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Abstract: A Z-type heterojunction MnO2@g-C3N4 photocatalyst with excellent performance was
synthesized by an easy high-temperature thermal polymerization approach and combined with perox-
ymonosulfate (PMS) oxidation technology for highly efficient degrading of tetracycline hydrochloride
(TC). Analysis of the morphological structural and photoelectric properties of the catalysts was
achieved through different characterization approaches, showing that the addition of MnO2 height-
ened visible light absorption by g-C3N4. The Mn1-CN1/PMS system showed the best degradation
of TC wastewater, with a TC degradation efficiency of 96.97% following 180 min of treatment. This
was an approximate 38.65% increase over the g-C3N4/PMS system. Additionally, the Mn1-CN1

catalyst exhibited excellent stability and reusability. The active species trapping experiment indi-
cated •OH and SO4

•− remained the primary active species to degrade TC in the combined system.
TC degradation pathways and intermediate products were determined. The Three-Dimensional
Excitation-Emission Matrix (3DEEM) was employed for analyzing changes in the molecular structure
in TC photocatalytic degradation. The biological toxicity of TC and its degradation intermediates
were investigated via the Toxicity Estimation Software Test (T.E.S.T.). The research offers fresh
thinking for water environment pollution treatment.

Keywords: MnO2@g-C3N4; peroxymonosulfate; photocatalytic; degradation mechanism; TC

1. Introduction

Tetracycline antibiotics are among the most frequently adopted antibiotics in livestock,
aquaculture, and healthcare [1]. Tetracycline hydrochloride (TC), a tetracycline antibiotic,
cannot be completely broken down in the environment because of its stable chemical
properties [2]. The misuse and release of antibiotics in the ecosystem can promote the
development of various drug-resistant bacteria and the enhancement of resistance genes [3],
causing severe risk to global health and the ecosystem [4,5]. As a result, it is important to
find a green, effective, and economical way to degrade TC effluent.

Currently, the commonly used remediation methods for environmental pollutants
include adsorption [6], flocculation precipitation [7], ion exchange [8], and biochemical
methods [9,10]. However, the above methods have the disadvantages of complicated
procedures, high costs, and low removal efficiency. Advanced oxidation processes (AOPs)
are considered a hopeful degradation technology because of their ability to generate highly
reactive radicals, including hydroxyl radicals (•OH) and sulfate radicals (SO4

•−) [11,12].
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Interestingly, peroxymonosulfate (PMS)-based AOPs (PMS-AOPs) can produce SO4
•− with

higher redox potential, better selectivity, and a more comprehensive pH selection range [13].
The PMS could be excited by photocatalysis, carbon materials, and transition metal oxides
to generate SO4

•− [13–17]. Photocatalysis activation of PMS is one of the most widely
used techniques because photocatalytic methods are inexpensive, simple, and efficient [18].
Many scholars have reported the effective degradation of pollutants by combining photo-
catalysts with PMS activation [15]. Liu et al. [19] found that the combination of graphitic
carbon nitride (g-C3N4) nanosheets and PMS enhanced the removal of Bisphenol A under
visible light, with complete removal in 90 min. Guan et al. [20] investigated whether the
introduction of persulfate in the Co3O4/CeO2 system improved the removal efficacy of
TC. Therefore, the combination of PMS and photocatalytic systems can effectively degrade
antibiotic wastewater.

Recently, with good stability, reaction to light in the visible range, and unique proper-
ties of affordability, g-C3N4 has gained much attention as a non-metallic semiconductor
material [21]. Meanwhile, research has now demonstrated that g-C3N4 can activate PMS
to degrade organic pollutants [19]. Unfortunately, g-C3N4 still has significant limitations,
including weak conductivity and quick recombination of photogenerated electron-holes
(e−-h+), which restricts its practical applicability in environmental purification [22]. Hence,
numerous techniques have been developed for improving the photocatalytic activity of
g-C3N4, involving metal or non-metal doping [23,24], construction nanostructures [25],
and combinations of different semiconductors [26]. Among all modification methods,
the combination of other semiconductors and g-C3N4 remains an excellent method for
constructing Z-type heterojunction materials [27,28].

Transition metal oxide semiconductors can serve as catalysts and PMS activators to
produce strongly oxidizing SO4

•−. As a typical transition metal oxide, manganese dioxide
(MnO2) has the benefits of low cost, environmental friendliness, and good conductivity [29].
MnO2 is an effective PMS activator due to the abundant oxygen mobility in the MnO2
lattice and the electron transfer between Mn species [30,31]. Therefore, the addition of
MnO2 to g-C3N4 for forming a Z-type heterojunction is a viable approach for improving
photocatalytic performance of the catalyst [32,33].

