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Abstract: Background: The association between specific chemical components of PM2.5 and depres-
sion remains largely unknown. Methods: We conducted a time-stratified case-crossover analysis with
a distributed lag nonlinear model (DLNM) to evaluate the relationship of PM2.5 and its chemical
components, including black carbon (BC), organic matter (OM), sulfate (SO4

2−), nitrate (NO3
−), and

ammonium (NH4
+), with the depression incidence. Daily depression outpatients were enrolled from

Huizhou, Shenzhen, and Zhaoqing. Results: Among 247,281 outpatients, we found the strongest
cumulative effects of PM2.5 and its chemical components with the odd ratios (ORs) of 1.607 (95%
CI: 1.321, 1.956) and 1.417 (95% CI: 1.245, 1.612) at the 50th percentile of PM2.5 and OM at lag 21,
respectively. Furthermore, the ORs with SO4

2− and NH4
+ at the 75th percentile on the same lag day

were 1.418 (95% CI: 1.247, 1.613) and 1.025 (95% CI: 1.009, 1.140). Relatively stronger associations
were observed among females and the elderly. Conclusions: Our study suggests that PM2.5 and its
chemical components might be important risk factors for depression. Reducing PM2.5 emissions,
with a particular focus on the major sources of SO4

2− and OM, might potentially alleviate the burden
of depression in South China.

Keywords: PM2.5 chemical components; depression; time-stratified case-crossover analysis;
distributed lag nonlinear model

1. Introduction

Depression is one of the world’s most prevalent mental diseases, marked by abnormal
mood swings and transient emotional responses to the challenges of daily life [1]. According
to the World Health Organization (WHO), depression affects approximately 3.8% of the
global population, especially in developing countries [1]. In China, depression has been
estimated to have a prevalence of 3.6% [2], making it the second leading cause of years
lived with disability [3]. Exploring the risk factors for depression is of great public health
significance for prevention as well as the reduction of the burden on society.

It has been demonstrated that a few risk factors, including genetic factors [4], parental
depression and stressful life events [5], other psychological disorders [5], and socioeconomic
factors [6], could trigger the onset of depression. Moreover, there is increasing evidence
supporting the notion that ambient air pollution has a significant impact on the risk of
depression. Particularly, it is widely recognized that ambient fine particulate matter (PM2.5)
pollution exposure is associated with depression. For example, one cohort study from UK
Biobank has shown that each interquartile range (IQR) increase in PM2.5 was associated
with a hazard ratio (HR) of 1.08 (95% CI: 1.07, 1.10) in depression [7]. One study in Ningbo
indicated that the essential effects of PM2.5 on depression were found with an excess risk
(ER) of 2.59 (95% CI: 0.72, 4.49) on lag0 [8]. In addition, Tsai SS et al. reported that an IQR
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increase in the PM2.5 concentration leads to a 17% (95% CI: 14%, 19%) rise in the risk of
depression [9]. Additionally, a meta-analysis including 39 studies supported a significant
association between short-term ambient PM2.5 exposure and the risk of depression, with a
relative ratio (RR) of 1.009 (95% CI: 1.007, 1.011) for each 10 µg/m3 increase in PM2.5 [10].

However, previous studies have proposed that the associations between PM2.5 and
depression vary across different populations and areas, which might be due to differences
in the harmful components of PM2.5 [11,12], including black carbon (BC), organic matter
(OM), sulfate (SO4

2−), nitrate (NO3
−), and ammonium (NH4

+). For example, each 1 unit
increase in the BC and OM concentrations was associated with depressive symptoms
and the relative risk was 1.118 (95% CI: 1.020, 1.225) and 1.134 (95% CI: 1.028, 1.252),
respectively [11]. However, it is still unknown whether short-term specific PM2.5 chemical
component exposure contributes to the risk of depression.

Given these research gaps, we conducted a time-stratified case-crossover analysis with
a distributed lag nonlinear model (DLNM) in three subtropical cities in South China. We
aimed to identify the most toxic components responsible for the nonlinear and delayed
effects of PM2.5 and its chemical components on outpatient visits for depression.

2. Material and Methods
2.1. Study Area

The study area covered three subtropical cities in Guangdong Province: Huizhou,
Shenzhen, and Zhaoqing. These three cities are located in the southeast coastal area of
China, covering an area of 5.72 million km2, 15.87 million km2, and 4.04 million km2, respec-
tively. According to the seventh national population census, the permanent populations
of Huizhou, Shenzhen, and Zhaoqing were 6.04 million, 17.56 million, and 4.11 million,
respectively [13].

