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Abstract: Smoking is an established risk factor for various pathologies including lung cancer. Elec-
tronic cigarettes (e-cigs) and heated tobacco products (HTPs) have appeared on the market in recent
years, but their safety or, conversely, their toxicity has not yet been demonstrated. This study aimed
to compare the metabolome of human lung epithelial cells exposed to emissions of e-cigs, HTPs, or
3R4F cigarettes in order to highlight potential early markers of toxicity. BEAS-2B cells were cultured
at the air–liquid interface and exposed to short-term emissions from e-cigs set up at low or medium
power, HTPs, or 3R4F cigarettes. Untargeted metabolomic analyses were performed using liquid
chromatography coupled with mass spectrometry. Compared to unexposed cells, both 3R4F cigarette
and HTP emissions affected the profiles of exogenous compounds, one of which is carcinogenic, as
well as those of endogenous metabolites from various pathways including oxidative stress, energy
metabolism, and lipid metabolism. However, these effects were observed at lower doses for cigarettes
(2 and 4 puffs) than for HTPs (60 and 120 puffs). No difference was observed after e-cig exposure,
regardless of the power conditions. These results suggest a lower acute toxicity of e-cig emissions
compared to cigarettes and HTPs in BEAS-2B cells. The pathways deregulated by HTP emissions are
also described to be altered in respiratory diseases, emphasizing that the toxicity of HTPs should not
be underestimated.

Keywords: heat-not-burn products; e-cigarette; lung; metabolites; mass spectrometry

1. Introduction

The Global Burden of Disease Project [1] estimated that approximately 1.14 billion
people worldwide smoked in 2019. The majority of smokers are addicted to nicotine deliv-
ered via cigarettes, rationalizing the high prevalence of tobacco-induced diseases decades
later [2]. Smoking accounted for 8 million deaths globally in 2023 according to the WHO [3].
The major causes of tobacco death include lung cancer, emphysema, heart attack, stroke,
cancer of the upper aerodigestive areas, and bladder cancer [4]. Smoking tobacco is also
responsible of chronic diseases such as eye diseases, periodontal diseases, cardiovascular
diseases, chronic obstructive pulmonary diseases, diabetes mellitus, rheumatoid arthritis,
and disorders affecting the immune system. People who smoke can expect to lose an
average of at least a decade of life compared to equivalent non-smokers [5,6]. Smoking
cessation greatly reduces the risks of smoking-related diseases. Nicotine administered
alone in various nicotine replacement formulations (such as patches or gums) is safe and
effective as an evidence-based smoking cessation aid. Novel forms of nicotine delivery
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systems have also emerged, including electronic cigarettes (e-cigs) and, more recently,
heated tobacco products (HTPs). These products are marketed as lower-risk products than
conventional cigarettes due to the absence of tobacco for e-cigs or tobacco combustion for
HTPs. However, the safety of e-cigs or HTPs has not yet been fully established due to a
lack of exhaustive independent toxicological studies.

Our previous findings demonstrated that HTP emissions contained fewer toxic com-
pounds (polycyclic aromatic hydrocarbons, carbonyl compounds, and metals) than conven-
tional cigarette smoke, but more than e-cig aerosols [7,8]. In a model of human bronchial
epithelial cells (BEAS-2B cell line) cultured at the air–liquid interface (ALI), conventional
cigarettes were more cytotoxic and induced more oxidative stress and genotoxicity than
HTPs, unlike e-cigs, which had no effect on these parameters under the studied condi-
tions [9]. In addition to these conventional methods for studying cellular damage, the use
of global approaches such as “omics” (metabolomics, transcriptomics, MiRnomics, etc.)
can provide a better understanding of the molecular and cellular mechanisms of toxicity,
and it helps to identify relevant markers of effects and/or exposure.

Metabolomics aims to comprehensively assess changes in the metabolome induced
by endogenous and/or exogenous factors, to screen for significantly different metabolite
profiles, and thus to identify potential biomarkers [10]. To date, the metabolic effects
of exposure to HTPs or e-cig aerosols have been poorly characterized. A review of the
corresponding studies, the experimental conditions implemented, and the main results
obtained is summarized in Table 1. Several studies on e-cigs (most of them independent
from the tobacco industry) have been carried out in humans [11–15] or using in vivo [16–18]
or in vitro [19–21] models. These studies demonstrated the deregulation of many metabolic
pathways after e-cig exposure, including glycolysis, the tricarboxylic acid (TCA) cycle,
amino-acid metabolism, beta-oxidation, phospholipid metabolism, sphingolipid metabolism,
or antioxidant metabolism. Two studies on HTPs showed the benefits of tobacco cessation
or switching to HTPs on the human lipidomic lung profile [22,23]. In addition, exposure to
HTPs had a lower impact than cigarette smoke on the pathophysiology of human gingival
organotypic cultures [24]. However, these few studies were all conducted by the tobacco
industry itself. Moreover, it is noteworthy that there are currently no metabolomic studies
comparing the toxicity of e-cigs and HTPs in a similar model, although such a comparison
would be essential given that both products are increasingly recommended as smoking
cessation aids. Therefore, the aim of the present study was to compare the metabolome of
human lung epithelial cells (BEAS-2B cell line) exposed to e-cigs, HTPs, or cigarette emis-
sions in order to highlight potential metabolic fingerprints and to identify early markers
of toxicity. We applied liquid chromatography–high resolution mass spectrometry (LC-
HRMS)-based untargeted metabolomics to analyze endogenous and exogenous compounds
in the lysate of cell cultures after HTP, e-cig, or cigarette aerosol exposure.
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Table 1. Literature review summary of the effects of e-cig or HTP aerosols on host metabolism.

Biological
Question

Exposure Device
Duration

Model
Sample Type
Sample Size

Deregulated Metabolite(s)/Metabolic Pathway(s) * Conclusions Independent
Study Ref

Cessation of
vaping in regular

heavy
e-cigarette users

4th e-cig generation
Short-term (5 days)

Human
Urine, plasma

n = 30

Serum: no difference. Urine: A specific metabolomic signature
characterized the stop-session, including 3-hydroxyisovalerate
(↘), pyruvate (↘), trimethylamine oxide (↗), hippurate (↗),

and N-phenylacetyl-glycine (↗).

In regular e-cig users,
short-term vaping

cessation shifted baseline
urine metabolome

Yes [11]

Switch from
cigarette to e-cig

1st e-cig generation
Short-term (5 days)

Human
Urine, plasma

n = 75

↘ xenobiotic exposure (nicotine and its metabolites, other
cigarette smoke constituents). Improved vitamin metabolism and

↘ oxidative stress.

Less toxic environment for
consumers of e-cigs and
potential health benefits
compared to people who

smoke cigarettes

No [12]

Effects of chronic
e-cig vaping and
cigarette smoking

No information on
e-cig exposure device
Long-term (>2 years)

Human
Plasma
n = 24

E-cig vaping deregulated TCA cycle-related metabolites, while
cigarette smoking altered sphingolipid metabolism.

Specific metabolic
signatures could serve as

potential systemic
biomarkers for early

pathogenesis of
cardiopulmonary diseases

Yes [13]

Long-term effects
of e-cigs compared

to tobacco

No information on
e-cig exposure device

Long-term effects
(>6 months)

Human
Urine

n = 117

Metabolomic signature of 839 and 396 features for people who
smoke and vape, respectively, including 12% of common
metabolites. ↗ acylcarnitines and acylglycines in vapers,

suggesting higher lipid peroxidation. Trend of ↗ in
cancer-related biomarkers (Me-Fapy) in people who vape.

Deregulation of markers of
inflammatory status and

fatty acid oxidation in
people who vape, as well

as a trend of elevated
cancer-related biomarkers.

Yes [14]

Effects of e-cigs on
oral health

4th e-cig generation
Long-term (one month

to 2 years)

Human
Saliva
n = 30

Perturbation of 368 metabolites in vapors.
↗ prostaglandins, ↗ leukotrienes (arachidonic acid metabolism).

Alterations in immune signaling metabolites (gangliosides,
ceramides, angiotensin).

