Clonal Integration Promotes the Photosynthesis of Clonal Plant Under Heterogeneous Pb and/or Pyrene Stress
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Experimental Treatments
2.2. Determination of Chlorophyll Content
2.3. Determination of Photosynthetic Parameters
2.4. Determination of Chlorophyll Fluorescence Parameters
2.5. Determination of Lipid Peroxidation and Antioxidant Enzyme Activity
2.6. Statistical Analysis
3. Results
3.1. Growth Parameters and SPAD Value
3.2. Photosynthetic Parameters
3.3. Chlorophyll Fluorescence Parameters
3.4. Lipid Peroxidation and Antioxidant Enzyme Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cai, X.Y.; Jiang, M.Y.; Liao, J.R.; Yang, Y.X.; Li, N.F.; Cheng, Q.B.; Li, X.; Song, H.X.; Luo, Z.H.; Liu, S.L. Biomass Allocation Strategies and Pb-Enrichment Characteristics of Six Dwarf Bamboos under Soil Pb Stress. Ecotoxicol. Environ. Saf. 2021, 207, 111500. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.P.; Deng, G.; Guo, H.Y.; Yang, M.; Yang, Q.H. Accumulation and Sub Cellular Distribution of Lead (Pb) in Industrial Hemp Grown in Pb Contaminated Soil. Ind. Crops Prod. 2021, 161, 113220. [Google Scholar] [CrossRef]
- Li, X.M.; Bu, N.; Li, Y.Y.; Ma, L.J.; Xin, S.G.; Zhang, L.H. Growth, Photosynthesis and Antioxidant Responses of Endophyte Infected and Non-Infected Rice under Lead Stress Conditions. J. Hazard. Mater. 2012, 213, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Song, X.; Ding, D.; Wang, Q.; Zhang, Z.; Tang, Z. Bioremediation of Pahs and Heavy Metals Co-Contaminated Soils: Challenges and Enhancement Strategies. Environ. Pollut. 2022, 295, 118686. [Google Scholar] [CrossRef]
- Wu, F.; Tian, K.; Wang, J.; Bao, H.; Luo, W.; Zhang, H.; Hong, H. Accumulation and Translocation of Phenanthrene, Anthracene and Pyrene in Winter Wheat Affected by Soil Water Content. Ecotoxicol. Environ. Saf. 2019, 183, 109567. [Google Scholar] [CrossRef]
- Song, H.; Wang, Y.S.; Sun, C.C.; Wang, Y.T.; Peng, Y.L.; Cheng, H. Effects of Pyrene on Antioxidant Systems and Lipid Peroxidation Level in Mangrove Plants, Bruguiera gymnorrhiza. Ecotoxicology 2012, 21, 1625–1632. [Google Scholar] [CrossRef]
- Hu, J.Y.; Chen, J.; Wang, W.; Zhu, L.Z. Mechanism of Growth Inhibition Mediated by Disorder of Chlorophyll Metabolism in Rice (Oryza sativa) under the Stress of Three Polycyclic Aromatic Hydrocarbons. Chemosphere 2023, 329, 138554. [Google Scholar] [CrossRef]
- Lu, M.; Zhang, Z.Z.; Wang, J.X.; Zhang, M.; Xu, Y.X.; Wu, X.J. Interaction of Heavy Metals and Pyrene on Their Fates in Soil and Tall Fescue (Festuca arundinacea). Environ. Sci. Technol. 2014, 48, 1158–1165. [Google Scholar] [CrossRef]
- Cheng, X.N.; Chen, C.; Hu, Y.M.; Guo, X.L.; Wang, J.L. Photosynthesis and Growth of Amaranthus tricolor under Strontium Stress. Chemosphere 2022, 308, 136234. [Google Scholar] [CrossRef]
- Dang, K.; Mu, J.M.; Tian, H.; Gao, D.P.; Zhou, H.X.; Guo, L.Y.; Shao, X.W.; Geng, Y.Q.; Zhang, Q. Zinc Regulation of Chlorophyll Fluorescence and Carbohydrate Metabolism in Saline-Sodic Stressed Rice Seedlings. BMC Plant Biol. 2024, 24, 464. [Google Scholar] [CrossRef]