In our research, a MnO2@g-C3N4 heterojunction with a Z-type structure was prepared
for efficient TC photocatalytic degradation with PMS and visible light. Various characteriza-
tion approaches were employed for analyzing the morphology, chemical compositions, and
optoelectronic properties of samples. The photocatalytic degradation performance of TC
was studied under diverse reaction environment parameters. Meanwhile, the intermediates
of TC and possible reaction pathways were determined. The Toxicity Estimation Software
Test (T.E.S.T.) was employed for assessing TC toxicity and its intermediates. The average
TC removal rate observed under the current procedures at the wastewater treatment plants
was 96.97%. This research presents a safe, green, and environmentally friendly treatment
method for purifying and treating antibiotic wastewater.

2. Experimental Section
2.1. Materials

The chemical reagents used in our research are all listed in Supplementary file Text 1.

2.2. Photocatalyst Sample Preparation
2.2.1. Preparation of g-C3N4

The g-C3N4 preparation had two steps. In the first step, bulk g-C3N4 was produced
through thermal polycondensation [34]. A total of 5 g of melamine was laid in a muffle
furnace, with the temperature heated to 550 ◦C at 5 ◦C min−1 and held for 4 h. After
cessation of heating, the yellowish solid was ground for 30 min to form a fine powder.
To pyrolytically peel the prepared bulk g-C3N4 into thinner g-C3N4, in the second step,
the yellowish g-C3N4 powder was divided into several portions, and the g-C3N4 was



Toxics 2024, 12, 70 3 of 18

laid in crucible and placed in a muffle furnace, with the temperature heated to 500 ◦C at
10 ◦C min−1 within 2 h to obtain g-C3N4.

2.2.2. Preparation of MnO2

MnO2 was synthesized by redox coprecipitation using MnCl2-4H2O and KMnO4 (mo-
lar ratio 3:2). The brown precipitate was separated by adding KMnO4 solution
(2 mol L−1 100 mL) to MnCl2 solution (3 mol L−1 100 mL) dropwise at 5 mL min−1

during magnetic stirring and drying for 4 h at 90 ◦C. The solution was stirred again to
redissolve the dried powder in water. The precipitate was washed properly with alcohol
by filtration and dried for 12 h at 90 ◦C to obtain MnO2.

2.2.3. Preparation of MnO2@g-C3N4

Three mass ratios of MnO2 and g-C3N4 (MnO2:g-C3N4 = 1:2, 1:1, and 2:1) were
weighed and were recorded as Mn1-CN2, Mn1-CN1, and Mn2-CN1, respectively. The
mixture was ground for 30 min to form a fine powder and then laid in crucible in a
muffle furnace, with the temperature heated to 400 ◦C at 5 ◦C min−1 within 4 h and
chilled to normal temperature to obtain Mn-CN photocatalytic composite materials with
different ratios.

2.3. Photocatalyst Characterization

The morphology and dimensions of the photocatalysts were identified using scanning
electron microscopy (SEM) techniques. X-ray diffraction (XRD) patterns were obtained
using a Brucker D8 Advance diffraction apparatus. The surface chemistry of the samples
was characterized by X-ray photoelectron spectroscopy (XPS). Solid-state UV-Vis diffuse
reflectance spectroscopy (UV-Vis-DRS) was used to study the optical properties and separa-
tion of photogenerated electrons and holes. Electrochemical impedance spectroscopy (EIS)
was measured using a CHI 660B electrochemical system. The degradation intermediates
of TC were analyzed by HPLC-MS. The molecular structural changes during TC degrada-
tion were analyzed using Three-Dimensional Excitation-Emission Matrix (3DEEM). The
parameters used for all characterizations are given in Supplementary file Text 2.

2.4. Photocatalytic Degradation of TC by Mn-CN

In the experiments, the photocatalytic degradation performance of the catalysts was
tested via a dominant wavelength of 400 nm and a 300 W solar simulator xenon lamp
(xenon lamp model and manufacturer’s declared spectrum as well as photocatalytic device
diagram are shown in Supplementary Figure S1). The photocatalyst (0.03 g) was dispersed
into 50 mL of 20 mg L−1 TC solution for each experiment. The solution was stirred for
30 min without light until adsorption equilibrium was reached. Then, 0.6 mM PMS was
added, and the lamp was switched on. Samples were taken every 30 min during the
photocatalytic process. Supernatant measurement was performed with UV-Vis spectropho-
tometer (UV-5100B) at 357 nm after filtration through a 0.22 µm microfilter membrane.