Potential biomarkers of
periodontal disease

in vapors.
Yes [15]

Acute exposure
to e-cigs

4th e-cig generation
Short-term (1 h to 8 h)

Mouse
Serum
n = 40

Deregulation of 26 to 50 metabolites after exposure. The type of
compound changed over time. Total of 24 metabolic pathways

affected, mainly regulated amino acid metabolism, further
affected the TCA cycle.

Highlight specific
metabolic signatures of

e-cigs acute exposure that
are potentially beneficial

for disease prevention

Yes [16]
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Table 1. Cont.

Biological
Question

Exposure Device
Duration

Model
Sample Type
Sample Size

Deregulated Metabolite(s)/Metabolic Pathway(s) * Conclusions Independent
Study Ref

Long-term effects
of e-cigs with or
without nicotine

2nd e-cig generation
Long-term (4 months)

Mouse
Bronchoalveolar

lavage
n = 9

Independently of nicotine presence, altered lung lipid
homeostasis in alveolar macrophages and epithelial cells.

Aberrant phospholipids in alveolar macrophages and increased
surfactant-associated phospholipids in the airway.

Downregulation of innate immunity against viral pathogens in
resident macrophages.

Alterations in lipid
homeostasis and immune

impairment are
independent of nicotine,
thereby warranting more

extensive investigations on
the vehicle solvents used

in e-cigs

Yes [17]

Effects of the type
of e-cig

consumption

2nd, 3rd, 4th e-cig
generation

4 to 12 weeks

Mouse
Plasma

n = 6

Different alterations in metabolomic profiles depending on the
e-cig generation, chemical compounds, duration of exposure, and

gender. These signatures have been associated with
cardiovascular diseases and can serve as predictors of chronic

kidney diseases.

Each e-cig generation and
each e-liquid are likely to

lead to their own set of
health effects.

Yes [18]

Effects of e-liquid
compared to

cigarette smoke
condensate

E-liquid or cigarette
smoke condensate

Short-term (1 h to 13 h)

HBEC * (at ALI)
Intracellular

content
n = 3

E-liquid and cigarette smoke condensate affected 24% and 35% of
the metabolome, respectively, with biphasic fluctuations: first

maximum after 5 h, second maximum after 13 h. Alterations in
amino acids, energy, β-oxidation of fatty acid metabolism.

E-liquid profoundly alters
the metabolome of HBEC

in a manner which is
comparable and partially

overlapping with the
effects of cigarette smoke

condensate

Yes [19]

Effects of e-cig
vanillin (flavorant)

e-liquid on cells
Short-term (18 h)

BEAS-2B cell line
Intracellular

content
n = 3

Vanillin perturbed specific energy, amino acid, antioxidant, and
sphingolipid pathways previously associated with human disease

such as lung disease including asthma, idiopathic pulmonary
fibrosis, and acute respiratory distress syndrome.

Vanillin could drive the
lung metabolic

microenvironment to a
more pathogenic state.

Yes [20]

Effects of e-cig
maltol (flavorant)

3rd e-cig generation
Short-term (1 h)

BEAS-2B cell line
Intracellular

content
n = 3

Perturbation of oxidative stress with e-liquids with or without
maltol. Deregulation of amino acid metabolism specifically

with maltol.
Many effects of firsthand exposure were also observed with

secondhand exposure.

Flavorants in e-liquids
impact lung metabolism
after both firsthand and
secondhand exposure.

Yes [21]
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Table 1. Cont.

Biological
Question

Exposure Device
Duration

Model
Sample Type
Sample Size

Deregulated Metabolite(s)/Metabolic Pathway(s) * Conclusions Independent
Study Ref

Switch from
cigarettes to HTPs
or smoke cessation

HTP
Long-term

(2–8 months)

Mouse
Lung intracellular

content
n = 8

↗ candidate surfactant lipids, ↗ inflammatory eicosanoids, ↗
ceramide classes after cigarette exposure that were absent in mice

from the cessation group and the switching group to HTPs.

Benefits of tobacco
cessation or switching to

an HTP for lipidomic lung
profile.

No [22]

Switch from
cigarettes to HTPs
or smoke cessation

HTP
Long-term (6 months)

Mouse
Lung intracellular

content
n = 9

Substantial effects of 3R4F exposure: ↗ inflammatory and
oxidative stress responses, ↗ metabolites with immunoregulatory

roles (itaconate, polyamines, quinolinate), ↗ metabolites of
oxidative stress response (heme–biliverdin–bilirubin pathway).

HTP aerosol exposure was associated with fewer to absent effects.

Benefits of tobacco
cessation or switching to

an HTP for metabolic
lung profile

No [23]

Effects of HTPs
compared
to tobacco

HTP
Short-term (3 days)

Human
gingival epithelial

cells
Intracellular

content
n = 5

13 metabolites perturbed after HTP exposure vs. 181 for cigarettes.
Reduction in the metabolic impact in HTP aerosol-exposed

samples with respect to cigarettes.

Exposure to HTP aerosol
had a lower impact on the

pathophysiology of
human gingival

organotypic cultures than
cigarette smoke

No [24]

* ↘: reduction; ↗: elevation; HBEC: human bronchial epithelial cells.
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2. Materials and Methods
2.1. Chemicals and Reagents

The BEAS-2B cell line was purchased from the American Type Culture Collection
(ATCC® CRL9609™ Manassas, VA, USA). LHC-9 medium, phosphate buffer solution (PBS),
and type I collagen solution were purchased from Life Technologies (Courtabœuf, France).
CellBIND 75 cm2 tissue culture flasks and transwell culture inserts (4.67 cm2) with a 0.4 µm
pore size were bought from Corning (Amsterdam, The Netherlands) and Sigma Aldrich
(Saint-Quentin Fallavier, France), respectively.

3R4F reference cigarettes were purchased from the University of Kentucky (Lexington,
KY, USA). The tested HTP was an IQOS 2.4 model manufactured by Philip Morris Interna-
tional (Neuchâtel, Switzerland), used with IQOS heatsticks (amber box from Philip Morris
International). A third-generation “ModBox-TC” model manufactured by NHOSS® brand
(Bondues, France) was used with an “Air Tank” clearomiser equipped with a 0.5 Ω kanthal
coil and containing a “blond tobacco” flavored e-liquid (NHOSS® brand, Bondues, France)
with 16 mg/mL of nicotine.

Water was obtained from a Milli-Q ultrapure water system (Millipore, Burlington,
MA, USA). UPLC–MS-grade acetonitrile and methanol were bought from Waters (Mil-
ford, MA, USA), and formic acid was purchased from Honeywell (Charlotte, NC, USA).
Reagent-grade ammonium formate, β-hydroxy-ethyltheophyllin, and phenobarbital-D5
were purchased from Sigma-Aldrich (St. Louis, MI, USA). Methyl-clonazepam was bought
from Roche (LGC, Molsheim, France).

2.2. Cell Culture and Experimental Design for Cell Exposure

Human bronchial epithelial BEAS-2B cells were selected as the in vitro model. Their
cell culture protocol has already been described [9]. Briefly, the cells were seeded onto
transwell culture inserts. The ALI was established by removing the LHC-9 medium from
the apical surface, exposing only the basal surface to the medium. The BEAS-2B cells
cultured at the ALI were transferred to an exposure module (Vitrocell 6/4 CF module)
and exposed to different doses of emissions from the 3R4F cigarette, HTP, or e-cig set
up at 18 W (Mb-18W) or 30 W (Mb-30W) using the Vitrocell® VC1 Smoking machine
(Vitrocell, Waldkirch, Germany). The cells were not exposed to equal quantities of nicotine
for all the devices but to comparable cytotoxicity conditions (>80% cell viability) for all
exposures based on preliminary data: 60 and 120 puffs for Mb-18W, Mb-30W, and HTP and
2 and 4 puffs for the 3R4F cigarette [9]. The Health Canada intense (HCI) puff profile was
used to test all the products. For HTP exposure, the HCI regime was modified without
blocking the ventilation holes of the IQOS heatsticks to avoid overheating of the device. The
control cells consisted of unexposed cells that were maintained within the incubator [25].
After exposure, cells were incubated at 37 ◦C and 5% CO2 for 24 h before further sample
preparation. The supernatant media were removed and stored at −80 ◦C until further
measurement of lactate dehydrogenase (LDH). Four independent cell cultures were used
to replicate each experimental point.