2.2. Outcome

Daily outpatient visits for depression were collected at psychiatric specialist hospitals
in each study city (the Second People’s Hospital in Huizhou from 1 September 2013 to
11 November 2018, Kangning Hospital in Shenzhen from 1 August 2016 to 31 December
2018, and the Third People’s Hospital in Zhaoqing from 1 August 2016 to 12 January 2018).
Personal information, consisting of age, gender, visit date for depression, clinical diagnosis,
and residential address, was extracted from the electronic medical record systems. Only
patients who have lived in the cities for more than 6 months and have complete information
were included in the analysis. Depression was identified by the International Classification
of Disease-10 (ICD-10) codes F32–F33.

2.3. Air Pollution Exposure Assessment

According to previous studies [11,12], our investigation focused on black carbon (BC),
organic matter (OM), sulfate (SO4

2−), nitrate (NO3
−), and ammonium (NH4

+), as they
are the primary chemical components of PM2.5, all of which are closely associated with
depression. Exposure assessments of PM2.5 and these components were conducted based
on the China Tracking Air Pollution (TAP, http://tapdata.org.cn/, accessed on 30 December
2023), as calculated with a spatial resolution of 10 km × 10 km. It collected data from a
variety of sources, including ground observations, satellite aerosol optical depth (AOD),
and others. After data collection and processing, a Two-Stage Machine Learning Model and
Gap-Filling Method were approached to model the PM2.5 [14]. Detailed information can be
found in the study by Geng G et al. The average out-of-bag cross-validation correlation
coefficient (R) for the PM2.5 quality in the TAP data source was 0.72, and the model cross-
validation Rs were over 0.67 for the individual components, representing an overall good
performance on the ground estimation of the PM chemical components [14,15].

Meteorological data, including the ambient temperature (◦C) and dew point tempera-
ture (◦C), were derived from the open-access ERA-5 reanalysis of the European Center for
Medium-Range Weather Forecasts (ECMWF) (spatial resolution, 9 km × 9 km) [16]. The
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ECMWF has one of the largest supercomputer facilities and meteorological data archives in
the world and produces global numerical weather forecasts for users worldwide. On the
basis of the ambient temperature and dew point temperature, we determined the relative
humidity for further analysis.

Based on the residential address geocoded into the latitude and longitude data, we used
a bilinear interpolation method to estimate the daily PM2.5 and its chemical components
exposure, as well as the meteorological variables, for each outpatient. The weighted average
of the four closest grids was used to calculate the final concentration, and we averaged the
exposure for all the outpatients from the three cities as the individual-level exposure.

2.4. Statistical Analysis

The mean and standard deviation (SD) were used to describe the continuous variables,
while the number and percentage were employed to describe the categorical variables in
our study. The Spearman’s correlation was determined to examine the relationship between
PM2.5 and its chemical components as well as meteorological factors.

A time-stratified case-crossover design was employed in our study, using the case day
as the hospital visiting day and designating days of the week that shared the same year,
month, and week as the control days. For example, if a patient presented at the hospital
with depression on Friday, 1 March 2017, that date was designated as the case day, while
all the other Fridays in March 2017 (8, 15, and 22 March) were designated as the control
days. This design could control for any time-invariance at the patient level (such as age,
gender, and genetic) [17], which helps to avoid the influence of uncontrollable factors and
increase comparability when reducing bias by taking itself as the control.

Because of the nonlinear and lagged relationship between air pollution exposure
and health-related outcomes supported in previous studies [18,19], we adopted a DLNM
approach that incorporates cross-basis functions. This allowed us to simultaneously express
the nonlinear exposure–response and lag–response associations [20]. Conditional logistic
models were developed to investigate the individual-level associations between the risk of
depression outpatient visits and short-term exposures to ambient air pollutants [21].