3. Results and Discussion
3.1. Properties of the Material

Figure 1 displays the SEM and TEM pictures of the samples. The g-C3N4 was com-
posed of many irregular lamellar and layered structures [35], with a large specific surface
area, as shown in Figure 1a [36]. MnO2 exhibited regular small particle-size nanospheres
with a rough surface but a relatively uniform particle size distribution (Figure 1b). Moreover,
MnO2 was dispersed on the g-C3N4 layered structure in Mn1-CN1 (Figure 1c). Figure 1d–f
shows the TEM images of the sample. Many MnO2 particles were found on the g-C3N4
surface, indicating that the composites of MnO2 and g-C3N4 were well prepared [37]. As
depicted in Figure 1g–j, C, N, O, and Mn were evenly scattered on the Mn1-CN1 surface.
The percentages of C, N, O and Mn in Mn1-CN1 were 50.36%, 16.42%, 6.05%, and 27.17%,
respectively (Figure 1k). Figure 1l shows the HRTEM image of Mn1-CN1; two different
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types of lattice stripes can be found from the (002) and (111) facets of the crystal structure
at crystallographic plane distances of approximately 0.34 and 0.24 nm, respectively.
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Figure 1. SEM and TEM pictures of (a,d) g-C3N4, (b,e) MnO2, (c,f) Mn1-CN1; (g–j) elemental
mapping images of C, N, O, and Mn in Mn1-CN1; (k) EDS spectrum of Mn1-CN1; (l) HRTEM image
of Mn1-CN1.

Figure 2a displays the XRD patterns of g-C3N4, MnO2, and Mn1-CN1. The g-C3N4
and Mn1-CN1 have the same peaks located at 13.1◦ and 27.4◦ [38]. The diffraction peak at
13.1◦ was weak and belonged to the (100) crystal plane of g-C3N4, which was made up of
repeating structural units of the heptazine ring. The diffraction peak at 27.4◦ was strong and
belonged to the g-C3N4 (002) crystal plane. This indicates that the sample was a lamellar
stacking of graphite-like material [39]. The location and intensity of MnO2 diffraction peaks
were relatively uniform and smooth, with the diffraction peaks at 2θ = 12.7◦, 25.2◦, 37.1◦,
and 66.0◦ for lattice planes (001), (002), (111), and (311), respectively [40]. The relatively
weak intensity and broad peak pattern of these diffraction peaks indicated that the product
was a compact growth of amorphous and weakly crystalline MnO2. Furthermore, all
prominent peaks of g-C3N4 and MnO2 could be seen in the Mn1-CN1 spectra, which
indicates that MnO2 was compounded into g-C3N4 to form Mn1-CN1.
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Figure 2. (a) XRD patterns (The hearts and clubs in 2a are the locations of the g−C3N4 and MnO2

characteristic peaks, respectively), (b) FT-IR spectra, (c) N2 adsorption-desorption isotherm curve,
(d) pore size distribution of g-C3N4, MnO2, and Mn1-CN1, (e) UV-vis DRS spectra of the samples,
(f) diffuse reflectance spectra after Tauc fitting for the different photocatalysts.

Figure 2b displays the FT-IR of the sample. The peak of g-C3N4 at around
807.50 cm−1 can be related to the triazinic moiety [41]. Vibrational absorption peaks
at 1252.82 and 1623.35 cm−1 correspond to the vibrational stretch of the carbon and ni-
trogen bonds (C-N and C=N). The stretching vibrations of -NH2 and -NH groups and
of the -OH bond correspond to the peak at 3151.74 cm−1 [42]. The characteristic peak of
MnO2 was mainly at 530.32 cm−1. The positions of the Mn1-CN1 absorption peaks were
essentially the same as those of MnO2 and g-C3N4 absorption peaks, illustrating that the
MnO2 had been loaded onto g-C3N4.

Samples’ N2 adsorption-desorption isotherms and pore-size profiles were measured,
with the results shown in Figure 2c,d. The specific surface area of Mn1-CN1 was
90.99 m2g−1, which was 5.6 and 3.8 times higher relative to g-C3N4 and MnO2, respectively.
Due to the large number of MnO2 particles tightly dispersed on the surface of g-C3N4, the
specific surface area of the composites was enlarged relative to single g-C3N4 and MnO2,
which contributed to TC degradation. Under the International Union of Pure and Applied
Chemistry (IUPAC) classification, all three samples displayed the Type IV isotherm of the
H3 type, indicating that narrow pores existed, unique to mesoporous materials, in the
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prepared samples [43]. From Figure 2d, the pore size distribution curves of all photocata-
lysts, g-C3N4, MnO2, and Mn1-CN1, indicate a mesoporous structure. Moreover, the pore
volume of Mn1-CN1 was also greater relative to g-C3N4 and MnO2. The larger specific
surface area and higher porosity of the catalyst could increase the contact area of active
molecules and pollutants, thus enhancing photocatalytic performance [44].