2.3. Cytotoxicity Evaluation

Cytotoxicity assays were performed using the Cytotoxicity Detection KitPLUS LDH
(Cytotoxicity Detection Kit PLUS, Roche Diagnostics GmbH, Mannheim, Germany) accord-
ing to the manufacturer’s instructions. The assay relies on the evaluation of LDH activity
that is discharged from the cytosol of damaged cells and measured in the supernatant
medium 24 h after exposure. A positive control was included: the maximal LDH activ-
ity was measured by lysing the cells using Triton-X100. Cytotoxicity was determined as
percentages related to positive control cells arbitrarily set at a value of 100%.

2.4. Sample Preparation

For sample harvesting, the cells were washed twice with PBS. Their metabolisms
were subsequently quenched by the addition of 800 µL of ice-cold methanol/water (80:20,
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v/v). Here, metabolism quenching was achieved by combining a low temperature which
decreases enzymatic activities and prevents metabolite spontaneous degradation and
through the addition of an organic solvent which inactivates enzymes and contributes to
the disruption of cell membranes, thus enabling metabolite extraction [26]. After 20 min
of incubation at −20 ◦C, the cells were scraped off the culture vessel on ice using rubber-
tipped cell scrapers. The lysates were collected and subsequently centrifugated for 5 min at
14,000× g and +4 ◦C to eliminate cell debris. The supernatants were recovered in a vial,
and the precipitates were rinsed in another 200 µL of ice-cold 80% methanol, vortexed,
centrifugated for 5 min at 14,000× g at +4 ◦C, then the supernatant was also transferred to
the vial. Quality control samples (QC samples) were prepared by pooling equal aliquots of
all the samples. The supernatants were concentrated to dryness using a speedvac, and the
dried samples were stored at −80 ◦C until further use. Just before their injection into the
chromatographic system, the samples were reconstituted using 100 µL of a water/methanol
(90:10, v/v) mixture containing internal standards (methyl-clonazepam at 0.125 mg/L, β-
hydroxy-ethyltheophyllin at 1.6 mg/L, and phenobarbital-D5 at 1 mg/L in methanol). The
samples were then centrifugated for 15 min at 14,000× g and +4 ◦C. The injected volume
was set at 10 µL of supernatant for each sample.

2.5. LC–MS Conditions

Metabolomic analyses were performed using a Vion IMS-QToF mass spectrometer (Wa-
ters, Manchester, UK) controlled with the UNIFI software (version 1.9.4.053 Waters MS Tech-
nologies, Manchester, UK). The method has already been described previously [27]. Briefly,
analytes were separated using an Acquity™ UPLC HSS T3 column (1.8 µm, 150 × 2.1 mm;
Waters) with an Acquity UPLC I-Class system (Waters). The LC–MS sequences were set up
as follows: 1× blank (mobile phase A), 1× TestMix (Waters), 5× diluted QC to conditionate
the column, 1× QC and diluted QC, 48× samples (randomized, plus 1 QC and 1 diluted
QC every 6 samples), 1× QC and diluted QC, 1× TestMix (Waters), 1× blank. Ionization
was performed using an electrospray ionization source operating in positive (ESI+) and
negative (ESI−) modes. The detection method consisted of untargeted data acquisition
(MSe full scan).

2.6. Extraction of Raw Data and Pre-Processing

The LC–MS data were analyzed using the Progenesis QI software v1.0.5162 (Nonlinear
Dynamics, Newcastle upon Tyne, UK). The retention time alignment, peak picking, and
adduct deconvolution were sequentially performed. The sensitivity of the peak-picking
step was tuned to recover approximately 5000 features from each analysis. The intensity
data for each detected feature were exported from Progenesis QI as CSV files for further
data analysis.

2.7. Data Processing and Statistical Analysis

Data processing and statistical analyses were conducted in the R environment [28].
When analyzing untargeted metabolomic data, missing values are often encountered,
but most multivariate statistical methods cannot be applied when the data have missing
values. To use these incomplete data sets, features with more than 50% missing values were
removed, and the remaining missing values were replaced by 1/5 of the minimum positive
value of each variable (LoDs). The data were then filtered, removing features with relative
standard deviations higher than 20% in the QC samples. The data were transformed via
log transformation and normalized via cyclic loess normalization to obtain a normally
distributed population. The quality of the pre-treatment was assessed and confirmed via
principal component analysis and intra-class correlation. Further statistical analyses were
performed on the processed data with a significance threshold set at a p-value of 0.05
after adjustment for the false discovery rate (FDR) [29] to correct for multiple statistical
testing. First, we performed a multivariate supervised partial least squares discriminant
analysis (PLS-DA) to discriminate between the different exposures to the 3R4F cigarette,
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HTP, Mb-18W, and Mb-30W. The features with the highest variable importance in the
projection (VIP > 1.5) were selected for a cluster analysis via a multivariate unsupervised
analysis heatmap to reveal the relationships of features. Second, an ANOVA test was used
to compare the variances of the samples belonging to the 4 different exposure groups. This
analysis revealed the deregulated features within each type of exposure. For significant
features with a fold-change (FC) > 1.5, a Student’s t-test was performed between the control
and exposed samples. The intensity of deregulation compared to the control samples (D0)
was expressed as Log2(FC), i.e., Log2(FCD1) for deregulation between the control and
exposure at the lowest dose (D1) and Log2(FCD2) for deregulation between the control and
exposure at the highest dose (D2). Significantly deregulated features were considered to
be a metabolomic signature resulting from a specific exposure and were submitted to an
identification process.

2.8. Feature Annotation and Pathway Analysis

Feature identification was performed using the Progenesis QI software. The altered
features were further queried to propose feature annotations against three databases, which
were, according to their rank of annotating confidence, as follows: (1) a homemade database
containing the spectral properties, retention time (Rt), and collision cross section (CCS)
for peak annotation from authentic standard compounds [27]; (2) an in-house predicted
database containing Rt and CCS predicted using machine learning for almost 114,000
metabolites, as previously described [27]; and (3) a commercial metabolomic profiling CCS
library (Waters, Manchester, UK). In a few cases, the spectra were manually checked against
the MassBank spectral database [30] to broaden the identification possibilities.

A pathway analysis was carried out using MetaboAnalyst 5.0. The Homo Sapiens
(KEGG) pathway library was queried using a hypergeometric test for metabolite enrichment
analysis and a relative betweenness centrality topology analysis. The corrected p-values
(FDR) < 0.25 represented notable enrichments of certain metabolites in a pathway.

3. Results
3.1. Evaluation of Cytotoxicity

Two exposure doses (D1 and D2) were chosen for each device based on compa-
rable subtoxic doses (>80% cell viability, measured via an ATP test), as previously re-
ported [9], in order to evaluate a potential dose-dependent effect: D1 = 60 puffs and
D2 = 120 puffs for Mb-18W, Mb-30W, and HTP and D1 = 2 puffs and D2 = 4 puffs for 3R4F
cigarettes. To ensure that the cells were exposed to comparable subtoxic doses in the present
metabolomic study, an LDH assay was used to evaluate the cytotoxicity in the cells exposed
to the different emissions (Figure 1). HTP emissions caused a higher cytotoxicity after
120 puffs compared to the controls (Kruskal–Wallis test: p-value (HTP) = 0.03; Wilcoxon
test: p-value (D0 vs. D2) = 0.02), while no differences were observed in the other groups.
Consistently, we observed that all the devices showed a cytotoxicity below 20%. Thus,
under the subtoxic conditions selected for the present metabolomic analysis, the effects of
exposure reflected intracellular effects rather than changes due to cell death.

3.2. Evaluation of Metabolomics Data Pre-Treatment

Extraction of raw data permitted us to generate a data matrix made up of 5130 and
5037 features in the ESI+ and ESI− modes, respectively. After pre-treatment, the final data
matrix was made up of 46 samples (two outlier samples were removed, possibly due to
an injection failure) and 3591 features (2398 compounds from ESI+ and 1193 compounds
from ESI−).

