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Abstract: Polychlorinated biphenyls (PCBs) are organic chemicals consisting of a biphenyl structure
substituted with one to ten chlorine atoms, with 209 congeners depending on the number and position
of the chlorine atoms. PCBs are widely known to be endocrine-disrupting chemicals (EDCs) and
have been found to be involved in several diseases/disorders. This study takes various molecular
descriptors of these PCBs (e.g., molecular weight) and toxicity endpoints as molecular activities,
investigating the possibility of correlations via the quantitative structure–toxicity relationship (QSTR).
This study then focuses on molecular docking and dynamics to investigate the docking behavior of
the strongest-binding PCBs to nuclear receptors and compares these to the docking behavior of their
natural ligands. Nuclear receptors are a family of transcription factors activated by steroid hormones,
and they have been investigated to consider the impact of PCBs on humans in this context. It has
been observed that the docking affinity of PCBs is comparable to that of the natural ligands, but they
are inferior in terms of stability and interacting forces, as shown by the RMSD and total energy values.
However, it is noted that most nuclear receptors respond to PCBs similarly to how they respond to
their natural ligands—as shown in the RMSF plots—the most similar of which are seen in the ER,
THR-β, and RAR-α. However, this study is performed purely in silico and will need experimental
verification for validation.
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1. Introduction

Polychlorinated biphenyls (PCBs) are a class of anthropogenic organic chemicals with
a biphenyl structure substituted with one to ten chlorine atoms. Due to the multiple
positions of substitution, there are 209 different PCBs, commonly referred to as congeners
and numbered based on the amount and position of the chlorines [1]. Some are shown in
Figure 1.
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Figure 1. Sample PCB structures.
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PCBs are known to have excellent dielectric properties, are resistant to chemical and
thermal degradation, are not affected by light, and are not flammable. These properties
have led to a variety of industrial and commercial applications, the most important of
which is as insulating fluid in transformers and capacitors. They are also used as additives
in the manufacture of paint, plastics, and carbonless copy paper [2]. However, early studies
on PCBs have reported the harmful effects of these compounds on workers in factories
that manufactured them [3]. Studies show that many of these hydrophobic and lipophilic
compounds are highly resistant to metabolism in vertebrate species, including humans. As
a result of these properties, biomagnification occurs throughout the food chain, and high
tissue concentrations can often occur in top predator species [4]. In 2001, the Stockholm
Convention listed PCBs as one of the persistent organic pollutants (POPs): compounds that
remain intact for exceptionally long periods of time; become widely distributed throughout
the environment as a result of natural processes involving soil, water, and air; accumulate in
living organisms, including humans; are found at higher concentrations in the food chain;
and are toxic to both humans and wildlife [5]. Despite the ban on the production and use
of PCBs, inadvertent and unintentional PCBs are generated due to incomplete combustion
during waste incineration or during industrial production processes. Pigment-derived
PCBs can be released into the environment through different steps including pigment
production, application, and disposal. They can contaminate atmospheric, terrestrial, and
aquatic ecosystems, and consequently affect the inhabitant organisms [6]. This results in
human exposure through food or environment and leads to a number of PCB congeners in
human tissue, blood, and milk [7]. This, coupled with the persistent nature of the PCBs,
requires a more elaborate study on these pollutants.

Several studies have been made on the correlation between the molecular features
of substances and their biological activities. Such studies employ quantitative structure–
activity relationship (QSAR), which is a modeling technique that involves constructing
predictive models of biological activities as a function of structural and molecular infor-
mation of a compound [8]. The concept of QSAR was initially used for drug discovery
and development but has since been used to include not only biological activities, but also
other physicochemical properties, including toxicity. This method is termed QSTR, quan-
titative structure–toxicity relationship. This technique recognizes the fact that pollutants
with similar chemical structures are likely to have similar physicochemical properties and
thereby exhibit equivalent toxicological behavior. QSTR models correlating the structures
of 963 organic compounds to toxicity to fathead minnow were reported [9]. Toxicity to
daphnia magna by agrochemicals and pesticides was studied and reported [10,11]. In terms
of toxicity to rats and rodents, QSTR models were created and correlated [12–15]. Toxicity
prediction models of personal care products and polychlorinated naphthalenes to algae
and fish were reported by [16–18]. The toxicity of protection products to honey bees was
studied [19]. The QSTR models reported the toxicity in terms of either pEC50 or pLD50.

Nuclear receptors play a pivotal role in regulating various physiological processes by
mediating the transcriptional activity of specific genes. These receptors are intracellular
proteins that bind to small molecules or ligands, and upon activation, they translocate to
the cell nucleus where they modulate gene expression through interactions with DNA.

Our understanding of PCB toxicology is primarily based on in vivo and in vitro tests,
which involve studying samples collected from the field [20,21]. These data usually come in
the form of toxicity endpoints, examples of which are those exhibited in the US EPA TEST
software (version 5.1.2) (e.g., oral rat LC50, D. magna LC50, fathead minnow LC50). Such
studies, however, do not provide insight into the underlying molecular mechanisms which
cause these toxicity endpoints, thus highlighting the importance of QSTR. By highlighting
how certain molecules’ structures impact their biological activity, QSTR allows for further
research such as drug design [22], discovery of emerging contaminants/toxicants [23], and
correlation of interspecies toxicity relationships [24].