- Zhang, H.H.; Li, X.; Xu, Z.S.; Wang, Y.; Teng, Z.Y.; An, M.J.; Zhang, Y.H.; Zhu, W.X.; Xu, N.; Sun, G.Y. Toxic Effects of Heavy Metals Pb and Cd on Mulberry (Morus Alba L.) Seedling Leaves: Photosynthetic Function and Reactive Oxygen Species (Ros) Metabolism Responses. Ecotoxicol. Environ. Saf. 2020, 195, 110469. [Google Scholar] [CrossRef]
- Ahammed, G.J.; Yuan, H.L.; Ogweno, J.O.; Zhou, Y.H.; Xia, X.J.; Mao, W.H.; Shi, K.; Yu, J.Q. Brassinosteroid Alleviates Phenanthrene and Pyrene Phytotoxicity by Increasing Detoxification Activity and Photosynthesis in Tomato. Chemosphere 2012, 86, 546–555. [Google Scholar] [CrossRef] [PubMed]
- Chigbo, C.; Batty, L.; Bartlett, R. Interactions of Copper and Pyrene on Phytoremediation Potential of Brassica juncea in Copper–Pyrene Co-Contaminated Soil. Chemosphere 2013, 90, 2542–2548. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Shen, K.L.; Zhao, H.M.; Li, W.H. Growth Response of Zea Mays L. In Pyrene–Copper Co-Contaminated Soil and the Fate of Pollutants. J. Hazard. Mater. 2008, 150, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Rehman, S.; Cao, Q.; Jehan, N.; Shah, M.T. Uptake and Translocation of Lead and Pyrene by Ryegrass Cultivated in Aged Spiked Soil. Int. J. Environ. Pollut. 2011, 45, 110–122. [Google Scholar] [CrossRef]
- Zhang, H.; Dang, Z.; Zheng, L.C.; Yi, X.Y. Remediation of Soil Co-Contaminated with Pyrene and Cadmium by Growing Maize (Zea mays L.). Int. J. Environ. Sci. Technol. 2009, 6, 249–258. [Google Scholar] [CrossRef]
- Zhang, J.; Li, N.N.; Song, A.; You, W.H.; Du, D.L. Clonal Integration Can Promote the Growth and Spread of Alternanthera philoxeroides in Cadmium-Contaminated Environments. Plant Physiol. Biochem. 2023, 202, 107966. [Google Scholar] [CrossRef]
- Sun, H.; Zheng, C.C.; Chen, T.P.; Postma, J.A.; Gao, Y.Z. Motherly Care: How Leymus chinensis Ramets Support Their Offspring Exposed to Saline-Alkali and Clipping Stresses. Sci. Total Environ. 2021, 801, 149675. [Google Scholar] [CrossRef]
- Zhang, D.; Tang, J.; Wei, K.; Jia, S.G.; Jiang, Y.W.; Cai, H.W.; Mao, P.S.; Li, M.L. Physiological and Molecular Responses of Zoysia japonica to Rust Infection. Int. J. MoL. Sci. 2022, 23, 4185. [Google Scholar] [CrossRef]
- Xu, S.N.; Liu, Y.C.; Liu, Y.H.; Chen, Z.L.; Li, Y.; Zhang, L.H. Physiological Integration of Growth and Photosynthesis of Zoysia japonica Clonal Ramets under Nutrient Heterogeneity. J. Appl. Ecol. 2018, 29, 811–817. [Google Scholar] [CrossRef]
- Xu, S.N.; Li, Y.; Chen, Z.L.; Zhang, L.H. Physiological Integration of Antioxidant Enzymes and Malondialdehyde in Connected and Disconnected Zoysia japonica Clonal Ramet under Nutrient Heterogeneity. Pratacult. Sci. 2018, 12, 341–347. [Google Scholar] [CrossRef]
- Roiloa, S.R.; Antelo, B.; Retuerto, R. Physiological Integration Modifies Δ15n in the Clonal Plant Fragaria vesca, Suggesting Preferential Transport of Nitrogen to Water-Stressed Offspring. Ann. Bot. 2014, 114, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.-P.; Wei, G.-W.; Luo, F.-L.; Li, C.-Y.; Dong, B.-C.; Ji, J.-S.; Yu, F.-H. Effects of Salinity and Clonal Integration on the Amphibious Plant Paspalum paspaloides: Growth, Photosynthesis and Tissue Ion Regulation. J. Plant Ecol. 2019, 12, 45–55. [Google Scholar] [CrossRef]