3.3. Impact of the Type of Emission

A multivariate supervised PLS-DA was first performed to discriminate between
the different emissions (3R4F cigarette, HTP, Mb-18W, and Mb-30W). A PLS-DA model
was created using the processed data to evaluate group separations and to calculate the
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VIP scores for each feature. The PLS-DA performed on the exposed groups (D1 and D2
combined) showed strong model statistics for the differentiation of the groups (R2X = 0.659,
R2Y = 0.961), with a good reproducibility (Q2Y = 0.738). The obtained loading scatter
plot (Figure 2) facilitated a global view of the relationships between variables. This model
allowed us to separate the 3R4F cigarette, HTP, and non-tobacco groups (Mb-18W and
Mb-30W).
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Figure 1. In vitro cytotoxicity of HTP, e-cig (Mb-18W and Mb-30W), and 3R4F cigarette emissions on
BEAS-2B cells. Cell viability was evaluated by measuring the LDH released 24 h after exposure. The
results are expressed as percentages relative to the LDH released in the cells treated with the positive
control (Triton-X100), arbitrarily set at a value of 100%. Types of exposure are: e-cigs [Mb-18W]
(green), e-cigs [Mb-30W] (cyan), 3R4F cigarettes (blue) and HTPs (red). The data represent the median
and interquartile range from four independent culture replicates. * p < 0.05 compared with control
cells (Wilcoxon test).
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Figure 2. Partial least squares discriminant analysis (PLS-DA). Sample clusters are defined by the
type of exposure: 3R4F cigarette (blue), HTP (red), e-cig (green [Mb-18W] and cyan [Mb-30W]).
The PLS-DA allowed us to separate the tobacco and the non-tobacco products. Model parameters:
components: 7, R2X = 0.659, Q2Y = 0.738, R2Y = 0.961. Validation of the model via permutation test
(k = 1000): pQ2 = 0.001, pR2 = 0.001.
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The VIP lists were established, pinpointing 180 features with a VIP > 1.5, which were
considered to be the discriminant features in this model. These discriminant features were
used to build a heatmap (Figure 3). The heatmap analysis revealed a classification of the
samples according to two arms. The first arm comprised samples exposed to tobacco
products. Among them, those exposed to HTP were separated from those exposed to 3R4F.
The second arm consisted of samples exposed to e-cigs or not exposed (controls). Among
them, those exposed to e-cigs were fairly well-discriminated from those not exposed.
However, the samples exposed to Mb-18W or Mb-30W were not separated. Overall, these
data show that both tobacco products induced similar metabolic deregulations, while the
metabolome of cells exposed to e-cigs was not very different from that of unexposed cells.
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3.4. Impact of the Exposure Dose

An ANOVA statistical study was conducted on the pre-treated data with a 95% confi-
dence level (corrected p-value < 0.05), demonstrating the presence of significant differences
between 214 feature levels in the cells exposed to 3R4F cigarettes, e-cigs, or HTPs compared
to unexposed cells. Among them, 95 features were classified at the top of the highest VIP
score (VIP > 1.5). A Venn diagram helps to visually represent the number of deregulated
features among the four groups (Figure 4).

Both 3R4F and HTP emissions significantly affected the metabolome of the BEAS-
2B cells, whereas no difference was observed after e-cig exposure (only one deregulated
compound with Mb-18W) compared to the controls. Notably, 84% of the compounds
deregulated after 3R4F exposure were also deregulated after HTP exposure. This corre-
sponded to 43 common compounds. To further identify the impact of the exposure dose, a
Student’s t-test was performed (Table 2). A total of 198 and 204 features were deregulated
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after 60 puffs and 120 puffs of HTP exposure, respectively, out of which 197 were com-
mon. Fifty-four percent of the deregulated features were upregulated. Exposure to 2 and
4 puffs of 3R4F cigarette smoke induced a fluctuation of 46 and 51 features, respectively
(46 in common). Fifty-one percent of the deregulated metabolites were upregulated. The
unique deregulated feature after Mb-18W exposure was upregulated after both durations
of exposure.
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Figure 4. Venn diagram showing the number of significantly selected features based on the ANOVA
(FC > 1.5, p-value corrected < 0.05) within and common to the 4 exposure groups. Types of exposure
are: e-cigs [Mb-18W] (green), e-cigs [Mb-30W] (cyan), 3R4F cigarettes (blue) and HTPs (red).

Table 2. Number of significantly deregulated compounds for each type of exposure after t-test
analysis (corrected p (FDR) < 0.05).

Type of Exposure D0 vs. D1 D0 vs. D2 Common Compounds

3R4F 46 51 46
HTP 198 204 197

Mb-18W 1 1 1
Mb-30W 0 0 0

3.5. Feature Identification

The 214 altered features were further queried for compound annotations against
databases. The annotation process followed the standards defined by the Metabolomics
Standards Initiative [31]. The results are detailed in Table 3. Eleven compounds were
identified vs. authentic standards (confidence level = 1), 61 were putatively annotated
(confidence level = 2), and 12 were attributed to chemical classes (confidence level = 3). The
84 annotated compounds varied in structure and covered a wide field of endogenous and
exogenous metabolites.

Table 3. List of the 84 metabolites identified via metabolomic analysis in the positive (POS) and
negative (NEG) ionization mode (ESI) and their associated Log2(FC) between the control (D0) and
exposure to the lowest dose (D1) or the highest dose (D2). The values highlighted in grey indicate
significant metabolites (Student’s t-test; corrected p < 0.05).

ESI Peak Confidence
Level

HMDB Name

HTP
Log2(FC)

D0 vs.

3R4F
Log2(FC)

D0 vs.

Mb-18W
Log2(FC)

D0 vs.

Mb-30W
Log2(FC)

D0 vs.
D1 D2 D1 D2 D1 D2 D1 D2

NEG 0.93_565.0441m/z 2 HMDB0000286 Uridine diphosphate
glucose −1.3 −1.7 −0.3 −1.1 −0.1 −0.5 0.1 0

NEG 0.97_607.0776n 2 HMDB0000290 Uridine diphosphate-N-
acetylglucosamine −1.1 −1.2 −0.1 −0.7 −0.3 −0.3 −0.7 −0.7

NEG 0.97_628.0517m/z 2 HMDB0000290 Uridine diphosphate-N-
acetylglucosamine −2.3 −2 −0.2 −1.1 −0.3 −0.3 −1.3 −1.2

NEG 1.00_482.9586m/z 1 HMDB00285 Uridine triphosphate −0.8 −1.2 −0.5 −1.5 0 −0.4 0.3 0



Toxics 2024, 12, 128 12 of 22

Table 3. Cont.

ESI Peak Confidence
Level

HMDB Name

HTP
Log2(FC)

D0 vs.

3R4F
Log2(FC)

D0 vs.

Mb-18W
Log2(FC)

D0 vs.

Mb-30W
Log2(FC)

D0 vs.
D1 D2 D1 D2 D1 D2 D1 D2

NEG 1.00_506.9926n 2 HMDB0001440 dGTP −0.5 −1 −0.4 −0.8 −0.2 −0.4 0.3 0
NEG 1.04_191.0547m/z 1 HMDB03072 Quinic acid 2.8 3 1.1 2.3 1.2 1 −0.4 0

NEG 1.08_427.0267n 1 HMDB00061 Adenosine
3′ ,5′-diphosphate 1.1 1.5 0.4 1.1 0.3 0.1 0 0

NEG 1.08_604.0656m/z 1 HMDB01163 Guanosine diphosphate
mannose −1.2 −1.4 −0.3 −0.6 −0.5 −0.4 −0.9 −0.5

NEG 1.09_429.0553m/z 2 HMDB0060067 CMP-2-
aminoethylphosphonate −0.6 −1.3 −0.3 −0.5 0 0 0.5 0.1