PCBs continue to be studied and revealed as carcinogenic agents for different types
of cancers, such as non-Hodgkin lymphomas [25], breast cancer [26–28], and prostate
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cancer [29]. It is noted how research into the carcinogenicity of PCBs primarily focuses on
their activity on the estrogen receptor due to their ability to act as structural analogues of
hormones [30], especially estrogen. This makes various hormone-sensitive tissues quite sus-
ceptible to the effects of PCBs, requiring research to be conducted on the potential adverse
effects on these tissues (including cancer), such as the breast [26,31,32], prostate [33–35], and
thyroid gland [36–38]. Overall, their function as endocrine-disrupting chemicals (EDCs)
has been highlighted and seems to be the primary driving force behind research on PCBs.
Figure 2 shows the general mechanism of action of PCBs as hormonally active structural
analogues, and as EDCs.
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Figure 2. Molecular mechanism of PCB binding on nuclear receptors.

The various methodologies in this study were used to provide focus on the molecular
identity and mechanisms of PCBs as EDCs, and to solely consider these molecular factors
in their modes of action. To this end, molecular docking simulations of PCBs with various
nuclear receptors were run, contrary to other studies which tend to focus on a single
receptor or group of receptors. Such a consideration arose from the potential of PCBs to act
as hormone analogues, which may not necessarily confine them to the estrogen receptor.
The considered receptors include the various sex hormone/steroid receptors (estrogen,
progesterone, and androgen), the vitamin D receptor, the thyroid hormone receptor (α and
β), and the retinoic acid receptor (α and β). Considering these receptors allowed the study
of the various intermolecular bonding forces across all receptor–ligand pairs and therefore
the detection of various statistics of interest.

The establishment of the similarity of the structure of PCBs to estrogens [39] raises
the question of whether PCBs will act as structural analogues of other steroid hormones as
well, especially progesterone and testosterone—the most potent of the progesterone and
androgen receptors, respectively, as shown in Figure 3.
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It is also noted how PCBs may act to bind to thyroid hormone receptors due to slight
similarity between the general structure of PCBs and the thyroid hormones triiodothyronine
(T3) and thyroxine (T4) but not to the point of eliciting protein activity [40]. For reference,
the structures of thyroxine and triiodothyronine are shown in Figure 4.
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Furthermore, related pathways indicate the need to study the possibility (and mecha-
nism, when applicable) of PCB binding to other nuclear receptors, such as the retinoic acid
receptors α and β, as well as the vitamin D receptor. By investigating such interactions if
and when they do exist, other effects which may not initially be thought to be caused by
PCBs may be revealed—not just carcinogenicity.

While research has been conducted on the effects of certain PCB congeners and
metabolites on select receptors, the molecular mechanisms of many of these interactions
have yet to be fully explained, due to most of these studies showing results in need of
further study.

Moreover, the wide range of physiological functions that the various nuclear recep-
tors control indicates the need to study any molecule which may interact with them, as
well as the underlying mechanisms. By understanding such mechanisms, any potential
and known diseases related to such molecules can be identified, and therapies can be
developed effectively.

Highlighting the physiological functions of these various nuclear receptors—as shown
in Table 1—allows us to see what may result from the potential interference of EDCs; and
learning the pathways and activation mechanisms allows us to hypothesize and study the
manner in which EDCs may affect these receptors.
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Table 1. Summary of physiological functions of various nuclear receptors.

Nuclear Receptor Physiological Function Dysfunction

Estrogen receptor

Bone health maintenance [41]
Secondary sex characteristic development

Cardiovascular regulation [42]
Pregnancy support [43,44]

Menstrual cycle support [45,46]

Breast and ovarian cancers [47]

Progesterone receptor
Breast development [47]

Menstrual cycle regulation [48]
Pregnancy regulation [49]

Endometriosis and infertility [50]

Androgen receptor

Facial and body hair growth [51]
Muscle development [52]

Voice deepening [53]
Bone health maintenance [54]

Androgen insensitivity syndrome
and prostate cancer [55]

Vitamin D receptor

Mineral metabolism [56]
Immune response regulation [57]

Inorganic phosphate homeostasis [58]
Calcium homeostasis [59]

Bone health maintenance [60]

Autoimmune diseases, cancer,
and cardiovascular disorders [61]

Thyroid hormone receptor

Development regulation [62]
Heart regulation [63]

Metabolism regulation [64]
Lipid metabolism [65]

Thyroid hormone resistance
Hypo- and hyperthyroidism [66]

Retinoic acid receptor

Embryonic development [67]
Stem cell differentiation [68]

Organ development [67]
Vision regulation [69]

Immune regulation [70]
Skin regulation [71]

Lung and breast cancer [72]
Congenital malformations and

skin diseases [73]

The need for a thorough systematic study of PCB effects grows as research contin-
ues to be conducted on various PCB congeners under varying conditions (e.g., model
organism, geographic location). By providing a pure baseline with data derived from
computational tools and studies, detection and observation of correlated parameters not
included in these data could be performed, potentially opening up new avenues of research
in toxicology studies.

2. Materials and Methods

Scheme 1 presents the design of this study. The structures of PCBs (from PCB-1
to PCB-209) were constructed and used to establish a database for PCBs, allowing for
the data gathering of various molecular descriptors and activities through the various
software listed. This resulted in a total of 136 molecular descriptors and 7 molecular
activities. However, most of the molecular descriptors were redundant and/or were
identical for the whole dataset, and therefore, pre-processing and trimming of the dataset
was necessary, bringing down the number of descriptors to 23. Molecular docking was
then conducted to determine the predicted docking scores of each PCB congener to each
human nuclear receptor investigated, coupled with molecular dynamics for investigation of
these binding events. QSTR was then conducted via multiple linear regression (MLR) and
multiple nonlinear regression (MNLR) to determine if there are any correlations between
the molecular descriptors with the molecular activities and docking scores.



Toxics 2024, 12, 49 6 of 20Toxics 2024, 12, x FOR PEER REVIEW 6 of 21 
 

 

 
Scheme 1. QSTR framework.  

