research
on Cancer (IARC) classified glyphosate as a “probable human carcinogen” (group 2A) in
2015 [11], while other reputable international and national organizations did not arrive
at the same conclusion at the same time [12,13]. Since then, research has pointed out that
the genotoxic and carcinogenic potential of glyphosate-based herbicide formulations can
be substantially increased compared to the active ingredient glyphosate alone [14–16].
Therefore, in addition to the effects of chronic low-level exposures, such as genotoxicity,
carcinogenicity, teratogenicity, sensitization, and neurotoxicity, the intricate interactions of
the various components of product formulations demand thorough toxicological assess-
ments to manage human health risks effectively. For these reasons, this Special Issue aimed
to collect novel scientific evidence from recent studies investigating the unwanted effects
of environmental pesticide exposures on human health.

Detecting early signs of neurotoxicity poses challenges, yet studies demonstrate ad-
verse effects on the nervous system at low pesticide doses. Research by Hirai et al. (contri-
bution 1) identified neurotoxic effects of the neonicotinoid pesticide imidacloprid in mice,
revealing behavioral changes and altered neurotransmitter levels. They observed decreased
activity in behavior tests and a decrease in the level of monoamine neurotransmitters in the
olfactory bulb and the stratum of the brain of test animals.

Another frequently observed harmful effect of pesticides that can be induced by
chronic low-dose exposures is sensitization, leading to allergies. Therefore, the detection
of the skin sensitization potential of pesticides is crucial to the assessment. Yang et al.
(contribution 2) measured luciferase enzyme activity in KeratinoSens cells and LuSens cells
using standardized assay models to evaluate the skin sensitization potential of ten and
eleven agrochemicals and compared the results to information available on sensitization
in animal testing databases. Using the in vitro systems, benomyl, pretilachlor, fluazinam,
terbufos, butachlor, and carbosulfan were detected as sensitizers, and glufosinate ammo-
nium, oxiadiazon, tebuconazole, and etofenprox were correctly detected as non-sensitizers.
The authors observed conflicting results only for diazinon, which proves the ability of
the applied KeratinoSens assay and LuSens assay to test skin sensitization potential with
high precision.

Oxidative stress, a pathomechanism often induced by pesticides, leads to various
adverse health outcomes. Three articles in this Special Issue investigated oxidative stress
caused by pesticides in different contexts. Studies on mancozeb, ipconazole, and glyphosate-
based herbicide formulations illustrate the correlation between oxidative stress and liver
damage, neurotoxic potential, and cytotoxic effects, respectively. Nuchniyom and her
colleagues (contribution 3) could observe an increase in a series of molecular markers of
oxidative stress induced by the widely used fungicide mancozeb in orally exposed male
Wistar rats, along with a marked hepatotoxic effect measured by markers of liver injury.
Both the oxidative stress and the liver damage were effectively prevented by Nelumbo
nucifera petal tea extract. Another widely used fungicide, ipconazole, was proved by
Villaorduña et al. (contribution 4) to increase the production of reactive oxygen species,
decrease expression of antioxidant genes, induce inflammation and overexpression of
inflammation genes, and reduce cell viability by inducing cell death in SH-SY5Y neuroblas-
toma cells in vitro. The findings point out the neurotoxic potential of this pesticide. Finally,
Makame and her colleagues (contribution 5) investigated oxidative stress and cytotoxicity
induced by glyphosate, the most widely applied but currently highly debated herbicide,
compared to the same effect of three glyphosate-based herbicide formulations and their
other ingredients. They found that glyphosate alone did not significantly affect cell viability,
while the formulations and their co-formulant ingredients induced a considerable cytotoxic
effect from a quite low concentration that could be explained by increased oxidative stress.
The results are in line with several other observations that prove the increased toxicity of
pesticide product formulations compared to their active ingredients.

The combined effect of pesticide mixtures was clinically examined by Liang et al.
(contribution 6), revealing diverse clinical symptoms and increased risks of acute respi-
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ratory failure in patients exposed to methomyl or its mixture with cypermethrin. They
analyzed the health outcomes of patients acutely intoxicated with the carbamate insecticide
methomyl, the pyrethroid insecticide cypermethrin, or their mixture. The 63 patients
treated over a 16-year period developed a wide range of clinical symptoms, and 7 of them
died as a consequence of their intoxication. The authors found that exposure to methomyl
as well as to the methomyl and cypermethrin pesticide mixture significantly increased the
risk of acute respiratory failure, which suggests that methomyl is the major contributor to
the toxicity of the pesticide mixture.

The six articles in this Special Issue significantly contribute to our understanding of
pesticide toxicity, urging further research on this critical environmental and occupational
health concern. The findings underscore the importance of continuous investigation to
safeguard human health against the evolving landscape of pesticide use and exposure.
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