NEG 1.59_742.0631m/z 1 HMDB00217 NADP −0.4 −0.7 −0.1 −0.3 0.1 −0.4 0 −0.3
NEG 1.60_347.0374m/z 1 HMDB00175 Inosine 5′-monophosphate 3.6 3.7 1.5 3.6 0.4 0 1.4 1
NEG 1.64_148.0420m/z 1 HMDB00696 Methionine −1.2 −1.2 −0.2 −0.4 −0.5 −0.5 −0.2 −0.8
NEG 2.35_321.0676n 2 HMDB0013220 Beta-citryl-L-glutamic acid −1 −1.2 −0.5 −0.6 −0.3 −0.5 −0.1 −0.3
NEG 2.96_612.1481n 2 HMDB0003337 Oxidized glutathione 0.3 0.7 0.2 1.2 0.1 0.1 0.1 0.2
NEG 14.11_498.2602m/z 2 HMDB0011519 LysoPE 20:5 2.3 2.7 0.8 0.3 0.3 0.6 0.5 0.4
NEG 14.98_526.2911m/z 2 HMDB0011525 LysoPE 22:5 2.4 2.9 0.7 0.4 0.2 0.3 0.2 0.1
NEG 15.47_506.3213m/z 2 HMDB0011512 LysoPE 20:1 0.9 1.4 0.2 0.5 0.4 0.3 0.1 −0.1
NEG 15.69_506.3213m/z 2 HMDB0011512 LysoPE 20:1 0.9 1.8 0 0.3 0.4 0.2 0.3 0.2
POS 0.96_404.0019n 2 HMDB0000295 Uridine 5′-diphosphate −1.3 −1.2 −0.4 −0.5 −0.3 −0.1 −0.4 −1.1

POS 0.98_489.1138m/z 1 HMDB0001413 Cytidine
5′-diphosphocholine 5.5 6.9 0.7 3.9 0.7 1.7 −0.2 1

POS 0.99_506.9954n 2 HMDB0001440 dGTP −0.6 −1.1 −0.1 −0.4 −0.3 −0.3 0 0
POS 1.07_192.0265n 1 HMDB0000193 Isocitric acid −1 −1.3 −0.4 −0.3 −0.3 −0.1 0 −0.1
POS 1.07_321.0689n 2 HMDB0013220 Beta-citryl-L-glutamic acid −1.3 −1.4 −0.6 −0.7 −0.4 −0.2 −0.3 −0.5
POS 1.07_612.1507n 2 HMDB0003337 Oxidized glutathione 0.3 0.5 0 1.4 0 0.2 0.1 0
POS 1.11_250.0931m/z 2 HMDB0000085 Deoxyguanosine −1.4 −1.5 −0.6 −0.8 −0.1 0 0 −0.3
POS 2.01_227.0902n 1 HMDB00014 Deoxycytidine −0.5 −1 −0.2 −0.2 −0.1 0 0.3 0.1
POS 2.29_321.0690n 2 HMDB0013220 Beta-citryl-L-glutamic acid −1.3 −1.5 −0.5 −0.7 −0.4 −0.1 0.1 −0.5
POS 2.98_612.1497n 2 HMDB0003337 Oxidized glutathione 0.4 0.9 0.2 1.7 0 0.3 0.4 0.2
POS 3.63_132.0806m/z 2 HMDB0000466 3-Methylindole 4.8 6.6 1.9 2.3 4 4.5 4.3 3.3
POS 3.82_229.1781n 2 HMDB0041947 N1,N8-diacetylspermidine 4.6 6.8 2.8 6.5 4.2 4.4 1.5 2.8
POS 3.83_230.1859m/z 2 HMDB0041947 N1,N8-diacetylspermidine 3.1 4.9 1.7 4.2 1.5 1.7 1.1 1.9
POS 4.22_221.1280m/z 2 HMDB0002096 3-indolebutyric acid 8.6 9.6 6.2 8.7 2.1 0.9 0 0.4
POS 4.53_143.0734n 2 HMDB0243964 1-naphthylamine 15.3 15.6 9.9 11.9 5 7.5 4.5 6.6
POS 5.62_163.1228m/z 1 HMDB0001934 Nicotine 16.5 17.2 11.9 14.3 7.6 8.9 11.9 12.8
POS 6.54_191.1176m/z 2 HMDB0004369 N-methylserotonin 10.5 11.3 6.5 9 2.3 3.9 −0.3 1.2
POS 6.59_190.0840n 2 HMDB0000325 3-hydroxysuberic acid 6.6 6.8 1.9 3.2 −0.1 −1 1.7 3.2
POS 7.26_187.0629n 2 HMDB0000734 Indoleacrylic acid −0.9 −0.8 −0.2 −0.2 −0.3 −0.2 0 −0.5
POS 8.18_246.1697m/z 2 HMDB0000688 Isovalerylcarnitine −0.9 −1.4 −0.7 −1.3 −0.5 −0.3 −0.2 −0.6
POS 8.53_169.0760m/z 2 HMDB0012897 Beta-carboline 9.5 10.2 7.6 8.8 1.7 2 0.6 0.1
POS 8.82_183.0914m/z 2 HMDB0035196 Harman 6.6 7 6.4 7.5 0.1 0.6 −0.6 −0.5
POS 9.00_215.1177m/z 2 HMDB0001389 Melatonin 11.1 12.4 5.1 7.5 3.5 4.9 6.9 7.1
POS 9.22_260.1851m/z 2 HMDB0000705 Hexanoylcarnitine −1 −0.9 −0.6 −0.7 −0.1 0 0.5 0.2
POS 9.34_193.0494m/z 2 HMDB0034344 Scopoleptin 13.1 13.4 6.9 9.5 −0.6 −1 −0.2 0.1
POS 11.43_236.2004m/z 2 HMDB0036823 Theaspirane −2.4 −3.2 −2 −2.5 −1 −1 −0.8 −1.3

POS 12.54_262.1781n 2 HMDB0032297 Glyceryl
5-hydroxydecanoate 0.6 1.6 −0.1 1 1.9 2.9 0.6 1

POS 12.78_391.1874m/z 3 - Eicosanoid 11.3 11.8 6.6 8.9 −0.5 1 −0.9 −0.6
POS 12.85_253.1335m/z 2 HMDB0037554 Rollipyrrole 11.7 10.3 10.9 11.5 −5.9 −5.7 3.7 −0.1
POS 12.93_377.2081m/z 3 - Eicosanoid 11.1 10.9 10 10.8 4.9 5.7 −9.3 −0.7
POS 13.03_391.1889m/z 3 - Eicosanoid 5.3 6.4 2 4.1 0 0.5 0 0
POS 13.15_391.1875m/z 3 - Eicosanoid 9.2 9.6 2.7 5.7 0.9 0.9 2.1 1
POS 13.17_377.2074m/z 3 - Eicosanoid 12.1 11 8.4 8.3 11.4 2.1 2.8 2.2
POS 13.36_336.2287n 3 - Eicosanoid 9.5 10.4 6.3 8.2 0.4 1.7 0.4 1
POS 13.37_465.2850n 2 HMDB0010380 LysoPC(14:1) 2.1 2.8 0 0.5 0.4 0.8 0.2 0.7
POS 13.52_377.2078m/z 3 - Eicosanoid 11.4 11.4 6.6 9.3 3 2.4 −1.1 0.9
POS 13.61_583.2540m/z 2 HMDB01008 Biliverdin 1.7 0.3 1.5 2.1 −0.3 0.4 0 0.1
POS 13.86_467.3004n 2 HMDB0010379 LysoPC(14:0/0:0) 1.3 1.6 0.3 0.4 0.2 0.5 0.3 0.4
POS 13.97_359.1982m/z 3 - Eicosanoid 9.3 9.2 3.2 5 0.1 −0.6 1.7 1.5
POS 14.07_499.2692n 2 HMDB0011489 LysoPE(0:0/20:5) 2.4 3 0.4 0.5 0.3 0.9 0.6 1.3
POS 14.12_541.3164n 2 HMDB0010397 LysoPC(20:5) 5.5 7.1 0.8 1.5 1.1 1.5 2.3 0.9
POS 14.18_373.1770m/z 3 - Eicosanoid 14.9 13.9 4.1 5.3 −5.1 −10.7 0.2 5.9
POS 14.24_493.3160n 2 HMDB0010383 LysoPC(16:1/0:0) 1.2 1.7 0 0.1 0 0.2 0 0.2
POS 14.27_518.3212m/z 2 HMDB0010382 LysoPC(16:0) 2.4 3.5 −0.3 0.4 1 1.6 1.4 0.7
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Table 3. Cont.

ESI Peak Confidence
Level

HMDB Name

HTP
Log2(FC)

D0 vs.