The UV-Vis DRS spectrum shows the optical properties of samples (Figure 2e). The
G-C3N4 sample absorbed light within the range of 450 nm to UV. Compared with g-C3N4,
MnO2 exhibited strong absorption in the wavelength range of 300–800 nm. Notably, the
introduction of MnO2 resulted in a significant red-shift of Mn1-CN1, indicating that the
MnO2 was able to extend the absorption range of Mn1-CN1 for visible light [45]. The
bandgap energy of the samples was calculated via the Kubelka–Munk function [46], as
shown below:

(αhv)1/2 = K
(
hv − Eg

)
(1)

where α, v, h, K, and Eg are absorbance, photon frequency, Planck’s constant, proportional
constant, and bandgap energy, respectively. This can be derived from the diffuse reflectance
spectra after Tauc fitting with Eg values of 2.67 eV and 1.71 eV for g-C3N4 and MnO2
samples, respectively (Figure 2f). Valence bands (VB) of g-C3N4 and MnO2 can be estimated
from the XPS valence band spectra (Supplementary Figure S2), with positions of 1.54 and
2.34 eV, respectively. The conduction band (CB) position was calculated via Equation (2),
and the CB potentials of g-C3N4 and MnO2 were −1.13 and 0.63 eV, respectively.

ECB = EVB − Eg (2)

Figure 3a displays the total XPS spectra of the photocatalysts. The XPS spectrum of
Mn1-CN1 contained peaks of C 1s and N 1s elements in g-C3N4 and peaks of Mn 2p and O
1s elements in MnO2. In addition, no peaks of other elements were found in the Mn1-CN1
catalyst, indicating that the composite was not doped with impurities of other elements.
Figure 3b shows the three peaks obtained by fitting the C 1s high resolution spectrum with
the XPSPEAK software. The three peaks at 284.2, 285.2, and 287.4 eV resulted from the C-C
bond, C=N bond, and N=C-N2 group, respectively [47]. In Figure 3c, the four characteristic
peaks of N 1s spectra at 397.8, 398.7, 400.2, and 403.8 eV originated from the C=N-C bond
of sp2-hybridized aromatic nitrogen, (C)3-N2 bond of the sp2-hybridized bridged nitrogen
atom, C-N-H of the sp3-hybridized terminal functional group [48,49], and the charge effect
of the π-excited states [50], respectively. These results prove the existence of the graphite
phase g-C3N4. The two characteristic peaks in Mn 2p spectra (Figure 3d) at 642.0 and
654.0 eV corresponded to the binding energy spin-orbit double peaks of Mn 2p3/2 and Mn
2p1/2, respectively, which is consistent with the nature of MnO2. In addition, the change in
the valence of Mn was crucial for the photocatalytic reaction. The presence of characteristic
peaks at 652.9 and 641.4 eV indicates that both Mn3+ and Mn4+ were present in MnO2. As
shown in the O 1s spectra (Figure 3e), the three peaks at 529.1, 530, and 531.1 eV were due
to the atomic lattice oxygen of MnO2, hydroxyl groups attached to the Mn surface, and
adsorbed oxygen [51].

In addition, the interfacial charge transfer of the samples was studied using the EIS
technique. Photoelectric performance tests were performed on a CHI 660B electrochemical
system. The system used a standard three-electrode system with a photocatalyst as the
working electrode, a Pt plate counter electrode and an Ag/AgCl reference electrode, and
Na2SO4 as the electrolyte solution. The smaller arc radius of the EIS curve indicates lower
resistance of the sample and a better electron-hole pair separation [52]. From Figure 3f, it
can be seen that the electrochemical impedance arc radius of Mn1-CN1 was significantly
smaller relative to g-C3N4 and MnO2, indicating that Mn1-CN1 possessed the smallest
charge transfer resistance and quicker interfacial charge transfer efficiency. The above
results show that the formation of heterojunctions could speed up the transfer of photo-
excited electron-hole pairs, which improved photocatalytic degradation [28].
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3.2. Photocatalytic Efficiency of the Samples toward TC Degradation

From Figure 4a, it can be seen that the Mn-CN/PMS system exhibited excellent degra-
dation performance, with a degradation efficiency of 85.06%. When MnO2 was introduced,
g-C3N4/MnO2 samples displayed excellent photocatalytic degradation efficiency for TC,
which resulted from the formation of the g-C3N4/MnO2 heterojunction. However, degra-
dation efficiency of TC for the sole MnO2 system was less than 7.0%. Moreover, the TC
degradation efficiency for the sole g-C3N4 or PMS system was also relatively low, with
only 15.5% and 5.4% removal, respectively. When both Mn-CN and PMS were present,
the TC degradation efficiency reached 85.06%, suggesting that PMS was activated by the
Mn-CN activator.