To account for the short-term exposure patterns in depression patients and other
time-varying factors that may obfuscate the connection between air pollution (PM2.5 and
its chemical components) and depression outpatient visits, the df for both the air pollution
and lag structure in the model was set to 4 after detailed considerations of both the relevant
literature [22] and the Akaike information criterion (AIC) (Table S1). In line with previous
studies, the daily temperature and relative humidity were both modeled using natural
cubic splines with 4 df [23]. Based on the Diagnostic and Statistical Manual of Mental
Disorders-5th Edition (DSM-5) requirement that the symptoms associated with depressive
disorders must last for at least two weeks before being diagnosed officially as depression,
we considered 21 as the maximum number of lag days and the lag effect was set as single-
day lags. After the main model was established, we included exposure data in the model as
a daily average. The association of different PM2.5 chemical component exposures with the
depression incidence was calculated respectively, so as to explore the susceptible windows.
The concentrations with minimum effects of air pollutants were taken as a reference for
estimating the odd ratios (ORs).

This study categorized the outpatients by gender (male or female) and age (under or
over 60 years old) to identify potentially susceptible subgroups.

In the sensitivity analysis, we changed separately the df of 3 and 5 for the daily
temperature and relative humidity. R software (version 4.2.2) was employed for all the
analyses. The statistical tests were two-sided, and a relationship was judged statistically
significant when p 0.05 was obtained.
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3. Results
3.1. Descriptive Results

A total of 58,112 outpatients in Huizhou, 189,156 in Shenzhen, and 27,013 in Zhaoqing
were recorded with depression in our study (Table S2). Almost half of the visitors were
females (56.83%), and the majority (89.43%) were under 60 years old (Table 1). The mean
concentration of PM2.5, BC, OM, SO4

2−, NO3
−, and NH4

+ on the case day was 29.03 µg/m3,
1.71 µg/m3, 8.11 µg/m3, 6.00 µg/m3, 3.86 µg/m3, and 3.00 µg/m3, respectively (Table 2).
Figure S1 showed that the exposure levels for more than half of the study population
have not yet reached the average concentrations of PM2.5 and its components (on the case
day). The daily exposure to PM2.5 and its chemical components ranged across the different
cities (Table S2). For example, the mean exposure to NO3

− in Zhaoqing was 5.50 µg/m3,
marginally higher than that in Shenzhen (3.42 µg/m3) and Huizhou (4.52 µg/m3).

Table 1. Daily outpatients for depression in three study cities during the study period.

Characteristics Huizhou Shenzhen Zhaoqing All

Gender
Male 13 (47.92%) 74 (42.28%) 11 (41.45%) 98 (43.17%)
Female 14 (52.08%) 100 (57.72%) 15 (58.55%) 129 (56.83%)

Age
<60 years 24 (87.93%) 158 (90.80%) 21 (82.28%) 203 (89.43%)
≥60 years 3 (12.07%) 16 (9.20%) 5 (17.72%) 24 (10.57%)

Table 2. Distributions of the PM2.5 chemical components and meteorological factors during the case
and control days.

Case Day Control Day

No. of days 247,281 931,355
Meteorological factors

Daily temperature (◦C) 21.94 ± 5.63 22.03 ± 5.56
Relative humidity (%) 78.49 ± 12.11 78.63 ± 12.08

PM2.5 and its chemical components
PM2.5 (µg/m3) 29.03 ± 15.00 28.96 ± 15.07
BC (µg/m3) 1.71 ± 0.94 1.71 ± 0.94
OM (µg/m3) 8.11 ± 4.50 8.10 ± 4.52
SO4

2− (µg/m3) 6.00 ± 3.29 6.00 ± 3.31
NO3

− (µg/m3) 3.86 ± 3.29 3.83 ± 3.28
NH4

+ (µg/m3) 3.00 ± 2.32 2.98 ± 2.31

Notes: PM2.5 = fine particulate matter having an aerodynamic diameter of 2.5 µm or less; SO4
2− = sulfate;

NO3
− = nitrate; NH4

+ = ammonium; OM = organic matter; BC = black carbon.

The study found that the correlations between PM2.5 and its chemical components
are ranging from moderate to strong, with a correlation coefficient (r) higher than 0.50
(Table S3). For instance, BC showed a strong correlation with PM2.5 (r = 0.93) and a
moderate correlation with NO3

− (r = 0.76). By contrast, the daily temperature and relative
humidity were negatively associated with the PM2.5 chemical components.