- Luo, F.L.; Chen, Y.; Huang, L.; Wang, A.; Zhang, M.X.; Yu, F.H. Shifting Effects of Physiological Integration on Performance of a Clonal Plant During Submergence and De-Submergence. Ann. Bot. 2014, 113, 1265–1274. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Hu, Z.H. Effects of Stolon Severing on the Expansion of Alternanthera philoxeroides from Terrestrial to Contaminated Aquatic Habitats. Plant Spec. Biol. 2012, 27, 46–52. [Google Scholar] [CrossRef]
- Outridge, P.M.; Rauser, W.E.; Hutchinson, T.C. Changes in Metal-Binding Peptides Due to Acclimation to Cadmium Transferred between Ramets of Salvinia minima. Oecologia 1991, 88, 109–115. [Google Scholar] [CrossRef]
- Heister, K.; Lima, A.T. Soil Heterogeneity and Surfactant Desorption Influence Pah Distribution During Electroremediation at a Tar Oil–Contaminated Site. Environ. Monit. Assess. 2019, 191, 625. [Google Scholar] [CrossRef]
- Li, S.J.; Jiang, Z.M.; Wei, S.Q. Interaction of Heavy Metals and Polycyclic Aromatic Hydrocarbons in Soil-Crop Systems: The Effects and Mechanisms. Environ. Res. 2024, 263 Pt 1, 120035. [Google Scholar] [CrossRef]
- Xu, L.; Zhou, Z.-F. Effects of Cu Pollution on the Expansion of an Amphibious Clonal Herb in Aquatic-Terrestrial Ecotones. PLoS ONE 2016, 11, e0164361. [Google Scholar] [CrossRef]
- Luo, F.L.; Xing, Y.P.; Wei, G.W.; Li, C.Y.; Yu, F.H. Clonal Integration Facilitates Spread of Paspalum paspaloides from Terrestrial to Cadmium-Contaminated Aquatic Habitats. Plant Biol. 2017, 19, 859–867. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, C.Y.; Liu, Y.Y.; Yan, Z.G.; Wang, Y.J. Clonal Integration Facilitates Higher Resistance to Potentially Toxic Element Stress in Invasive Alien Plants Than in Natives. Plant Soil 2023, 488, 589–601. [Google Scholar] [CrossRef]
- Mousavi, S.S.; Karami, A.; Maggi, F. Photosynthesis and Chlorophyll Fluorescence of Iranian Licorice (Glycyrrhiza glabra L.) Accessions under Salinity Stress. Front. Plant Sci. 2022, 13, 984944. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Yang, W.; Xie, Y.; Shi, D.; Ma, Y.; Sun, X. Effects of Exogenous Nitric Oxide on the Photosynthetic Characteristics of Bamboo (Indocalamus barbatus Mcclure) Seedlings under Acid Rain Stress. Plant Growth Regul. 2017, 82, 69–78. [Google Scholar] [CrossRef]
- Islam, E.; Liu, D.; Li, T.Q.; Yang, X.E.; Jin, X.F.; Mahmood, Q.; Tian, S.K.; Li, J.Y. Effect of Pb Toxicity on Leaf Growth, Physiology and Ultrastructure in the Two Ecotypes of Elsholtzia argyi. J. Hazard. Mater. 2008, 154, 914–926. [Google Scholar] [CrossRef]
- Li, Y.; Ning, W.T.; Xu, S.N.; Yu, N.; Chen, Z.L.; Zhang, L.H. Response of Physiological Integration in the Clonal Herb Zoysia japonica to Heterogeneous Water Conditions. Acta Physiol. Plant. 2022, 44, 34. [Google Scholar] [CrossRef]
- Yu, H.W.; Shen, N.; Yu, D.; Liu, C.H. Clonal Integration Increases Growth Performance and Expansion of Eichhornia crassipes in Littoral Zones: A Simulation Study. Environ. Exp. Bot. 2019, 159, 13–22. [Google Scholar] [CrossRef]
- You, W.H.; Li, N.N.; Zhang, J.; Song, A.; Du, D.L. The Plant Invader Alternanthera philoxeroides Benefits from Clonal Integration More Than Its Native Co-Genus in Response to Patch Contrast. Plants 2023, 12, 2371. [Google Scholar] [CrossRef]