The photocatalytic degradation performance of different Mn-CN catalysts is shown
in Figure 4b. Compared with other samples, the Mn1-CN1 catalysts exhibited better
degradation performance. TC degradation efficiency achieved 85.06% when PMS existed
after 180 min. However, when the MnO2 ratio increased, the TC degradation efficiency
did not significantly change because the excessive MnO2 increased the absorption and
scattering of photons, which affected light utilization by g-C3N4 and reduced photocatalytic
efficiency. This is consistent with previous reports [23].

3.3. The Effect of Catalyst Dosage

TC degradation efficiency was enhanced when the amount of the Mn1-CN1 catalyst
increased (Figure 4c). When the Mn1-CN1 catalyst was dosed from 0.2 to 0.6 g L−1, TC
degradation efficiency improved from 54.3% to 85.06%. With the increase in the amount of
the Mn1-CN1 catalyst, the number of active sites increased, which was helpful for improving
TC photocatalytic degradation efficiency [26]. However, TC degradation efficiency was
not significantly improved by more than 1% when the Mn1-CN1 dose reached 0.8 g L−1.
When the amount of the Mn1-CN1 catalyst was too high, the excessive Mn1-CN1 impeded
the passage of light, further affecting the number of photogenerated electron-hole pairs
generated by the photocatalyst and causing the degradation efficiency of TC solution
to decrease.
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3.4. The Effect of initial TC Concentration

As Figure 4d displays, as the TC concentration was augmented from 10 to 25 mg L−1,
the TC degradative efficiency diminished from 99.1% to 77.9% in 180 min photoreaction.
When the catalyst and the PMS dosage were constant, the electron-hole pairs produced
were almost constant, and the number of active molecules produced by the photocatalytic
system tended to be constant. The photocatalytic system was able to provide sufficient
active substances while the initial TC concentration was 10 mg L−1. Therefore, each TC
molecule was more easily oxidized, improving the utilization rate of the active species. The
photocatalytic system provided insufficient active species, and TC degradation efficiency
diminished, with gradual augmentation of the initial TC concentration. In addition, the
amount of intermediate products produced in TC degradation also increased with the
initial TC concentration. This could result in occupation of other active sites [28].
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3.5. The Effect of PMS Dosage on TC Degradation

The influence of different PMS concentrations on TC degradation is detailed in
Figure 4e. As the PMS dosage was augmented, the TC degradation efficiency was gradually
enhanced. The photocatalytic degradation efficiency of TC increased from 64.7% to 85.06%
when the concentration of PMS was increased from 0.2 to 0.6 mM, which was attributed
to the production of more reactive oxygen species by Mn1-CN1 [53]. However, the TC
degradation capacity was not significantly improved when PMS was dosed to 0.8 mM,
with no great improvement in TC degradation efficiency. Excess PMS could react with
SO4

•−, forming persulfate radicals (S2O8
2−), which have a much lower oxidation capacity

than SO4
•− (see Equations (3) and (4)) [54].

SO•−
4 + S2O2−

8 → S2O•−
8 + SO2−

4 (3)

SO•−
4 + SO•−

4 → S2O2−
8 (4)

3.6. The Effect of Initial Solution pH

The influence of diverse initial solution pH levels on TC degradation is detailed in
Figure 4f. In acidic conditions, the combined system showed better degradation perfor-
mance, whereas in alkaline conditions, a lower TC degradation efficiency remained. The
TC degradation efficiency obtained was 96.97% at a pH of 3, while the lowest degradation
efficiency was recorded when the pH was 11 (50.6%). When the solution pH was below
the equipotential point of Mn1-CN1 in the acidic environment, the Mn1-CN1 catalyst was
positively charged [55]. This could promote the migration of photoexcited electrons to the
catalyst surface and effectively lessen the compounding of e− and h+, thus enhancing the
catalytic efficiency of the catalyst. The Mn1-CN1 was negatively charged in an alkaline
environment, which did not assist the transfer of photoexcited electrons to the catalyst
surface, thus affecting photocatalytic efficiency.