3.2. The Associations of PM2.5 and Its Chemical Components with Outpatient Visits
for Depression

The overall exposure–response relationships of short-term PM2.5 and its chemical
components exposure with outpatient visits for depression at lag 21 are shown in Figure S2.
Inverted S-shape curves were observed for depression, which clearly demonstrated that
the associations of PM2.5 and its chemical components with depression outpatient visits
are nonlinear. Specifically, the risks associated with PM2.5 and its chemical components
increased steadily as the concentrations increased from a low level, with turning points at
approximately 25.9 µg/m3 for PM2.5 and 1.3 µg/m3 for BC, 7.2 µg/m3 for OM, 4.0 µg/m3
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for SO4
2−, 3.3 µg/m3 for NO3

−, and 2.7 µg/m3 for NH4
+, after which the risks marginally

decreased with the increase in concentrations. PM2.5 demonstrated the strongest association
with outpatient visits for depression. When the level of the air pollution reached especially
high, the risks increased sharply. Moreover, the concentration range corresponding to the
peak number of outpatients aligned with that of the turning points (Figure S1).

In the three cities, consistent, nonlinear effects of PM2.5 and its chemical components
were observed on depression outpatient visits (Figure S3). In Huizhou, the components
analyzed in this study reached their own turning points at relatively later concentrations.
Except for NO3

−, the risks of PM2.5 and the other four chemical components increased
most sharply at high exposure concentrations in Zhaoqing.

Figure S4 shows the relationships of short-term exposure to PM2.5 and its chemical
components with the morbidity of mental disorders at lag 14. Compared to the curves
shown in Figure S2, the risks were marginally decreased for outpatient visits for depression
at the same level of exposure to PM2.5 and its chemical components, particularly at both
low and high concentrations.

Figure 1 shows the specific effects of PM2.5 and its chemical components exposure
on depression outpatient visits, taking into account different concentrations and lag days.
The curves show a U-shape or an inverted S-shape, with a relatively higher risk observed
at high concentration exposure. Thus, the concentrations were divided into the lower
percentile (25th percentile), median (50th percentile), and upper percentile (75th percentile)
for further investigation to determine their effects. Additionally, it was found that as the
lag time increased, PM2.5 and its chemical components exposure had a significant impact
on the risk of depression outpatient visits.
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Figure 1. 3D plot of the odd ratios (OR) among the PM2.5 chemical components and lag days for the
outpatient visits for depression using a DLNM method.

Table 3 shows the cumulative risks of PM2.5 and its chemical components for de-
pressive outpatients. The cumulative risks of PM2.5 continued to increase as the lag days
extended, with the maximum OR of 1.525 (95% CI: 1.231, 1.889) (25th percentile), 1.607
(95% CI: 1.321, 1.956) (50th percentile), and 1.403 (95% CI: 1.160, 1.697) (75th percentile)
at a 21–day lag, respectively. Significant associations were consistently found for SO4

2−

and NH4
+, and increased to the maximum at 7.8 µg/m3 (ORs = 1.418, 95% CI: 1.247, 1.613)

and 4.7 µg/m3 (OR = 1.086, 95% CI = 1.054, 1.120), respectively. OM was significantly
associated with depression outpatient visits, and the highest cumulative risks reached 1.417
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(95% CI: 1.245, 1.612) at 7.2 µg/m3 (50th percentile) at lag 21 days. Conversely, for BC and
NO3

−, we have not observed appreciable cumulative risk associations with depression
outpatient visits.

Table 3. The cumulative risks of PM2.5 and its chemical components for outpatient visits for depres-
sion with df of 4, on lag 0–7, 0–14, 0–21 days, with the concentration that corresponds to the minimum
effects serving as a reference.

Concentration
(µg/m3)

Odds Ratio (95% CI)

Lag 0–7 Lag 0–14 Lag 0–21

PM2.5
25th 18.1 1.207 (1.086, 1.341) 1.528 (1.305, 1.790) 1.525 (1.231, 1.889)
50th 25.9 1.181 (1.072, 1.302) 1.541 (1.332, 1.783) 1.607 (1.321, 1.956)
75th 36.5 1.127 (1.025, 1.239) 1.374 (1.193, 1.583) 1.403 (1.160, 1.697)

BC
25th 1.0 0.941 (0.873, 1.013) 0.787 (0.704, 0.879) 0.684 (0.589, 0.795)
50th 1.5 0.941 (0.873, 1.013) 0.787 (0.704, 0.879) 0.684 (0.589, 0.795)
75th 2.2 0.962 (0.917, 1.009) 0.849 (0.791, 0.912) 0.766 (0.697, 0.843)