3R4F
Log2(FC)

D0 vs.

Mb-18W
Log2(FC)

D0 vs.

Mb-30W
Log2(FC)

D0 vs.
D1 D2 D1 D2 D1 D2 D1 D2

POS 14.42_359.1980m/z 3 - Eicosanoid 17.1 16 10.5 11.5 1.5 −4.6 0 0
POS 14.66_322.2497n 3 - Eicosanoid 9.4 8.8 0 2.3 −1 5.5 2.1 4.3
POS 14.68_519.3316n 2 HMDB0010386 LysoPC(18:2) 2 2.9 0 0.4 0 0.5 0.3 0.5
POS 14.72_543.3316n 2 HMDB0010395 LysoPC(20:4) 2.9 4.2 0.1 0.7 0.4 0.6 1.1 0.4
POS 14.83_508.3388m/z 2 HMDB0012108 LPC 17:1 1.9 2.5 −0.3 0.4 0.9 1.6 −0.1 0.5
POS 14.85_510.3983m/z 2 HMDB0072866 MG(10:0/0:0/0:0) −3.2 −7.3 −1.5 −4.4 −0.9 −0.1 1.3 −2.1
POS 14.96_519.3317n 2 HMDB0010386 LysoPC(18:2) 1 1.5 −0.3 −0.1 0.2 0.3 0.2 0.4
POS 15.00_569.3475n 2 HMDB0010403 LysoPC(22:5) 4.6 6.5 0.4 1.3 0.9 1 1.8 1.3
POS 15.07_495.3320n 2 HMDB0010382 LysoPC(16:0) 0.7 1.1 0.1 0.1 0.1 0.3 0.5 0.3
POS 15.21_584.3104m/z 2 HMDB0010393 LysoPC(20:3) 2.6 3.4 −0.6 −0.3 0.9 1.1 1 0.2

POS 15.22_547.3573m/z 2 HMDB0094688 1-stearoylglycero-
phosphocholine 3.1 4.4 −0.1 0.1 0.6 1.1 1.5 0.9

POS 15.24_453.2849n 2 HMDB0011503 LysoPE(16:0/0:0) −1.7 −2 −0.8 −1.2 0 0.6 0.2 0.5
POS 15.27_318.2190n 3 - Eicosanoid 11.1 11.1 4.6 7.3 0.5 −0.5 0.8 1.3
POS 15.43_521.3476n 2 HMDB0002815 LysoPC(18:1) 0.8 1.2 0 0.2 0 0.1 0.2 0.3
POS 15.43_545.3462n 2 HMDB0010393 LysoPC(20:3) 1.9 2.6 −0.2 0 0.6 0.6 0.7 0.4
POS 15.65_502.3256m/z 2 HMDB0010407 LysoPC(P-16:0) 3.9 4.5 0.3 1.4 1.3 1.5 −0.1 0.1
POS 15.66_479.3361n 2 HMDB0010407 LysoPC(P-16:0) 3.1 3.7 −0.1 0.8 0.6 1 0 0.2
POS 15.79_548.3696m/z 2 HMDB0010392 LysoPC(20:2) 2.4 3.2 0 0.4 0.2 0.5 0.6 0.3
POS 15.96_547.3629n 2 HMDB0010392 LysoPC(20:2) 2.6 3.5 −0.6 −0.3 1.6 0.2 1.3 1.3
POS 15.99_548.3700m/z 2 HMDB0010392 LysoPC(20:2) 1.8 2.6 −0.3 −0.3 0.6 0.2 0.5 0.6
POS 16.80_549.3785n 2 HMDB0010391 LysoPC(20:1) 1.4 2.2 0.1 0.2 0.2 0.2 0.2 0.8
POS 16.90_508.3750m/z 2 HMDB0013122 LysoPC(P-18:0) 5.3 6 0.4 1.2 2.4 1.7 0 1.5

3.6. Exogenous Compounds

Seven and eight compounds were identified as exogenous compounds after 3R4F and
HTP exposure, respectively. Nicotine was significantly increased after exposure to HTP
(Log2(FCD1) = 16.6; Log2(FCD2) = 17.3) or 3R4F (Log2(FCD1) = 12.0; Log2(FCD2) = 14.3),
but not after Mb-18W (p = 0.76, Log2(FCD1) = 7.6; Log2(FCD2) = 8.9) or Mb-30W (p = 0.08,
Log2(FCD1) = 11.9; Log2(FCD2) = 12.8). The levels of most of the other exogenous com-
pounds increased compared with the controls, and even more when the exposure dose
was higher. This was the case for 1-naphthylamine after exposure to HTP (Log2(FCD1)
= 15.4; Log2(FCD2) = 15.6) or the 3R4F cigarette (Log2(FCD1) = 10.0; Log2(FCD2) = 12.0),
3-methylindole after exposure to HTP (Log2(FCD1) = 4.8; Log2(FCD2) = 6.6), and scopole-
tine after exposure to HTP (Log2(FCD1) = 13.1; Log2(FCD2) = 13.5) or the 3R4F cigarette
(Log2(FCD1) = 7.0; Log2(FCD2) = 9.5). Regarding the β-carboline family, β-carboline
was increased after exposure to HTP aerosols (Log2(FCD1) = 9.5; Log2(FCD2) = 10.3)
or 3R4F cigarettes (Log2(FCD1) = 7.6; Log2(FCD2) = 10.3), as was harman after expo-
sure to HTP aerosols (Log2(FCD1) = 6.7; Log2(FCD2) = 7.0) or 3R4F cigarettes (FCD1 = 6.4;
Log2(FCD2) = 7.5). A compound from the pyrroline class, rollipyrrole, was also increased
after exposure to HTP aerosols (Log2(FCD1) = 11.8; Log2(FCD2) = 10.3) or 3R4F cigarettes
(Log2(FCD1) = 10.9; Log2(FCD2) = 11.5). Only one exogenous compound (theaspi-
rane) decreased compared to controls after exposure to either HTP (Log2(FCD1) = −2.4;
Log2(FCD2) = −3.3) or 3R4F cigarettes (Log2(FCD1) = −2.0; Log2(FCD2) = −2.6). The other
significantly deregulated compounds were attributed to endogenous cellular metabolism.

3.7. Endogenous Compounds: Pathway Analysis and Biological Interpretation

Of the 51 discriminant features after 3R4F cigarette exposure, 13 were identified
as endogenous compounds, including 8 lipids belonging to the eicosanoid class. This
small number of identified endogenous metabolites did not permit us to perform an over-
representation analysis.

Of the 205 discriminant features after HTP exposure, 73 were identified as endogenous
compounds including 38 lipids. Their chemical taxonomy and the proportion of each
superclass and class are described in Figure 5. Deregulations were mainly linked to
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metabolism of lipids, carboxylic acids, and nucleotides (purines and pyrimidines). The top
10 metabolic pathways identified after a pathway analysis performed using MetaboAnalyst
5.0 are listed in Table 4. None of the metabolic pathways identified in the KEGG database
were significant (p-value < 0.05 and FDR < 0.25), possibly due to the small number of
identified metabolites, but these results identified metabolic pathways that were potentially
deregulated after exposure to HTP.
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Table 4. Top 10 metabolic pathways identified after pathway analysis performed on the 205 endoge-
nous deregulated metabolites after HTP exposure using MetaboAnalyst (v5.0). Enrichment method:
hypergeometric test; topology analysis: relative-betweenness centrality; pathway library: mammals,
Homo sapiens (KEGG).