Supplementary Figure S3 exhibits the UV-visible degradation spectra for each of the
influencing factors. The intensity of the typical absorption peaks decreased as the pho-
tocatalytic reaction progressed. This indicated that the Mn1-CN1/PMS system produced
effective active species. The reaction kinetic rate constant for TC degradation can be calcu-
lated from the first-order kinetic equation (Equation (5)), where k and t are the degradation
rate constant and reaction time (min), respectively, Ct is the TC concentration at t min
(mg L−1), and C0 is the initial TC concentration (mg L−1).

ln(Ct/C0) = −kt (5)

The photocatalytic process of MnO2/g-C3N4 was compared with other g-C3N4-based
photocatalysts reported in the literature (Table 1). The findings proved that MnO2/g-
C3N4 exhibited relatively better photocatalytic activity for organic pollutant removal. In
addition, the kinetic diagrams at the TC level for each of the above influences are detailed
as Supplementary Figure S4a–f, showing first-order reaction kinetics well explained the
TC degradation rate, and the Mn1-CN1/PMS system had a high degradation rate constant
(Supplementary Table S1).

The TOC analyzer (Analytickjena, multi N/C 2100s) was used to determine the change
in total organic carbon in the TC solution. As shown in Figure 5, the removal of TOC
increased with increasing of the photocatalytic treatment time. When the time was 180 min,
the removal rate of TOC was 81.3%. This indicates that the Mn1-CN1/PMS system has
significant photocatalytic treatment ability under visible light, which can oxidize industrial
recalcitrant pollutants such as TC.
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Table 1. Comparison of TC degradation efficiencies with other C3N4-based photocatalysts.

Photocatalyst (g L−1) TC Concentration
(mg L−1) Light Source Type Volumes

Tested
Time
(min)

Removal
(%) References

AgCl/ZnO/g-C3N4 (1.0) 20 mg L−1 400–700 nm 40 ml 80 min 92.7% [56]
Ag-C3N4/SnS2 (0.4) 15 mg L−1 500 W Xe lamp 50 ml 150 min 94.9% [57]
g-C3N4/BiPO4 (1.0) 20 mg L−1 1000 W Xe lamp 50 ml 180 min 97% [58]

C3N4/WO3 (0.4) 10 mg L−1 500 W Xe lamp
(320–780nm) 100 ml 180 min 79.8% [59]

Co3O4/g-C3N4 (0.4) 15 mg L−1 500 W Xe lamp (>420 nm) 100 ml 150 min 92.6% [60]
g-C3N4/MnO2/GO (0.5) 10 mg L−1 300 W Xe lamp (420 nm) 100 ml 90 min 91.4% [61]

Ag3PO4/AgBr/g-C3N4(0.5) 40 mg L−1 300 W Xe lamp (>420 nm) 100 ml 25 min 80.2% [28]
g-C3N4/Bi2WO6/AgI (0.6) 20 mg L−1 >420 nm 50 ml 60 min 91.1% [62]

Mn1-CN1 (0.6) 20 mg L−1 300W xenon lamp 50 ml 180 min 96.97% This study
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3.7. Stability of Photocatalytic Materials

As illustrated in Figure 6a, there was no appreciable difference between the first
used catalyst and the five recycled ones, and TC degradation efficiency only declined
from 96.5% to 91.7%. The decrease in TC degradation efficiency could be explained by
the accumulation of intermediates on the Mn1-CN1 catalyst, which competed with the
photocatalyst active site, and the loss of a small amount of photocatalyst during the
cycling process experiments [63]. Meanwhile, to further confirm the stability, Mn1-CN1
was analyzed by SEM/TEM, XPS, and XRD after five cyclic experiments. The SEM/TEM
image (Supplementary Figure S5) shows no great changes in Mn1-CN1 morphology. The
XRD pattern (Supplementary Figure S6) shows that the diffraction peaks were significantly
unchanged after the reaction. Furthermore, the XPS spectra of the recovered Mn1-CN1 were
similar to those of the original catalyst, indicating that the surface structure of the sample
did not change after five cycles of reaction (Supplementary Figure S7). The Mn1-CN1
composite photocatalyst was prepared with high stability, which is very useful for practical
applications in wastewater treatment.