OM
25th 4.7 1.036 (0.969, 1.107) 1.181 (1.069, 1.305) 1.231 (1.076, 1.408)
50th 7.2 1.044 (0.978, 1.114) 1.279 (1.161, 1.409) 1.417 (1.245, 1.612)
75th 10.4 1.007 (0.946, 1.072) 1.172 (1.069, 1.286) 1.277 (1.130, 1.443)

SO4
2−

25th 3.5 1.025 (1.006, 1.045) 1.077 (1.046, 1.109) 1.098 (1.057, 1.142)
50th 5.4 1.067 (1.016, 1.121) 1.218 (1.129, 1.313) 1.287 (1.164, 1.422)
75th 7.8 1.090 (1.023, 1.161) 1.302 (1.182, 1.435) 1.418 (1.247, 1.613)

NO3
−

25th 1.7 0.617 (0.551, 0.690) 0.459 (0.385, 0.547) 0.285 (0.226, 0.361)
50th 2.8 0.632 (0.567, 0.703) 0.487 (0.411, 0.577) 0.314 (0.250, 0.393)
75th 4.7 0.655 (0.588, 0.729) 0.539 (0.455, 0.638) 0.361 (0.288, 0.452)

NH4
+

25th 1.5 0.942 (0.905, 0.981) 0.867 (0.815, 0.921) 0.820 (0.755, 0.891)
50th 2.3 0.990 (0.983, 0.996) 0.975 (0.965, 0.985) 0.966 (0.953, 0.979)
75th 3.6 1.025 (1.009, 1.040) 1.065 (1.041, 1.090) 1.086 (1.054, 1.120)

Notes: The study adopted a DLNM approach that incorporates cross-basis functions. The concentrations were
divided into the 25th percentile, 50th percentile, and 75th percentile to determine their effects. The reference
levels of PM2.5, BC, OM, SO4

2−, NO3
−, NH4

+ on lag 0–7 days were 1 µg/m3, 1.8 µg/m3, 9 µg/m3, 0.5 µg/m3,
0.5 µg/m3, 0.5 µg/m3, respectively. The reference levels of PM2.5, BC, OM, SO4

2−, NO3
−, NH4

+ on lag 0–14 days
were 1 µg/m3, 0.2 µg/m3, 1 µg/m3, 0.5 µg/m3, 10.9 µg/m3, 0.5 µg/m3, respectively. The reference levels of
PM2.5, BC, OM, SO4

2−, NO3
−, NH4

+ on lag 0–21 days were 1 µg/m3, 0.2 µg/m3, 1 µg/m3, 0.5 µg/m3, 8.9 µg/m3,
0.5 µg/m3, respectively.

PM2.5 and its chemical components appeared to be strongly associated with outpatient
visits for depression across the three cities (Table S4), with the lag patterns similar to those
observed in all the study populations. For example, for a 26.0 µg/m3 increase in PM2.5
at lag21, the OR of the outpatient visits for depression was 1.465 (95% CI: 1.091, 1.967) in
Shenzhen. Significant associations were observed for SO4

2− and OM. For instance, the
maximum ORs of SO4

2− and depression outpatient visits in Huizhou, Shenzhen, and
Zhaoqing was 1.359 (95% CI: 1.148, 1.610), 1.146 (95% CI: 0.998, 1.317) and 1.476 (95% CI:
1.055, 2.066), respectively. Additionally, no significant results were observed for BC, NO3

−,
and NH4

+ in all three cities.

3.3. Associations by Gender and Age

Figures S5 and S6 show that PM2.5 and its chemical components had different effects on
depression outpatient visits in the gender and age analyses. More pronounced associations
were observed for PM2.5, OM, and SO4

2− in females, with corresponding ORs of 1.820 (95%
CI: 1.398, 2.369), 1.561 (95% CI: 1.314, 1.855), and 1.380 (95% CI: 1.206, 1.578) at lag 21 days
(Table S5). The elderly (over 60 years old) were marginally more vulnerable to PM2.5 and
OM than the young (under 60 years) based on age analysis (Table S6).
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3.4. Sensitivity Analyses

Sensitivity analyses demonstrated that when we change the df for the daily tempera-
ture (df = 3 or 5) and relative humidity (df = 3 or 5), the associations remained almost similar
(Figures S7 and S8, Tables S7 and S8). While for NO3

−, the df for the daily temperature and
relative humidity both changed to 3, the corresponding ORs for NO3

− were 1.045 (95% CI:
1.027, 1.063) at lag 7 days, 1.123 (95% CI: 1.095, 1.151) at lag 14 days, 1.148 (95% CI: 1.112,
1.185) at lag 21 days. The robustness of our study was demonstrated by the fact that the
additional analytical results were largely compatible with the main model.