2.1. Data Gathering 
A database of structure files for PCBs was created with the ChemDraw software (ver-

sion 22.2), and the canonical SMILES format for each sketch was extracted. 
Various molecular descriptors were obtained with the aid of various software for 

modeling of quantitative structure–activity relationships (QSARs), as shown in Table S1. 
Constitutional descriptors were calculated with DataWarrior [74], various molecular en-
ergies (e.g., dipole–dipole) were calculated with Chem3D, and assessment scores (e.g., 
synthetic accessibility, bioavailability scores) were calculated with SwissADME [75]. 

Alongside the molecular descriptors obtained, various molecular activities were ob-
tained as well for QSAR modeling. The Toxicity Estimation Software Tool (TEST) from US 
EPA [76] was used to calculate for these molecular activities, as shown in Table S2. It is 
noted that the predicted toxicity endpoints match those in previous studies and databases 
[77,78]. 

2.2. Statistical Methods 
Prior to creating a QSTR model, several variables were omitted on various bases (e.g., 

unchanging values), and a correlation matrix was obtained on the current variables to omit 
those with high correlation (R2 ≥ 0.90, R2 ≤ −0.90) to minimize redundancy. XLSTAT [79] 
was used for all subsequent statistical methods. The multiple linear regression (MLR) and 
multiple nonlinear regression (MNLR) techniques [80] were used to investigate the linear 
and nonlinear relationships between the calculated molecular descriptors and a selected 
molecular activity, and run on a training set of 189 PCBs and a test set of 20 randomly 
selected PCBs with the stepwise option. 

Multiple nonlinear regression was conducted for all descriptor–activity pairs, with 
fitting for multiple models, such as polynomials (up to the power of 10), exponentials, 
sigmoidal and growth models, and power models, among many others, to ensure that all 
relationships would be caught by the regression. 

Investigation of the correlation and contribution of the identified contributory de-
scriptors in MLR was conducted via principal component analysis (PCA), which acts to 
decrease the dimensionality of variables, providing insight into underlying correlations. 

2.3. Molecular Docking Simulations 
Molecular docking was conducted to examine intermolecular interactions between 

the PCBs and target receptors, i.e., estrogen, progesterone, androgen, vitamin D, THR-α, 
THR-β, RAR-α, and RAR-β receptors with PDB accession codes 1A52 [81], 1A28 [82], 1E3G 
[83], 1DB1 [84], 1NAV [85], 1NAX [85], 1DKF [86], and 1XDK [87], respectively. BIOVIA 
Discovery Studio 2021 [88] was used to pre-process the receptor files (deleting water, het-
eroatoms, and ligands and adding polar hydrogens), and AutoGrid was then used to de-
termine the grid box dimensions. These were set to sizes (40, 40, 40) with a spacing of 0.375 

Scheme 1. QSTR framework.

2.1. Data Gathering

A database of structure files for PCBs was created with the ChemDraw software
(version 22.2), and the canonical SMILES format for each sketch was extracted.

Various molecular descriptors were obtained with the aid of various software for
modeling of quantitative structure–activity relationships (QSARs), as shown in Table S1.
Constitutional descriptors were calculated with DataWarrior [74], various molecular en-
ergies (e.g., dipole–dipole) were calculated with Chem3D, and assessment scores (e.g.,
synthetic accessibility, bioavailability scores) were calculated with SwissADME [75].

Alongside the molecular descriptors obtained, various molecular activities were ob-
tained as well for QSAR modeling. The Toxicity Estimation Software Tool (TEST) from US
EPA [76] was used to calculate for these molecular activities, as shown in Table S2. It is noted
that the predicted toxicity endpoints match those in previous studies and databases [77,78].

2.2. Statistical Methods

Prior to creating a QSTR model, several variables were omitted on various bases (e.g.,
unchanging values), and a correlation matrix was obtained on the current variables to omit
those with high correlation (R2 ≥ 0.90, R2 ≤ −0.90) to minimize redundancy. XLSTAT [79]
was used for all subsequent statistical methods. The multiple linear regression (MLR) and
multiple nonlinear regression (MNLR) techniques [80] were used to investigate the linear
and nonlinear relationships between the calculated molecular descriptors and a selected
molecular activity, and run on a training set of 189 PCBs and a test set of 20 randomly
selected PCBs with the stepwise option.

Multiple nonlinear regression was conducted for all descriptor–activity pairs, with
fitting for multiple models, such as polynomials (up to the power of 10), exponentials,
sigmoidal and growth models, and power models, among many others, to ensure that all
relationships would be caught by the regression.

Investigation of the correlation and contribution of the identified contributory descrip-
tors in MLR was conducted via principal component analysis (PCA), which acts to decrease
the dimensionality of variables, providing insight into underlying correlations.

2.3. Molecular Docking Simulations

Molecular docking was conducted to examine intermolecular interactions between
the PCBs and target receptors, i.e., estrogen, progesterone, androgen, vitamin D, THR-α,
THR-β, RAR-α, and RAR-β receptors with PDB accession codes 1A52 [81], 1A28 [82],
1E3G [83], 1DB1 [84], 1NAV [85], 1NAX [85], 1DKF [86], and 1XDK [87], respectively.
BIOVIA Discovery Studio 2021 [88] was used to pre-process the receptor files (deleting
water, heteroatoms, and ligands and adding polar hydrogens), and AutoGrid was then
used to determine the grid box dimensions. These were set to sizes (40, 40, 40) with a
spacing of 0.375 Å. Molecular docking was then conducted with AutoDock Vina [89,90], and
visualizations of specific PCB–receptor interactions were then rendered via AutoDockTools.
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2.4. Molecular Dynamics Simulations