3.8. Visible Light Photocatalytic Degradation Mechanism

The active species trapping experiment was performed to investigate the active species
involved in TC degradation [64,65]. Reagents IPA, BQ, EDTA-2Na, and MA were employed
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for capturing •OH, superoxide radical (•O2
−), h+, and SO4

•−, respectively. Supplemen-
tary Figure S8 shows the addition of IPA and MA significantly inhibited TC degradation
efficiency, which diminished from 97% to 41.08% and 54.9%, correspondingly, revealing
that •OH and SO4

•− were primary active species. Additionally, the presence of BQ also
inhibited TC degradation efficiency, suggesting that •O2

− was also involved in the pho-
tocatalytic reaction. However, EDTA-2Na only slightly inhibited TC photodegradation,
revealing that h+ was not the major active substance.
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The possible mechanism of the degrading of TC pollutants by the Mn1-CN1/PMS
system under visible light was investigated (Figure 6b). Unlike the type II configuration,
the Z-type MnO2/g-C3N4 photocatalyst combines a semiconductor of high energy in
the valence band (MnO2) with another semiconductor of lower bandgap and stronger
reduction ability in the conduction band (g-C3N4). The electrons photogenerated in the
MnO2 are cross-combined with the holes of the g-C3N4. This process yields the accumu-
lation of separated charge carriers in the respective phases. The MnO2’s holes keep their
strong oxidation ability, while the g-C3N4’s electrons retain their reduction potential. In
Z-scheme heterojunction photocatalysts, the Mn1-CN1 generated photo-induced e− and
h+ (Equation (6)) were excited under visible light irradiation. Recombination reactions are
conducted by photogenerated e− in the CB of MnO2 and h+ in the VB of g-C3N4. The H2O
or OH− could be oxidized by h+ on the VB of MnO2 to produce •OH (Equations (7) and
(8)). Photogenerated e− on the CB of g-C3N4 reacted with dissolved oxygen, forming •O2

−

(Equation (9)). Meanwhile, the PMS received photogenerated e−, which can be activated
for producing SO4

•− (Equation (10)). The SO4
•− was able to react rapidly with OH−

for producing •OH (Equation (11)). The SO4
•− and •OH were vital for TC degradation

(Equation (12)). Overall, ideal matching of the energy band structure between g-C3N4 and
MnO2 can increase the amount of photogenerated e− and h+ [66].

MnO2@g-C3N4 + hv → e− + h+ (6)

H2O + h+ → •OH + H+ (7)

OH− + h+ → •OH (8)

O2 + e− → •O−
2 (9)

HSO−
5 + e− → OH− + SO•−

4 (10)
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SO•−
4 + OH− → •OH + SO2−

4 (11)

•OH + SO•−
4 + TC → Degradation products (12)

Intermediates of TC degradation were identified by HPLC/MS for future investigation
of the TC degradation mechanism. More information on the nine main intermediates can be
found in Supplementary Table S2. Three possible transformation reactions, hydroxylation,
carboxylation, and N-C bond cleavage, are shown in Figure 7 [67–69]. Since -C=C- was con-
jugated to the oxygen on the adjacent -OH, P1 (m/z = 461) and P2 (m/z = 476) were derived
from the hydroxyl addition of two enol groups. The -OH served as an electron-donating
group, weakening the -C=C- linkage, and was attacked by •OH, generating ketone and
epoxide group transformations. Meanwhile, P1 was susceptible to attack by reactive rad-
icals and further formation of polyhydroxylated P2 (m/z = 476) because of low electron
density of the C(1)=C(2) bond of P1. The C(3)-N bond of P2 was then oxidized for produc-
ing P3 (m/z = 447). Finally, P4 (m/z = 495) was obtained through ring-opening the aromatic
ring on P3. In degradation pathway 2, the TC molecule underwent deamidation under the
attack of reactive radicals for producing P5 (m/z = 401). P6 (m/z = 417) was formed by
-OH addition to the deamidated C1. P7 (m/z = 360) was an intermediate product formed
when -OH and -CH3 on C5 of P6 were attacked by h+ and •O2

− reactive oxide species,
which were followed by dimethylamino and ring opening. In degradation pathway 3, the
carbocyclic branched chain of P5 was destroyed by strong oxidizing radicals to produce P8
(m/z = 306). Finally, P8 underwent deacylation and demethylation dehydroxylation reac-
tions to give P9 (m/z = 227). These intermediates were unstable and quickly oxidized to
CO2 and H2O. A comparison of the by-products produced with the study of Yu et al. [28]
revealed that the present study produced lesser quantities of by-products. This indicates
that the Mn1-CN1/PMS system has significant photocatalytic treatment ability under
visible light.