4. Discussion

This study is the first to investigate the association between short-term exposure to
five major chemical components of PM2.5 and outpatient visits for depression. Using a
time-stratified case-crossover study with DLNM in three subtropical cities in Guangdong
Province, Huizhou, Shenzhen, and Zhaoqing, we revealed that short-term exposure to
PM2.5, BC, OM, SO4

2−, NO3
−, and NH4

+ elevated the risk of outpatient visits for depres-
sion. The association between SO4

2− and depression appeared to be more consistent across
different lag days. OM has been shown to be the strongest associated with depression
outpatient visits when exposed at the median concentration. Stratified analyses yielded
pronounced results in females and the elderly.

Consistent with our findings, a comprehensive systematic review found an elevated
risk of depression related to short-term PM2.5 exposure [10]. Another study, conducted in
nine cities in the Beijing–Tianjin–Hebei area, indicated that PM2.5 exposure corresponded
to a 1.92 (95% CI: 1.19, 3.12) rise in depression visits [24]. Hong J et al. highlighted that
as the level of air pollution increased, the overall risks of depression, as well as other
mental disorders, responded with nonlinear curves, which was in line with an inverted
S-shape curve observed in our study [18]. Given the slight reduction after the turning
points in the curves, it is believed that individual behavioral modifications (staying indoors,
limiting physical activity) partially mitigate the effect of air pollution on the onset of
depression [25]. From the standpoint of the biological mechanism, this might be related to
disease competition and saturation of biochemical sites, such as receptor competition and
enzyme activity [26]. We indeed advocate taking necessary measures to protect ourselves
when there is a high level of air pollution. The delayed effect differs from the findings of a
multi-city study including 111,842 hospital outpatient visits in China, which reported an
excess relative risk (EER) (%) of 1.039% (95% CI: 1.344, 1.739%) associated with a 10 µg/m3

increase at lag 05 of PM2.5 [27].
The association found between the concentrations of PM2.5 and depression outpatient

visits varied across the three cities studied, which was attributed to the regional specificity
of the chemical components of PM2.5 [11], genetic factors [28], parental depression and
stressful life events [5], and socioeconomic factors [6]. In terms of the multiple major compo-
nents of PM2.5, our study was strongly corroborated by Ju K et al., who discovered evidence
of a positive correlation between long-term exposure to PM2.5 chemical components and
depression [11].

It was biologically plausible that PM2.5 might trigger the onset of depression. Existing
research reported that PM2.5 was related to oxidative stress, inflammatory responses [29],
and neurotransmitter imbalances such as serotonin and norepinephrine [30], which were
associated with depression. Moreover, the aforementioned toxic effects might account for
the deposition of special PM2.5 chemical components. In addition, several other studies
revealed that the association of PM2.5 with depression was not significant [31]. Therefore,
identifying the association of both PM2.5 and its chemical components with depression
is necessary.

As a significant component of PM2.5, BC primarily forms from incomplete combustion
of fossil fuel [32]. In agreement with our findings, Shen M et al. demonstrated that
exposure to BC was substantially associated with depression (β = 0.17, p < 0.001) in college
students [12]. Combining the results of the overall risk in Figure 1 and the cumulative risk in
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Table 3, we found that the cumulative effect is reversed at longer lags, and the same situation
occurs again for NO3