Molecular dynamics simulations were conducted to confirm and observe the stability
of protein–ligand complexes with reference ligands and PCB molecules. Only those PCBs
with the best docking scores were selected for MD simulations, contrary to molecular
docking, wherein all PCBs were used for the docking simulations. These simulations were
conducted using GROMACS [91] using 50 ns. The output files of molecular docking were
used as input files for molecular dynamics simulations, using Discovery Studio 2021 to aid
in preparing the necessary files. The simulations were conducted using the CHARMM36
all-atom force field [92] and the CHARMM-modified TIP3P (transferable intermolecular
interaction potential 3 points) type [93]. The models were neutralized via the addition
of water molecules and counter ions as solvent, reflecting physiological conditions. The
simulations allowed for the verification of possible formed bonds during binding (e.g.,
hydrogen bonds) via direct analysis of distance and angle between atoms, the RMSD (root
mean square deviation) of the ligand to determine deviation during simulations, and the
interaction energies between the receptor–ligand pair.

3. Results and Discussion
3.1. Data Gathering

Data gathering for independent variables was conducted with DataWarrior, Chem3D,
and SwissADME and yielded a total of 126 molecular descriptors, trimmed down to 23 once
elimination of redundant and uniform variables was made. Of the 23 descriptors, 14 were
constitutional descriptors: molecular weight, Cl atoms, symmetric atoms, total surface area,
globularity (SVD), globularity (volume), van der Waals surface area, van der Waals volume,
shape index, molecular flexibility, molecular complexity, log P, log S, and molar refractivity.
Eight were energy descriptors: stretch energies, bend energies, stretch–bend energies,
torsion energies, non-1,4 van der Waals energies, 1,4 van der Waals energies, dipole–dipole
energies, and total energy. Lastly, one was an assessment descriptor: synthetic accessibility.

Upon determining the molecular descriptors, calculations for the molecular activities
were then made with the US EPA TEST software. These activities will serve as depen-
dent variables in QSTR, with the goal of determining relationships and possible models
which can be constructed based on the molecular descriptors. These molecular activities
are developmental toxicity, bioconcentration, AMES mutagenicity, oral rat LC50 (48 h),
T. pyriformis IGC50 (48 h), fathead minnow LC50 (48 h), and D. magna LC50 (48 h). The lethal
and inhibition concentration values (oral rat, T. pyriformis, fathead minnow, D. magna) were
also expressed in log10 values.

3.2. QSTR Models

Quantitative structure–toxicity relationship (QSTR) models are the result of the ap-
plication of a similar computational modeling approach in QSAR but focused on adverse
molecular activities, thereby allowing the discovery of relationships between certain molec-
ular properties and adverse effects (e.g., molecular weight related to mutagenicity). QSTR
allows the investigation of the relationship between various molecular descriptors (e.g.,
molecular weight) and adverse molecular activities (e.g., developmental toxicity), thereby
forming quantitative models to explain how these descriptors influence molecular activities.

The MLR technique yielded three linear models:

• Bioconcentration log10 value (Equation (1));
• D. magna LC50 (48 h) log10 value (Equation (2));
• Fathead minnow LC50 (48 h) log10 value (Equation (3)).

The MNLR technique yielded two nonlinear models:

• T. pyriformis IGC50 (48 h) log10 value (Equation (4));
• Fathead minnow LC50 (48 h) value (Equation (5)).
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BC log10 = 1.240 (7.742 × 10−3)MW + (8.818 × 10−3)SAt + (4.821 × 10−1)SI + (3.026 × 10−3)B
+ (3.817 × 10−3)T + (2.772 × 10−1)SAc (1)

(1)

DM LC50 (48 h) log10 = (2.262 × 10−1) − (1.564 × 10−2)SAt + (2.931 × 10−2)TSA
− (4.838 × 10−1)GSVD + (1.593)SI + (2.007)MF − (2.777 × 10−2)DD

(2)

FM LC50 (48 h) log10 = 2.092 + (1.305 × 10−2)MW + (2.866 × 10−3)NVDW − (1.582 × 10−2)DD
+ (3.574 × 10−1)SAc

(3)

TP IGC50 (48 h) log10 = -4.146 + (24.86)Cl − (28.56)Cl2 + (17.27)Cl3 − (5.964)Cl4 + (1.221)Cl5

− (1.461 × 10−1)Cl6 + (9.424 × 10−3)Cl7 − (2.524 × 10−4)Cl8
(4)

FM LC50 (48 h) = -799.6 + (22.56)MW − (2.697 × 10−1)MW2 + (1.798 × 10−3)MW3 − (7.347 × 10−6)MW4

+ (1.888 × 10−8)MW5 − (2.987 × 10−11)MW6 + (2.662 × 10−14)MW7 − (1.024 × 10−17)MW8 (5)

Of the 23 descriptors, 12 descriptors in total were found to be correlated and thus were
able to generate models. The descriptors for each MLR model are shown in Table 2.

Table 2. Constructed MLR models and correlated descriptors.