Pathway
Total Number
of Compounds
in the Pathway

Hits p-
Value

Adjusted
p-Value
(FDR)

Pathway Impact
Value Calculated

Based on Pathway
Topology Analysis

Amino sugar and nucleotide sugar metabolism 37 3 0.009 0.45 0.15

Pyrimidine metabolism 39 3 0.010 0.45 0.07

Purine metabolism 65 3 0.042 0.93 0.13

Glutathione metabolism 28 2 0.044 0.93 0.02

Glycerophospholipid metabolism 36 2 0.070 0.98 0.03

Phosphonate and phosphinate metabolism 6 1 0.071 0.98 0.50

Tryptophan metabolism 41 2 0.087 0.98 0.02

Ascorbate and aldarate metabolism 8 1 0.094 0.98 0.00

Nicotinate and nicotinamide metabolism 15 1 0.169 1.00 0.00

Starch and sucrose metabolism 18 1 0.200 1.00 0.01

Several identified metabolites were involved in the amino sugar and nucleotide sugar
metabolism. A decrease in uridine diphosphate-N-acetylglucosamine (Log2(FCD1) = −2.3;
Log2(FCD2) = −2.0), uridine diphosphate-glucose (Log2(FCD1)= −1.4; Log2(FCD2) = −1.8)
and guanosine diphosphate mannose-mannose (Log2(FCD1)= −1.3; Log2(FCD2) = −1.5)
was observed. Other metabolites were involved in the nucleotide metabolism (purines and
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pyrimidines). After exposure to HTP aerosols, purine metabolism was mainly affected by an
increase in inosine 5′-monophosphate (IMP) (Log2(FCD1) = 3.7; Log2(FCD2) = 3.7) and a de-
crease in deoxyguanosine (Log2(FCD1) = −1.4; Log2(FCD2) = −1.6), and dGTP (Log2(FCD1)
= −0.7; Log2(FCD2) = −1.1). Regarding pyrimidine metabolism, uridine diphosphate
(UDP) (Log2(FCD1)= −1.4; Log2(FCD2) = −1.3), uridine triphosphate (UTP) (Log2(FCD1)
= −0.8; Log2(FCD2) = −1.2), and deoxycytidine (Log2(FCD1) = −0.5; Log2(FCD2) = −1.0)
were down-modulated. Exposure to HTP aerosols also impacted glycerophospholipid
metabolism, with an increase in LysoPC(16:0) (Log2(FCD1)= 2.5; Log2(FCD2) = 3.6) and
of CDP-choline (Log2(FCD1) = 5.6; Log2(FCD2) = 7.0). Finally, we observed an upreg-
ulation of an oxidative stress marker, oxidized glutathione (GSSG), after 120 puffs of
exposure (Log2(FCD2) = 0.9) and a trend towards significance after 60 puffs of exposure
(p-value = 0.056; Log2(FCD1) = 0.48). The increase in oxidized glutathione was associ-
ated with a decrease in NADP (Log2(FCD1) = −0.4; Log2(FCD2) = −0.7), both involved in
glutathione metabolism.

4. Discussion

Considering the effects of tobacco smoke on health and lifespan and the limited
information on the biological/health effects of e-cigs and HTPs use by consumers, there is a
need to evaluate the health risks of these new tobacco and vaping products and to identify
markers that would help us to understand their underlying physiopathological processes.
In this study, we used metabolomic profiling to examine and compare the metabolic
responses of a bronchial epithelial cell model to short-term exposure to cigarette smoke (2
or 4 puffs), HTP emissions (60 or 120 puffs), or e-cig aerosols (60 or 120 puffs) generated by
a device set up at two powers (18 W or 30 W). The doses of exposure were chosen based on
prior studies showing that exposure can cause cell death after higher doses of exposure to
HTPs and 3R4F cigarettes [9]. Here, the cytotoxicity assessed by measuring LDH in the
culture media of the samples included in this study was consistent with these preliminary
data, with a cytotoxicity <20% compared with the control samples. Working at low and
comparable cytotoxicity conditions ensured that the differences observed in metabolite
abundance reflected biological variability due to exposure and not due to cell death.

We differentially analyzed the 10,167 features detected using LC-HRMS. We were
able to filter 214 differences between the exposed and control samples. Based on the
metabolites that were significantly deregulated (FC > 1.5 and adjusted p-value < 0.05), a
robust metabolomic fingerprint composed of 51 or 205 features was shown to be linked to
3R4F or HTP exposure, respectively. The number of significantly deregulated compounds
and the intensity of these modulations (FC) increased to a limited extent with the dose of
exposure, suggesting that there was a small dose-dependent effect. Eighty-four percent of
the discriminant compounds after 3R4F exposure were also discriminant after exposure to
HTP aerosols, suggesting common markers of exposure or effects between both tobacco
products. These effects are detectable after lower-exposure doses for cigarettes (<4 puffs)
than for HTPs (60 and 120 puffs). The greater number of discriminant metabolites after
HTP exposure can be likely explained by the difference in exposure doses between HTP
(60 and 120 puffs) and the 3R4F cigarette (2 and 4 puffs). Exposure to HTPs and e-cigs
was more comparable, as the same doses were used for both devices. Only 1 metabolite
was significantly deregulated after exposure to 60 or 120 puffs from Mb-18W, while no
features were significantly deregulated with Mb-30W. This unidentified compound was not
significantly modulated in the other exposure conditions. This suggests that there were few
measurable metabolic alterations in our experimental conditions after exposure to e-cigs.

Among the 214 differential features, we identified 84 exogenous or endogenous com-
pounds: 11 identified compounds (level 1), 61 putatively annotated compounds (level 2),
and 12 putatively characterized compound classes (level 3). One hundred and thirty fea-
tures (60% of the deregulated features) remained as unknown signals (level 4), which
is not surprising given that feature identification is one of the main limitations of untar-
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geted metabolomics. These annotations allowed for powerful deciphering of deregulated
compounds to better understand the cellular effects of tobacco or HTP exposure.

Of the compounds identified, eight were exogenous compounds, seven of which varied
in a similar way when exposed to 3R4F smoke or HTP emissions. Another compound,
3-methylindole, was only increased through exposure to HTP emissions. In addition
to nicotine, we highlighted an increase in the exogenous compounds that were already
described in the literature as originating from the tobacco plant itself or from tobacco smoke:
1-naphthylamine (aromatic amines, naphthalene class) [32,33], scopoletin (polyphenol,
coumarins, and derivatives class) [34], norharman, and harman (β-carbolines) [35]. The
compound 3-methylindole, which was increased after exposure to HTP aerosols but not
after exposure to 3R4F smoke (potentially due to the low exposure dose for 3R4F), belongs
to the indole and derivatives class. It is formed through the pyrolysis of tryptophan
during tobacco combustion. This result could be in favor of a pyrolysis phenomenon
occurring in response to the HTP device. The results published by Vivarell et al. indicate
that HTP emissions contain pyrolysis and thermal degradation by-products identical to
conventional cigarette smoke, and that they cause serious lung damage and increase the
risk of cancer in animal models [36]. The compound 3-methylindole has been described
as cytotoxic in BEAS-2B cell lines after bio-activation [37] and as mutagenic in human
lung microsome models, supporting the hypothesis of a probable pulmonary carcinogenic
effect in humans [38]. In normal human bronchial epithelial (NHBE) cells, exposure to
3-methylindole also caused significant DNA damage and mutations without triggering
apoptotic defenses, reinforcing the hypothesis that this compound inhaled from cigarette
smoke could be a selective lung carcinogen [39]. In conclusion, these exogenous compounds
can be considered as markers of exposure to tobacco products, both from cigarette and
HTP emissions. While the tobacco industry described HTP as riskless to users’ health, our
results suggest that they could be nonetheless toxic, as one carcinogenic compound was
identified. The toxicity of HTP should therefore not be underestimated.