- Hu, H.Q.; Wang, L.H.; Wang, Q.Q.; Jiao, L.Y.; Hua, W.Q.; Zhou, Q.; Huang, X.H. Photosynthesis, Chlorophyll Fluorescence Characteristics, and Chlorophyll Content of Soybean Seedlings under Combined Stress of Bisphenol a and Cadmium. Environ. Toxicol. Chem. 2014, 33, 2455–2462. [Google Scholar] [CrossRef]
- Sun, X.L.; Xu, Y.; Zhang, Q.Q.; Li, X.Z.; Yan, Z.Z. Combined Effect of Water Inundation and Heavy Metals on the Photosynthesis and Physiology of Spartina alterniflora. Ecotoxicol. Environ. Saf. 2018, 153, 248–258. [Google Scholar] [CrossRef]
- Guedes, F.R.C.M.; Maia, C.F.; da Silva, B.R.S.; Batista, B.L.; Alyemeni, M.N.; Ahmad, P.; da Silva Lobato, A.K. Exogenous 24-Epibrassinolide Stimulates Root Protection, and Leaf Antioxidant Enzymes in Lead Stressed Rice Plants: Central Roles to Minimize Pb Content and Oxidative Stress. Environ. Pollut. 2021, 280, 116992. [Google Scholar] [CrossRef]
- Cheng, S.S.; Tam, N.F.Y.; Li, R.L.; Shen, X.X.; Niu, Z.Y.; Chai, M.W.; Qiu, G.Y. Temporal Variations in Physiological Responses of Kandelia obovata Seedlings Exposed to Multiple Heavy Metals. Mar. Pollut. Bull. 2017, 124, 1089–1095. [Google Scholar] [CrossRef] [PubMed]
- Farquhar, G.D.; Sharkey, T.D. Stomatal Conductance and Photosynthesis. Annu. Rev. Plant Physiol. 1982, 33, 317–345. [Google Scholar] [CrossRef]
- Li, N.; Liu, Z.; Wang, P.C.; Suman, K.; Zhang, J.Y.; Song, Y.X. Effects of Sodium Hypochlorite Treatment on the Chlorophyll Fluorescence in Photosystem Ii of Microalgae. Sci. Total Environ. 2022, 833, 155192. [Google Scholar] [CrossRef] [PubMed]
- Hazrati, S.; Tahmasebi-Sarvestani, Z.; Modarres-Sanavy, S.A.M.; Mokhtassi-Bidgoli, A.; Nicola, S. Effects of Water Stress and Light Intensity on Chlorophyll Fluorescence Parameters and Pigments of Aloe vera L. Plant Physiol. Biochem. 2016, 106, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Krause, G.H. Photoinhibition of Photosynthesis. An Evaluation of Damaging and Protective Mechanisms. Physiol. Plant. 1988, 74, 566–574. [Google Scholar] [CrossRef]
- Ma, Y.L.; Wang, H.F.; Wang, P.; Yu, C.G.; Luo, S.Q.; Zhang, Y.F.; Xie, Y.F. Effects of Cadmium Stress on the Antioxidant System and Chlorophyll Fluorescence Characteristics of Two Taxodium Clones. Plant Cell Rep. 2018, 37, 1547–1555. [Google Scholar] [CrossRef]
- Baker, N.R.; Harbinson, J.; Kramer, D.M. Determining the Limitations and Regulation of Photosynthetic Energy Transduction in Leaves. Plant Cell Environ. 2007, 30, 1107–1125. [Google Scholar] [CrossRef]
- Schlie, T.P.; Dierend, W.; Köpcke, D.; Rath, T. Recording of Low-Oxygen Stress Response Using Chlorophyll Fluorescence Kinetics in Apple Fruit. Food Bioprod. Process. 2024, 17, 1004–1016. [Google Scholar] [CrossRef]
- Guo, R.Y.; Lu, D.D.; Liu, C.G.; Hu, J.R.; Wang, P.B.; Dai, X.F. Toxic Effect of Nickel on Microalgae Phaeodactylum tricornutum (Bacillariophyceae). Ecotoxicology 2022, 31, 746–760. [Google Scholar] [CrossRef]
- Li, X.Z.; Yu, Y.C.; Zhang, Y.R.; Wang, J.; She, D. Synergistic Effects of Modified Biochar and Selenium on Reducing Heavy Metal Uptake and Improving Pakchoi Growth in Cd, Pb, Cu, and Zn–Contaminated Soil. J. Environ. Chem. Eng. 2024, 12, 113170. [Google Scholar] [CrossRef]