Correlated Descriptor Model

(1) (2) (3)

Molecular weight ✓ ✓
Symmetric atoms ✓ ✓
Total surface area ✓
Globularity (SVD) ✓

Shape index ✓ ✓
Molecular flexibility ✓

Bend energies ✓
Torsion energies ✓

Non-1,4 VDW energies ✓
Dipole–dipole energies ✓ ✓
Synthetic accessibility ✓ ✓
correlated descriptors 6 6 4

Of the total 11 correlated descriptors for MLR models, 6 were constitutional descriptors:
molecular weight (MW), which is the sum of the atomic weights of atoms in a molecule;
symmetric atoms (SAt), which counts the number of symmetric atoms across rings (e.g.,
ortho, meta); total surface area (TSA), which is the sum of all atomic surfaces of all atoms
of a molecule; globularity (SVD), which is the measure of molecular globularity via single
value decomposition; shape index (SI), which is a measure involving the distance and
number of atoms in a molecule; and molecular flexibility (MF), which involves the number
of rotatable bonds and their contribution to the overall flexibility of a molecule. Four of the
total correlated descriptors were energy descriptors: bend energies (B), which represent
energies associated with bond angles away from their optimal values; torsion energies
(T), which represent energies associated with bonds deformed torsionally; non-1,4 VDW
energies (NVDW), which represent energies associated with interactions between atoms
separated by more than three atoms; and dipole–dipole energies (DD), which represent
energies associated with interactions of bond dipoles. The last descriptor was an assessment
descriptor: synthetic accessibility (SAc), determined by SwissADME as a measure of the
ease of chemical synthesis, ranging from 1 (easiest) to 10 (hardest).

All constructed models reached a favorable goodness-of-fit score of R2 ≥ 0.95, and the
ANOVA tests between the training and validation sets all had favorable results (<0.0001).
The validation models are shown in Figures 5 and 6, showing the comparison of the actual
and predicted values of the training and validation sets for each model.
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Figure 6. Validation for MNLR models: (a) T. pyriformis IGC50 (48 h) log10 and (b) fathead minnow
LC50 (48 h).

PCA was then conducted to allow for analysis of the correlation between the correlated
descriptors within models, made possible by reducing the dimensionality of the variables
and portraying them in PCA biplots. The PCAs of the MLR models are shown in Figure 7,
showing correlations between contributory descriptors for each model.
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Figure 7a shows a high correlation between the number of symmetric atoms and
torsion energies, at which the relationship arises when an increase in symmetric atoms at
the 2/2′ and 6/6′ positions result in the PCB twisting to dissipate energies. It can also be
seen that there is some correlation between the molecular weight and synthetic accessibility,
signifying that a higher molecular weight of PCBs results in a more difficult synthesis
pathway. Lastly, there is a slight correlation between the shape index and bend energies.

Figure 7b shows a high correlation between the total surface area, the van der Waals
surface area, and dipole–dipole energies, meaning that as the total surface area increases
(solely due to addition of chlorine atoms), the van der Waals surface area and dipole–dipole
energies increase as well. A slight correlation can also be seen between the shape index and
molecular flexibility.

Lastly, Figure 7c shows a high correlation between the molecular weight, synthetic
accessibility, and dipole–dipole energies, which all increase alongside each other to some
extent, but not so highly correlated with each other as to be omitted.

3.3. Molecular Docking

Molecular docking was then conducted to analyze the relative docking scores of the
PCB group with various nuclear receptors. While it may be seen whether PCBs bind
more strongly to some receptors than others, this does not give insight into the resulting
effect—whether the PCB functions as an antagonist or not. Figure 8 shows the distributions
of the docking scores of PCBs of eight nuclear receptors.

The maximum score observed is in retinoic acid receptor β (~−10 kcal/mol), whereas
the weakest docking score observed is in thyroid hormone receptor α (~−5.2 kcal/mol).
It is also worth noting that the distribution of the docking scores in thyroid hormone
receptor α is over a large range (−5.2–−9.7 kcal/mol), whereas the distribution of docking
scores in the vitamin D receptor is the most focused (−6.9–−8.8 kcal/mol). Visualizations
were extracted from the top PCBs with the strongest docking scores for further analysis,
as shown in Figure 9 and in Table 3. While other binding modes were observed, the
determined optimal binding mode was taken on the basis of consistency of pose and
interacting residues.
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Figure 9. Amino acid interactions of PCB-129 with the estrogen receptor.

All of the interactions presented in Figure 9 are hydrophobic; this is true for most PCB
binding with human nuclear receptors. These hydrophobic interactions may come in the
form of pi–pi T-shaped interactions (also known as CH–pi hydrogen interactions), alkyl
interactions (between alkyl groups of both ligand and protein), and pi–alkyl interactions
(between an alkyl group and a pi–orbital group).

Two PCBs are notable in Table 3: PCB-129 and PCB-156. Of the 209 PCBs, PCB-129
binds strongest to the estrogen receptor and second strongest to the progesterone receptor;
and PCB-156 binds strongest to retinoic acid receptor β and second strongest to thyroid
hormone receptor α and the androgen receptor.
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Table 3. Summary of binding interactions.

Receptor Ligand Binding
(kcal/mol)

Interactions *

HP HB H S H/HB E

Estrogen
PCB-129 −9.319 10 0 0 0 0 0
PCB-170 −9.121 11 0 0 0 0 0
PCB-171 −9.022 8 0 2 0 0 0

Progesterone
PCB-86 −8.921 8 0 0 0 0 0
PCB-129 −8.898 10 0 0 0 0 0
PCB-150 −8.839 8 0 0 0 0 0

Androgen
PCB-157 −9.121 12 0 1 0 0 0
PCB-156 −9.102 11 0 1 0 0 0
PCB-105 −8.999 14 0 0 0 0 0

Vitamin D
PCB-126 −8.802 18 0 0 1 0 0
PCB-123 −8.776 13 0 0 0 0 0
PCB-66 −8.762 12 0 0 0 0 0

THR-α
PCB-189 −9.693 16 1 1 0 0 0
PCB-156 −9.620 15 3 0 0 0 0
PCB-106 −9.342 15 2 0 0 0 0

THR-β
PCB-159 −9.744 17 2 1 1 0 1
PCB-108 −9.424 17 2 1 1 0 0
PCB-111 −9.422 21 2 1 1 0 0

RAR-α
PCB-208 −9.334 8 1 0 1 0 0
PCB-199 −9.220 11 1 0 1 0 0
PCB-198 −9.097 7 1 0 1 0 0

THR-β
PCB-156 −10.190 17 0 0 0 0 0
PCB-167 −10.180 20 0 0 0 0 0
PCB-191 −10.160 17 0 1 0 1 0

* HP—hydrophobic; HB—hydrogen bond; H—halogen; S—sulfur; H/HB—halogen/hydrogen bond;
E—electrostatic.