Supplementary Figure S9 shows Three-Dimensional Excitation-Emission Matrix
(3DEEM) of TC at different photocatalytic times. The fluorescence peak of TC mainly
occurred in the wavelength range of Ex/Em= (290–340 nm)/(380–460 nm), suggesting that
TC was an aromatic protein-like compound. The intensity of the fluorescence peaks de-
creased with prolonged photocatalytic reaction time, suggesting that the aromatic benzene
ring structure was damaged by the attack of the reactive species. The prominence peak
almost disappeared after 180 min, suggesting that the simple aryl ring of TC was almost
entirely disrupted (Supplementary Figure S8d).

3.9. TC Degradation Toxicity Analysis

To examine the environmental toxicity of TC, toxicity evaluation of the degradation
products was used for contaminant status assessment. The biological toxicity of TC and
its degradation intermediates were investigated via T.E.S.T. according to the quantitative
structure–activity relationship (QSAR). Figure 8a,b shows the predicted values of daphnia
magna LC50 and the developmental toxicity of the intermediates. The LC50-48 h values of
most degradation intermediates were higher than that of TC, suggesting that TC was slowly
transformed into less toxic intermediates. The products P2, P4, and P8 can be regarded as
non-toxicants in Figure 8b. In addition, the results on the basis of bioaccumulation factors
and mutagenicity illustrated that the photocatalytic reaction reduced the ecosystem hazard
of TC and its intermediates [70]. Therefore, TC oxidation by Mn1-CN1/PMS system could
reduce the toxicity of TC.
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4. Conclusions

In this study, a Z-type Mn-CN heterojunction composite photocatalyst with excellent
performance was successfully prepared by coupling the g-C3N4 with MnO2 via high-
temperature thermal polymerization. The XRD, SEM, and TEM analysis showed syn-
thesized Mn1-CN1 had good purity and a crystalline state. The catalytic experiments
indicated that the Mn1-CN1/PMS system was the most effective, with the degradation
efficiency of TC reaching 96.97% after 180 min of treatment, which was 38.65% higher
relative to the g-C3N4/PMS system. The photocatalyst displayed marvelous stability and
reusability after five cycle experiments. In addition, the PMS played an essential role in
removing TC, while Mn1-CN1 was also an efficient activator for PMS under visible light
irradiation. The active species trapping experiment showed •OH and SO•−

4 were major
active species. Nine primary degradation intermediates and three possible degradation
pathways were put forward. Toxicological evaluation of TC and its intermediates showed
that the Mn1-CN1/PMS system could diminish TC toxicity. The findings showed the
Mn1-CN1/PMS system was advantageous for the photocatalytic degradation of TC, which
can offer potential application for the treatment of antibiotics in wastewater.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/toxics12010070/s1, Figure S1: (a) Spectrogram of the xenon lamp light
source BBZM−III, (b) Diagram of the photo-catalytic device; Figure S2: the XPS valence band spectra;
Figure S3: The UV absorption spectra of TC degradation under optimal reaction conditions for each
influencing factor. (a) Mn1−CN1 photocatalyst, the amount of Mn1−CN1 photocatalyst dosed was
0.6 g L−1, the dosage of PMS was 0.6 mM; (b) The initial concentration of TC was 10 mg L−1; (c) The
initial pH was 3; Figure S4: (a) Catalyst type on the reaction kinetics of TC; (b) Reaction kinetics of
different ratios of Mn−CN catalysts for the degradation of TC; (c) Reaction kinetics of catalyst dosing
for degradation of TC; (d) Reaction ki-netics of TC degradation at initial TC concentrations; (e) Kinetics
of PMS dosage in response to TC; (f) Initial pH on the reaction kinetics of TC; Figure S5: SEM (a) and

https://www.mdpi.com/article/10.3390/toxics12010070/s1
https://www.mdpi.com/article/10.3390/toxics12010070/s1
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TEM (b) images of the Mn1−CN1 cycle after reaction; Figure S6: The XRD patterns of Mn1−CN1
before and after reaction; Figure S7: XPS spectra of Mn1−CN1 after reaction: full spectrum (a), C
1s (b), N 1s (c), Mn 2p (d), O1s (e); Figure S8: Active species trapping experiments of as−prepared
Mn1−CN1 for TC degra-dation under visible light irradiation. [IPA, BQ, EDTA−2Na] = 1 mM L−1,
[MA] = 10 mM L−1. The experimental conditions: [photocatalyst] = 0.6 g L−1, [TC] = 20 mg L−1,
[PMS] = 0.6 mM, pH = 7, time=180 min, and T = 25 ◦C; Figure S9: 3DEEM spectra of TC solutions
after different treatment times: (a) 0 min; (b) 60 min; (c) 120 min; (d) 180 min; Table S1: Reaction
rate constants for each influencing factor.; Table S2: The TC degradation intermediates detected
by HPLC−MS.
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