−. Different from BC, OM is released into the environment both by
combustion emissions and photochemical reactions [33]. On the other hand, the compounds
of OM are complex, accounting for organic carbon, polycyclic aromatic hydrocarbons
(PAHs), zero phthalates, etc. The associations between OM and depression outpatient visits
were explored in our study, supported by a previous study in which the OR of an increase of
1 unit was 1.134 (95% CI: 1.028, 1.252) [11]. Interestingly, the median concentrations of OM
corresponded to the first turning point concentration in Figure S2, which may explain the
higher cumulative risks of these two pollutants observed at 7.2 µg/m3 (50th percentile) in
Table 3. In terms of the mechanism, when OM cooperates with the other PM2.5 components
that are inhaled and exert toxic effects, there is a certain competitive relationship in the
pathways [11]. PAHs are considered to be both the precursors of BC [34] and the important
components of OM [35]. Rahman et al. reported that the concentration levels of seven
types of PAHs in urine were positively correlated with depression [36]. Mechanisms
studies supported the notion that BC might lead to oxidative stress and inflammatory
injury along with PAHs, which may contribute to neurotoxicity [34]. The exact mechanisms
of the association between OM and depression have been largely unclear. Thus, more
investigation is warranted to explore the mechanisms underlying the associations between
OM and depression.

NH4
+ is a secondary inorganic aerosol present in the air, primarily in the form of a

mixture of nitrate and sulfate [37]. In China, industrial production, agricultural activities,
and transportation emissions are considered to be the major sources of NH4

+ [37]. We found
that short-term NH4

+ exposure was associated with the risk of daily depression outpatient
visits, especially in Huizhou, which revealed an OR of 1.141 (95% CI: 1.022, 1.273). NO3

−

and SO4
2− are the other two secondary inorganic aerosols formed in the atmosphere. NO3

−

is generated mainly from the photochemical conversion of nitric acid and ammonia [38],
while SO4

2− is usually emitted from the combustion of fossil fuels [35]. Our study also
discovered that NO3

− and SO4
2− were significantly associated with depressive symptoms,

whereas stronger associations were observed for SO4
2−. A cohort study of Chinese adults

has pointed out that long-term exposure to these three inorganic components elevated
the incidence of depression, with the ORs found being 1.127 (95% CI: 1.011, 1.255) for
NH4

+, 1.117 (95% CI: 1.020, 1.224) for SO4
2−, and 1.107 (95% CI: 0.981, 1.248) for NO3

− [11].
Unfortunately, the reasons for these findings have not been fully established. Experimental
studies proposed that NH4

+ may induce damage to glial cells and block the maturation of
neurons [39], while NO3

− and SO4
2− can cause mitochondrial abnormalities [40].

Our stratified analyses revealed that PM2.5 was more strongly associated with depres-
sion outpatient visits in females, which was in line with previous studies [8]. A study
including 26 Chinese cities suggested that an IQR increase in PM2.5 concentrations corre-
sponding to a 3.97% (95% CI: 2.06, 5.91) increase in admissions for females, while males
experienced a minor increase of 0.74% (95% CI: 1.92, 3.47) [19]. Neurodevelopment and
hormone states [41] seem to be significant explanations for the difference, but more research
is warranted. This study found that the elderly were more susceptible to PM2.5 and its
chemical components, which was aligned with previous research. Wang et al. discovered
that PM2.5 exposure had an important influence on hospitalization for depression among
individuals over the age of 65, with an OR of 9.23 (95% CI: 5.09, 13.53) [19]. Compared
with younger adults, the elderly (over 60 years old) are usually in poorer health and might
be more vulnerable to PM2.5 and its chemical components exposure [42,43]. However,
considering the sample size of patients over 60 years was relatively smaller (accounting
for 10.57%), the association could be underestimated or overestimated when this factor is
merely considered in the model as an extreme value.

There are some strengths of this study. Firstly, we provided very rare evidence
of the associations of the short-term specific PM2.5 chemical component exposure with
depression outpatient visits. Secondly, the time-stratified case-crossover design mitigated
the connections of various confounding factors, such as socioeconomic status, education
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level, etc. The DLNM provided a more comprehensive understanding of the nonlinear
and delayed influence of PM2.5 and its chemical components. Thirdly, in comparison
to the data from space monitoring stations, the TAP dataset is time-sensitive and high-
resolution, providing more accurate exposure information. Nevertheless, the study has
some limitations. Our assessment of patients’ PM2.5 and its chemical components exposure
was based on the resident address, which was unilateral that the patients were active within
the area most of the time. In addition, there are certain potential confounding factors, such
as green space and exercise frequency, which may affect the onset of depression. Moreover,
this study only observed a lagged effect of 21 days, which might not fully capture the
potential short-term effects of PM2.5 and its chemical components exposure on depression
outpatient visits. Furthermore, we focused our research on only five significant chemical
components of PM2.5, whereas other components, such as PAHs, Cu, Cd, Ni, and Zn,
were not recorded because of the limitations of exposure data. Finally, this study did
not explore the possible synergistic associations of the PM2.5 chemical components with
the onset of depression, which needs to be compensated for in the future through better
statistical models.