Exposure to tobacco products was associated with a pulmonary cellular stress response,
notably an oxidative stress response directly caused by exposure to chemical compounds or
induced by the generation of reactive oxygen species (ROS). First, we observed disturbances
in glutathione metabolism, notably with an increase in oxidized glutathione after exposure
to the higher dose, both for HTP and 3R4F emissions. These results support the generation
of oxidative stress following exposure to tobacco products. These findings were consistent
with our previously published results, which showed an increase in the oxidized to reduced
glutathione ratio following exposure to cigarette and HTP emissions [7]. We also showed
that HTPs and 3R4F (but not e-cigs) induced activation of the transcription factor Nrf2 and
expression of its target genes, heme oxygenase 1 and NAD(P)H-quinone dehydrogenase
1, demonstrating an antioxidant response after exposure to tobacco products [9]. In our
metabolomic study, an increase in biliverdin was observed after exposure to 3R4F emissions
(two and four puffs). Biliverdin is a heme metabolite produced under the action of a
cryoprotective enzyme, heme oxygenase (HO) [40,41]. Biliverdin is then rapidly converted
to bilirubin by biliverdin reductase. Biliverdin can be regenerated from bilirubin through
reactions with ROS. Various properties have been attributed to biliverdin and bilirubin,
including antioxidant properties in response to oxidative stress. A study by Titz et al. [23]
analyzing the metabolome of lung tissue after exposure of mice to conventional cigarettes
or HTPs also revealed deregulation of bilirubin metabolism after exposure to cigarettes but
not to HTP. Second, our study also revealed modulations in nucleotide metabolism (purines
and pyrimidines) after exposure to HTPs (but not after 3R4F cigarettes). Purine metabolism
has been reported to produce ROS via the xanthine oxidase pathway [42]. In addition, a
deregulation in nucleotide metabolism has already been described in cigarette smokers,
with a role in cancer development [43,44]. Third, we observed a decrease in methionine
after exposure to HTP. Oxidative stress can induce methionine oxidation [45], leading
to a decrease in methionine. An increase in the products of this oxidation (methionine
sulphoxide and N-acetyl-methionine sulphoxide) has been described following exposure
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of human gingival epithelial cells for 28 min over 3 days to conventional cigarette smoke,
but not to HTP emissions [24]. A decrease in plasmatic methionine has also been observed
in cigarette users compared with people who vaper or unexposed individuals [13].

The deregulation of several metabolites indicated an alteration in energy metabolism
following exposure to tobacco products. Increased energy demand is an expected response
for all cells under stress. Thus, ADP levels were increased after exposure to HTP aerosols.
An intermediate of the TCA cycle, isocitrate, was decreased in cells exposed to HTP
compared with controls. It is well known that cigarette smoke inhibits mitochondrial
respiratory function and deregulates the TCA cycle [46], a central pathway for cellular
energy metabolism. Isocitrate had also been previously described as decreased after
repeated exposure of 3D bronchial tissue culture to cigarette smoke [47]. Our analysis also
showed a significant decrease in isovalerylcarnitine, a short-chain carnitine, and a decrease
in an intermediate-chain acylcarnitine, hexanoylcarnitine, after exposure to HTP emissions.
Acylcarnitines are organic compounds containing a fatty acid. They play a central role in
the transport of fatty acids across the inner mitochondrial membrane during beta-oxidation,
the metabolic pathway through which fatty acids are broken down to produce acetyl-CoA,
which feeds the TCA cycle. Their disruption confirms mitochondrial dysfunction and
disruption of beta-oxidation of fatty acids after exposure to tobacco products, which may
reflect a high intracellular energy demand.

Lipids other than carnitines were also affected by exposure to tobacco products
(Figure 6), with significant variations in several classes of lipids such as glycerophos-
pholipids (glycerophosphocholines (LysoPC) or glyceroethanolamines (LysoPE)) or fatty
acids (carnitines, eicosanoids). Most of these lipids increased in a dose-dependent manner
in favor of lipid accumulation. Eicosanoids, derived from arachidonic acid through the
action of the lipooxygenase and cyclooxygenase enzymes, are signaling mediators of the
inflammatory response. An increase in the activity of these enzymes had already been
described after HTP exposure [36], but also in smokers [48], and was associated with in-
flammation and pulmonary pathologies [49] and cancers [50]. Other lipid classes were also
increased after exposure to HTP emissions. These included lysoglycerophospholipids of the
glycerophosphocholine subclass (lysophosphatidylcholines, LysoPC) and glycerophospho-
ethanolamines (lysophosphatidylethanolamines, LysoPE). LysoPCs are produced through
the cleavage of phosphatidylcholine by phospholipase A2 (PLA2), a reaction that also forms
free fatty acids such as arachidonic acid, which is the precursor of eicosanoids [51]. This
reaction is also possible under the effects of ROS. LysoPEs are also produced through the
cleavage of phosphatidylethanolamine by PLA2. Altogether, exposure to cigarette and HTP
emissions could therefore affect the regulation of the inflammatory response in bronchial
cells. Studies conducted by the tobacco industry comparing the murine bronchial tissue
lipidome after exposure to tobacco and HTP have shown lipid deregulation, but much
more was marked for cigarettes than for HTP (very limited effects for HTP), allowing them
to conclude that HTP had a lower toxic effect than conventional cigarettes [22,23]. Given
our results, the impact of HTP on those metabolic pathways should not be underestimated.

Some limitations of the present study must be mentioned. A unique regime (HCI)
was used for all the tested products to compare their toxicity under the same laboratory
conditions. However, other standardized smoking or vaping regimes have been created
based on users’ puffing behavior (ISO 20768:2018 [52] for e-cigs, HCI and ISO3308:2012 [53]
for tobacco products). In this study, the unique regime choice could be a limitation to an
accurate assessment of potential health implications in the context of different product
categories. In addition, the nontargeted metabolomic analysis is an initial screening. Level
2 annotations should be interpreted with caution, as some of them may derive from a false
positive annotation. In this context, further target verification is essential in the future.
In particular, it should be noted that the majority of studies analyzing eicosanoids use
analytical techniques with a negative ionization mode, whereas here, the identifications
were made for compounds detected using a positive ionization mode. In this context, and
given the risk of erroneous identifications, the confirmation of these identifications will
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be essential to confirm these conclusions. By using our in vitro model, we were able to
evaluate the acute effects of exposure exclusively. While no significant deregulation of
metabolites was found after e-cig acute exposure in the present study, other researchers
have demonstrated modifications in the metabolomes in the urine, plasma, or saliva of
people who vape [11,13–15], or in mice chronically exposed to e-cigs [16–18]. Therefore,
this comparative study of the acute toxicity of e-cigs and HTPs using a metabolomic
approach will need to be completed by animal or population studies in order to compare
the long-term toxicity of these new tobacco and vaping devices.
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5. Conclusions

This study provides innovative data to compare the acute toxicity of alternative
tobacco products (e-cigs and HTPs) and to better understand their cellular and molecular
mechanisms of toxicity. The metabolomic data observed strongly suggest a lower acute
toxicity of e-cig aerosols compared to cigarette and HTP emissions in the BEAS-2B cell
line. The metabolomic fingerprint identified for both tobacco products (HTP and 3R4F)
consisted of exogenous compounds, one of which is carcinogenic, as well as endogenous
metabolites, which can be considered as markers of effects. Their deregulations, which are
only observed after more intensive exposure to HTPs (60 or 120 puffs) than to cigarettes
(2 or 4 puffs), indicate alterations in various metabolic pathways, including oxidative
stress and mitochondrial and lipid metabolisms. The metabolites deregulated by HTPs are
involved in metabolic pathways that are also altered in respiratory diseases, confirming that
the toxicity of HTPs should not be underestimated. Further long-term studies in animal
models should be conducted to allow for the assessment of chronic exposures to HTPs.
This work provides health agencies and authorities with additional information for the
regulation of these products as well as for the development of public health policies to
reduce smoking and tobacco product consumption.
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Abbreviations

ALI Air–liquid interface
CCS Collision cross-section
e-cigs Electronic cigarettes
ESI Electrospray ionization
FDR False discovery rate
GSSG Oxidized glutathione
HMDB Human metabolome database
HO Heme oxygenase
HRMS High-resolution mass spectrometry
HTPs Heated tobacco products
IMS Ion mobility spectrometry
LC Liquid chromatography
LDH Lactate dehydrogenase
Log2(FCD1) Log2(FC) D0 vs. D1
Log2(FCD2) Log2(FC) D0 vs. D2
LysoPC Lysophosphatidylcholine
LysoPE Lysophosphatidylethanolamine
m/z Mass-to-charge ratio
Mb-18W Modbox e-cig model set at 18 W
Mb-30W Modbox e-cig model set at 30 W
MS Mass spectrometry
Nrf2 Nuclear factor erythroid 2-related factor 2
PBS Phosphate buffer solution
PLA2 Phospholipase A2
QC Quality control
QToF Quadrupole time-of-flight
ROS Reactive oxygen species
Rt Retention time
TCA cycle Tricarboxylic acid cycle
UPLC Ultra high-performance liquid chromatography
VIP Variable importance in the projection
PLS-DA Partial least-squares discriminant analysis
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