Figure 10 shows a comparison of involved amino acid sequences between the natural
ligand and the top 3 PCBs with the highest docking scores.

3.4. Molecular Dynamics

The molecular dynamics simulations were able to shed light on the interaction dynam-
ics of the various receptor–ligand pairs, analyzed during 50 ns for the native ligand and
the strongest-binding PCB. One such feature is the root mean square deviation (RMSD), of
which the final values (at the end of 50 ns) are shown in Table 4.

Table 4. RMSD of various receptor–ligand pairs.

Receptor Ligand RMSD (Å)

1A52
Estrogen receptor

Estrogen 0.867
PCB-129 1.770

1A28
Progesterone receptor

Progesterone 0.688
PCB-86 72.702

1E3G
Androgen receptor

Testosterone 0.822
PCB-157 1.514

1DB1
Vitamin D receptor

Vitamin D2 0.245
PCB-126 0.949

1NAV
Thyroid hormone receptor α

Liothyronine (T3) 0.750
PCB-189 0.863

1NAX
Thyroid hormone receptor β

Levothyroxine (T4) 0.366
PCB-159 0.736

1DKF
Retinoic acid receptor α

Alitretinoin 0.902
PCB-208 2.076

1XDK
Retinoic acid receptor β

Alitretinoin 0.051
PCB-156 27.997
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For the RMSD, the ligand was considered alongside the heavy atoms with reference to
the protein backbone for a more accurate observation of the ligand stability. In the table, it
can be seen that the natural ligands have very favorable RMSD values (<1 Å), showing that
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all of these natural ligands do not dissociate from their receptors at all. However, for the
strongest-binding PCBs,

• Three of them have extremely favorable (<1 Å) RMSD values;
• Three of them have acceptable (1–3 Å) RMSD values; and
• Two of them have unfavorable (>3 Å) RMSD values.

Therefore, on the basis of RMSD alone, it can be inferred that while some PCBs may
have higher docking scores compared to the natural ligands, the stability of such docking
events is inferior.

A feature to observe alongside RMSD is the root mean square fluctuation (RMSF),
which shows the fluctuation of each residue in the receptor during binding. The RMSF
values were observed over the span of 50 ns and are shown in Figure 11.
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For some of the receptors, there are gaps in residue numbering in the references—albeit
being complete proteins—and they have been preserved in this study. In the plots, it can
be seen that most nuclear receptors had similar fluctuations between their native ligands
and strongest-binding PCBs, except for the PR, wherein binding of the PCB induced almost
negligible fluctuations. Such similar fluctuations indicate that upon PCB binding, some
conformational change occurs in the studied nuclear receptors.

Another property observed in molecular dynamics simulations is the interacting
energies, the total values of which were determined over the span of 50 ns. These are
shown in Table 5.

Table 5. Interacting energies for each receptor–ligand pair.

Receptor Ligand Total Interacting Energy
(kcal/mol)

1A52
Estrogen receptor

Estrogen 55.576 ± 3.754
PCB-129 38.714 ± 1.981

1A28
Progesterone receptor

Progesterone 50.825 ± 3.743
PCB-86 31.388 ± 2.778

1E3G
Androgen receptor

Testosterone 42.381 ± 1.412
PCB-157 37.717 ± 2.911

1DB1
Vitamin D receptor

Vitamin D2 61.509 ± 3.064
PCB-126 36.917 ± 1.386

1NAV
Thyroid hormone receptor α

Liothyronine (T3) 64.077 ± 3.703
PCB-189 49.320 ± 2.681

1NAX
Thyroid hormone receptor β

Levothyroxine (T4) 59.820 ± 4.351
PCB-159 45.184 ± 1.475

1DKF
Retinoic acid receptor α

Alitretinoin 40.208 ± 2.010
PCB-208 38.392 ± 2.708

1XDK
Retinoic acid receptor β

Alitretinoin 53.306 ± 3.258
PCB-156 37.790 ± 2.444

For all receptors, the native ligand exhibits a higher total interacting energy when
compared to the strongest-binding PCB. This means that despite the PCB binding to certain
nuclear receptors, the native ligand will still exhibit stronger binding and therefore a more
secure bond.

A comparison of the docking scores of the strongest-binding PCBs and the natural
ligands of the nuclear receptors under study is shown in Table 6, where we expect the
natural ligands to be naturally stronger in binding than PCBs.
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Table 6. Docking score comparison of strongest-binding PCBs and natural ligands.