- Din, A.M.U.; Mao, H.T.; Khan, A.; Raza, M.A.; Ahmed, M.; Yuan, M.; Zhang, Z.W.; Yuan, S.; Zhang, H.Y.; Liu, Z.H. Photosystems and Antioxidative System of Rye, Wheat and Triticale under Pb Stress. Ecotoxicol. Environ. Saf. 2023, 249, 114356. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Shi, X.-P.; Wu, X.-J.; Meng, X.-F.; Wang, P.-C.; Zhou, Z.-X.; Luo, F.-L.; Yu, F.-H. Effects of Patch Contrast and Arrangement on Benefits of Clonal Integration in a Rhizomatous Clonal Plant. Sci. Rep. 2016, 6, 35459. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.Q.; Ke, T.; Wu, Y.F.; Zhang, C.; Hu, Z.Q.; Yin, H.M.; Guo, L.M.; Chen, L.Z.; Zhang, D.Y. Heavy Metal Exposure Alters the Uptake Behavior of 16 Priority Polycyclic Aromatic Hydrocarbons (Pahs) by Pak Choi (Brassica chinensis L.). Environ. Sci. Technol. 2018, 52, 13457–13468. [Google Scholar] [CrossRef] [PubMed]
- Jara-Yáñez, R.; Meynard, A.; Acosta, G.; Latorre-Padilla, N.; Oyarzo-Miranda, C.; Castañeda, F.; Piña, F.; Rivas, J.; Bulboa, C.; Contreras-Porcia, L. Negative Consequences on the Growth, Morphometry, and Community Structure of the Kelp Macrocystis pyrifera (Phaeophyceae, Ochrophyta) by a Short Pollution Pulse of Heavy Metals and Pahs. Toxics 2021, 9, 190. [Google Scholar] [CrossRef] [PubMed]
- Jiao, A.X.; Gao, B.J.; Gao, M.J.; Liu, X.Y.; Zhang, X.Y.; Wang, C.H.; Fan, D.L.; Han, Z.R.; Hu, Z.Q. Effect of Nitrilotriacetic Acid and Tea Saponin on the Phytoremediation of Ni by Sudan Grass (Sorghum sudanense (Piper) Stapf.) in Ni-Pyrene Contaminated Soil. Chemosphere 2022, 294, 133654. [Google Scholar] [CrossRef]
- Shang, X.T.; Wu, S.R.; Liu, Y.L.; Zhang, K.K.; Guo, M.X.; Zhou, Y.M.; Zhu, J.W.; Li, X.H.; Miao, R.H. Rice Husk and Its Derived Biochar Assist Phytoremediation of Heavy Metals and Pahs Co-Contaminated Soils but Differently Affect Bacterial Community. J. Hazard. Mater. 2024, 466, 133684. [Google Scholar] [CrossRef]
- Song, Y.B.; Yu, F.H.; Keser, L.H.; Dawson, W.; Fischer, M.; Dong, M.; van Kleunen, M. United We Stand, Divided We Fall: A Meta-Analysis of Experiments on Clonal Integration and Its Relationship to Invasiveness. Oecologia 2013, 171, 317–327. [Google Scholar] [CrossRef]
- Yan, X.; Yu, D.; Wang, H.Y.; Wang, J.W. Response of Submerged Plant (Vallisneria spinulosa) Clones to Lead Stress in the Heterogenous Soil. Chemosphere 2006, 63, 1459–1465. [Google Scholar] [CrossRef]
- Xu, L.; Zhou, Z.-F. Physiological Integration Affects Expansion of an Amphibious Clonal Plant from Terrestrial to Cu-Polluted Aquatic Environments. Sci. Rep. 2017, 7, 43931. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Xu, S.; Li, X.; Zhang, L. Clonal Integration Promotes the Photosynthesis of Clonal Plant Under Heterogeneous Pb and/or Pyrene Stress. Toxics 2024, 12, 899. https://doi.org/10.3390/toxics12120899
Liu Y, Xu S, Li X, Zhang L. Clonal Integration Promotes the Photosynthesis of Clonal Plant Under Heterogeneous Pb and/or Pyrene Stress. Toxics. 2024; 12(12):899. https://doi.org/10.3390/toxics12120899
Chicago/Turabian StyleLiu, Yichen, Sunan Xu, Xuemei Li, and Lihong Zhang. 2024. "Clonal Integration Promotes the Photosynthesis of Clonal Plant Under Heterogeneous Pb and/or Pyrene Stress" Toxics 12, no. 12: 899. https://doi.org/10.3390/toxics12120899
APA StyleLiu, Y., Xu, S., Li, X., & Zhang, L. (2024). Clonal Integration Promotes the Photosynthesis of Clonal Plant Under Heterogeneous Pb and/or Pyrene Stress. Toxics, 12(12), 899. https://doi.org/10.3390/toxics12120899