5. Conclusions

Our findings add new evidence that short-term exposure to multiple specific compo-
nents of PM2.5 might be an important risk factor for the depression incidence. Particular
attention should be paid to SO4

2−, OM, and their emission sources. We recommend that
further regulations should be established focusing on the PM2.5 components.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/toxics12020136/s1, Figure S1: Box plots of exposure concentra-
tion of PM2.5 chemical components and the distribution density of the total study population at
corresponding concentrations; Figure S2: Overall exposure-response relationships of PM2.5 and its
chemical components with depression outpatient visits in the total study population at a 21-day
lag in df of 4. The solid smooth lines and shaded areas represent the odds ratio of cause-specific
mental disorder morbidity and its 95% CI, respectively. The horizontal dashed line in each panel
indicates the odds ratio of 1; Figure S3: Overall exposure-response relationships of PM2.5 and its
chemical components with depression outpatient visits at lag 21-day in each three cities. The solid
smooth lines and shaded areas represent the odds ratio of cause-specific mental disorder morbidity
and its 95% CI, respectively. The horizontal dashed line in each panel indicates the odds ratio of
1; Figure S4: Overall exposure-response relationships of PM2.5 and its chemical components with
depression outpatient visits at lag 14-day in the total study population in df of 4. The solid smooth
lines and shaded areas represent the odds ratio of cause-specific mental disorder morbidity and its
95% CI, respectively. The horizontal dashed line in each panel indicates the odds ratio of 1; Figure S5:
Gender-stratified analysis for the cumulative association on lag 0–7, 0–14, 0–21 days at 50th percentile
concentration of PM2.5 and its chemical components with depression outpatient visits; Figure S6:
Age-stratified analyses for the cumulative association on lag 0–7, 0–14, 0–21 days at 50th percentile
concentration of PM2.5 and its chemical components with depression outpatient visits; Figure S7:
Overall exposure-response relationships of PM2.5 and its chemical components with depression
outpatient visits at lag 21-day in the total study population. The solid smooth lines and shaded areas
represent the odds ratio of cause-specific mental disorder morbidity and its 95% CI, respectively.
The horizontal dashed line in each panel indicates the odds ratio of 1. (df = 3 for daily temperature
and relative humidity); Figure S8: Overall exposure-response relationships of PM2.5 and its chemical
components with depression outpatient visits at lag 21-day in the total study population. The solid
smooth lines and shaded areas represent the odds ratio of cause-specific mental disorder morbidity
and its 95% CI, respectively. The horizontal dashed line in each panel indicates the odds ratio of 1.
(df = 5 for daily temperature and relative humidity); Table S1: Cross-validation of AICs of various
df daily average air pollution; Table S2: Descriptive summary of the demographic characteristics
of the three cities; Table S3: Spearman correlation among PM2.5 and its chemical components and
meteorologic variables; Table S4: The cumulative effects of PM2.5 and its chemical components on
depression outpatient visits with df of 4, on lag 0–7, 0–14, 0–21 days, at the 50th percentile con-
centration in each three cities, with the concentration corresponding to the minimum risk as the
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reference; Table S5: Gender stratified analysis for the cumulative effect on lag 0–7, 0–14, 0–21 days
at 50th percentile concentration of PM2.5 and its chemical components with depression outpatient
visits; Table S6: Age stratified analysis for the cumulative effect on lag 0–7, 0–14, 0–21 days at 50th
percentile concentration of PM2.5 and its chemical components with depression outpatient visits;
Table S7: The cumulative effects of PM2.5 and its chemical components on depression outpatient
visits, on lag 0–7, 0–14, 0–21 days, with the concentration corresponding to the minimum risk as the
reference. (df = 3 for daily temperature and relative humidity); Table S8: The cumulative effects of
PM2.5 and its chemical components on depression outpatient visits, on lag 0–7, 0–14, 0–21 days, with
the concentration corresponding to the minimum risk as the reference. (df = 5 for daily temperature
and relative humidity).
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