Nuclear Receptor
Natural Ligand PCB

Name Docking Score Name Docking Score

ER Estradiol −10.700 PCB-129 −9.319

PR Progesterone −11.450 PCB-86 −8.921

AR Testosterone −8.289 PCB-157 −9.121

VDR Vitamin D2 −12.220 PCB-126 −8.802

THRα T3 −9.086 PCB-189 −9.693

THRβ T3 −6.649 PCB-159 −9.744

RARα Tretinoin −6.925 PCB-208 −9.334

RARβ Tretinoin −6.925 PCB-156 −10.190

In Table 6, it can be seen that only three nuclear receptors have natural ligands that
bind stronger than the strongest-binding PCBs (estrogen, progesterone, and vitamin D
receptors). The rest of the receptors, however, have their natural ligands overpowered by
the strongest-binding PCBs (androgen, THRα and β, RARα and β). From these results,
it can be hypothesized that for most nuclear receptors, PCBs will—once bound—bind
stronger than their natural ligand, effectively blocking access (not considering various
transport concerns). However, for all PCBs, it was observed that only one binding mode
was found to bind significantly,

In the molecular dynamics results, it is observed that all natural ligands have relatively
better binding dynamics when compared to the strongest-binding PCB. Initially consider-
ing the root mean square deviation (RMSD) between these two molecule groups allows us
to see that some of the PCBs with the strongest binding energies determined in molecular
docking—such as PCB-156 with −10.190 kcal/mol when docked with RAR-β—are con-
siderably unstable. This is observed for PCB binding to PR and RAR-β. However, all the
other receptors have favorable RMSD values with their strongest-binding PCBs, albeit not
as stable or secure as the natural ligand itself.

Moreover, it is also observed that the RMSF values of the two molecule groups are
almost similar to each other, suggesting activation of the receptor when interacting with
the strongest-binding PCB. This is observed for all but the PR, which, as noted earlier, has
a considerably unfavorable RMSD value. While the RMSF plot of the PR is quite easy
to interpret, the binding of the strongest-binding PCB of RAR-β is still quite similar to
that of the natural ligand, but to a lesser degree when compared to the other receptors.
Additionally, when observing receptors wherein the strongest-binding PCB and the natural
ligands had similar RMSF plots, it is seen that while the PCB followed the general trend of
fluctuation with that of the natural ligand, it was not perfectly emulated, which is to be
expected due to the size difference between the molecules in these two groups. However,
some receptors exhibited very similar RMSF plots between these two groups, which are the
ER, THR-β, and RAR-α. This suggests that the binding of the strongest-binding PCBs to
these receptors would trigger a very similar response to that of natural ligand binding, and
is highly likely to correspond to activation.

Lastly, the total interacting energies are observed. The interacting energies do not
denote binding energies of the ligands to the receptors but are related. The interacting
energies are the collective sum of the forces between the ligand and the receptor, and highly
depend on how much of the receptor is ‘in contact’ with the ligand. While the PCBs may
exhibit stronger binding energies due to the confinement of smaller molecules, this does
not ensure that the receptor interacts with the PCB as strongly or as securely as its natural
ligand. Here, it is observed that all natural ligands have stronger interacting energies when
compared to the strongest-binding PCBs, signifying a more secure binding—especially
when taken alongside the RMSD values.
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4. Conclusions

In essence, the various simulations conducted show that PCBs—even in their unme-
tabolized state—will bind to various nuclear receptors. Combined with various studies
showing correlations of PCBs chronically affecting bodily processes (e.g., pregnancy), this
highlights the importance of studying the long-term effects of EDCs such as PCBs on
various other processes which may be dysregulated due to such binding activities.

It has been shown that the various toxicity endpoints of PCBs can be modeled with
regards to their structural information (as shown in Equations (1)–(5)), and that such
PCBs will bind to human nuclear receptors in silico. However, despite the fact that PCBs
themselves will have docking scores comparable to the natural ligands (Table 6), simulations
have shown that the interaction and stability of PCBs with nuclear receptors are inferior to
the natural ligands (as shown in Tables 4 and 5 and Figure 10). This, however, does not mean
that they will not have an effect. Other studies have repeatedly shown a correlation between
PCB exposure and disease/disorder development, thereby prompting further study.

It is important to note that in this study, data were obtained purely in silico and
will require experimental testing for validation. Additionally, the metabolization of PCBs
within the body leading to their transformation was not considered; this is undoubtedly an
important point to consider in future studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxics12010049/s1, Table S1.a: Molecular descriptors of PCBs;
Table S1.b: Molecular activities of PCBs; Table S2.a: Docking scores of natural ligands; Table S2.b:
Docking scores of PCBs.
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Its Derivatives in Skin. Cells 2020, 9, 2660. [CrossRef]

72. Zhang, X.; Liu, Y.; Lee, M.-O. Retinoid receptors in human lung cancer and breast cancer. Mutat. Res. Fundam. Mol. Mech.
Mutagen. 1996, 350, 267–277. [CrossRef]

73. Chambon, P. A decade of molecular biology of retinoic acid receptors. FASEB J. 1996, 10, 940–954. [CrossRef]
74. Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. DataWarrior: An Open-Source Program For Chemistry Aware Data Visualization

And Analysis. J. Chem. Inf. Model. 2015, 55, 460–473. [CrossRef] [PubMed]
75. Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal

chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [CrossRef] [PubMed]
76. Martin, T. Toxicity Estimation Software Tool (TEST); U.S. Environmental Protection Agency: Cincinnati, OH, USA, 2020.
77. Maki, A.W. Correlations Between Daphnia magna and Fathead Minnow (Pimephales promelas) Chronic Toxicity Values for Several

Classes of Test Substances. J. Fish. Res. Board. Can. 1979, 36, 411–421. [CrossRef]
78. Johnson, W.W.; Finley, M.T. Handbook of Acute Toxicity of Chemicals to Fish and Aquatic Invertebrates; United States Department of

the Interior Fish and Wildlife Service: Washington, DC, USA, 1980.
79. Addinsoft XLSTAT Statistical and Data Analysis Solution. 2022. Available online: https://xlstat.com (accessed on 9 June 2023).
80. Vilar, S.; Cozza, G.; Moro, S. Medicinal Chemistry and the Molecular Operating Environment (MOE): Application of QSAR and

Molecular Docking to Drug Discovery. Curr. Top. Med. Chem. 2008, 8, 1555–1572. [CrossRef] [PubMed]
81. Tanenbaum, D.M.; Wang, Y.; Williams, S.P.; Sigler, P.B. Crystallographic comparison of the estrogen and progesterone receptor’s

ligand binding domains. Proc. Natl. Acad. Sci. USA 1998, 95, 5998–6003. [CrossRef] [PubMed]
82. Williams, S.P.; Sigler, P.B. Atomic structure of progesterone complexed with its receptor. Nature 1998, 393, 392–396. [CrossRef]

[PubMed]
83. Matias, P.M.; Donner, P.; Coelho, R.; Thomaz, M.; Peixoto, C.; Macedo, S.; Otto, N.; Joschko, S.; Scholz, P.; Wegg, A.; et al.

Structural Evidence for Ligand Specificity in the Binding Domain of the Human Androgen Receptor. J. Biol. Chem. 2000, 275,
26164–26171. [CrossRef]

84. Rochel, N.; Wurtz, J.M.; Mitschler, A.; Klaholz, B.; Moras, D. The Crystal Structure of the Nuclear Receptor for Vitamin D Bound
to Its Natural Ligand. Mol. Cell 2000, 5, 173–179. [CrossRef]

85. Ye, L.; Li, Y.L.; Mellström, K.; Mellin, C.; Bladh, L.G.; Koehler, K.; Garg, N.; Garcia Collazo, A.M.; Litten, C.; Husman, B.;
et al. Thyroid Receptor Ligands. 1. Agonist Ligands Selective for the Thyroid Receptor β1. J. Med. Chem. 2003, 46, 1580–1588.
[CrossRef]

86. Bourguet, W.; Vivat, V.; Wurtz, J.-M.; Chambon, P.; Gronemeyer, H.; Moras, D. Crystal Structure of a Heterodimeric Complex of
RAR and RXR Ligand-Binding Domains. Mol. Cell 2000, 5, 289–298. [CrossRef]

87. Pogenberg, V.; Guichou, J.F.; Vivat-Hannah, V.; Kammerer, S.; Pérez, E.; Germain, P.; de Lera, A.R.; Gronemeyer, H.; Royer, C.A.;
Bourguet, W. Characterization of the Interaction between Retinoic Acid Receptor/Retinoid X Receptor (RAR/RXR) Heterodimers
and Transcriptional Coactivators through Structural and Fluorescence Anisotropy Studies. J. Biol. Chem. 2005, 280, 1625–1633.
[CrossRef] [PubMed]

88. Dassault Systèmes. BIOVIA Discovery Studio; Dassault Systèmes: San Diego, CA, USA, 2021.
89. Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient

optimization, and multithreading. J. Comput. Chem. 2009, 31, 455–461. [CrossRef] [PubMed]
90. Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and

Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [CrossRef] [PubMed]
91. GROMACS 2023. 2 Manual. Zenodo 2023. [CrossRef]
92. Huang, J.; MacKerell, A.D. CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J.

Comput. Chem. 2013, 34, 2135–2145. [CrossRef]
93. Boonstra, S.; Onck, P.R.; van der Giessen, E. CHARMM TIP3P Water Model Suppresses Peptide Folding by Solvating the Unfolded

State. J. Phys. Chem. B 2016, 120, 3692–3698. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1186/2045-3701-2-11
https://doi.org/10.1371/journal.pone.0132566
https://www.ncbi.nlm.nih.gov/pubmed/26162091
https://doi.org/10.7554/eLife.76389
https://www.ncbi.nlm.nih.gov/pubmed/35315776
https://doi.org/10.1196/annals.1443.017
https://www.ncbi.nlm.nih.gov/pubmed/19076350
https://doi.org/10.3390/cells9122660
https://doi.org/10.1016/0027-5107(95)00102-6
https://doi.org/10.1096/fasebj.10.9.8801176
https://doi.org/10.1021/ci500588j
https://www.ncbi.nlm.nih.gov/pubmed/25558886
https://doi.org/10.1038/srep42717
https://www.ncbi.nlm.nih.gov/pubmed/28256516
https://doi.org/10.1139/f79-061
https://xlstat.com
https://doi.org/10.2174/156802608786786624
https://www.ncbi.nlm.nih.gov/pubmed/19075767
https://doi.org/10.1073/pnas.95.11.5998
https://www.ncbi.nlm.nih.gov/pubmed/9600906
https://doi.org/10.1038/30775
https://www.ncbi.nlm.nih.gov/pubmed/9620806
https://doi.org/10.1074/jbc.M004571200
https://doi.org/10.1016/S1097-2765(00)80413-X
https://doi.org/10.1021/jm021080f
https://doi.org/10.1016/S1097-2765(00)80424-4
https://doi.org/10.1074/jbc.M409302200
https://www.ncbi.nlm.nih.gov/pubmed/15528208
https://doi.org/10.1002/jcc.21334
https://www.ncbi.nlm.nih.gov/pubmed/19499576
https://doi.org/10.1021/acs.jcim.1c00203
https://www.ncbi.nlm.nih.gov/pubmed/34278794
https://doi.org/10.5281/zenodo.8134388
https://doi.org/10.1002/jcc.23354
https://doi.org/10.1021/acs.jpcb.6b01316

	Introduction 
	Materials and Methods 
	Data Gathering 
	Statistical Methods 
	Molecular Docking Simulations 
	Molecular Dynamics Simulations 

	Results and Discussion 
	Data Gathering 
	QSTR Models 
	Molecular Docking 
	Molecular Dynamics 

	Conclusions 
	References

