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Abstract: Due to nonspecific pathological changes and the rapid degradation of insulin in postmortem
blood samples, the identification of the cause of death during insulin overdose has always been a
difficulty in forensic medicine. At present, there is a lack of studies on the toxicological changes and
related mechanisms of an insulin overdose, and the specific molecular markers of insulin overdose
are still unclear. In this study, an animal model of insulin overdose was established, and 24 SD
rats were randomly divided into a control group, insulin overdose group, and a recovery group
(n = 8). We detected the biochemical changes and analyzed the toxicological mechanism of an insulin
overdose. The results showed that after insulin overdose, the rats developed irregular convulsions,
Eclampsia, Opisthotonos, and other symptoms. The levels of glucose, glycogen, and C-peptide
in the body decreased significantly, while the levels of lactate, insulin, and glucagon increased
significantly. The decrease in plasma K+ was accompanied by the increase in skeletal muscle K+. The
PI3K-AKT signaling pathway was significantly activated in skeletal muscle, and the translocation of
GLUT4/Na+-K+-ATPase to sarcolemma was significantly increased. Rare glycogenic hepatopathy
occurred in the recovery group after insulin overdose. Our study showed that insulin overdose also
plays a role in skeletal muscle cells, mainly through the PI3K-Akt signaling pathway. Therefore, the
detection of signaling pathway proteins of the skeletal muscle cell membrane GLUT4 and Na+-K+-
ATPase has a certain auxiliary diagnostic value for forensic insulin overdose identification. Glycogen
detection in the liver and skeletal muscle is important for the diagnosis of insulin overdose, but it still
needs to be differentiated from other causes of death. Skeletal muscle has great potential for insulin
detection, and the ratio of insulin to the C-peptide (I:C) can determine whether an exogenous insulin
overdose is present.

Keywords: insulin overdose; forensic medicine; hypoglycemia; toxicology

1. Introduction

Insulin is an anabolic hormone produced by pancreatic β-cells and consists of two
polypeptide chains, A and B, linked by disulfide bonds [1,2]. The main functions of insulin
include regulating blood glucose levels and promoting glucose uptake by peripheral cells [1–3].
Insulin biosynthesis is performed by the cleavage and processing of the precursor single-
chain molecule proinsulin to secrete equimolar masses of mature insulin and C-peptide into
the blood [2–4]. The blood glucose level is the only major physiological stimulus of insulin
secretion, and insulin and C-peptide secretion almost ceases when the blood glucose level
stabilizes between 2.5 and 3.33 mmol/L [2,3].
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Insulin is the most common drug used in the clinical treatment of diabetes [3], so
insulin overdose is mostly an accidental treatment for diabetic patients, including the
miscalculation of dosage and incorrect use of insulin specifications [1,5–7]. An insulin over-
dose can lead to hypoglycemia, with blood glucose levels below 3.9 mmol/L (70 mg/dL)
defined as clinical hypoglycemia and blood glucose levels below 3 mmol/L (54 mg/dL) de-
fined as clinically important hypoglycemia [7–9]. The clinical symptoms of hypoglycemia
can be summarized into the following two aspects: sympathetic hyperactivity, including
sweating, hunger, palpitation, and brain dysfunction, including confusion, drowsiness,
impaired coordination, visual impairment, paresthesia, serious convulsions, coma, and
even death [5,6,8–10]. The exact mechanism by which hypoglycemia leads to sudden death
is unknown, but arrhythmias and cerebral epilepsy appear to play a major role [8,11–13].

Insulin overdose also appears in forensic cases, especially among medical personnel
and families of diabetic patients, who can easily obtain insulin to commit suicide or
murder [7,14–17]. In 1958, BIRKINSHAW reported the first insulin murder in history [18].
Since then, the number of insulin homicides has gradually increased, and some novelists
have described insulin as “the perfect murder method” [17,19–23]. The identification of
the cause of death after an insulin overdose has always been difficult in forensic medicine
due to the lack of evidence left at the crime scene, the difficulty in finding insulin injection
needle marks on the corpse’s surface, the lack of obvious pathological characteristics
in autopsy, the rapid degradation of insulin caused by postmortem hemolysis, and the
significant difference in postmortem blood biochemistry compared with antemortem
conditions [14,15,17,20,21,23]. At present, the studies of insulin overdose are mostly limited
to case reports and reviews of the literature [7,14,17,18,23], and there is a lack of research on
the biochemical and toxicological mechanism of insulin overdose death, molecular markers
related to insulin overdose, and alternative samples for insulin forensic determination.

The purpose of this experiment was to study the biochemical changes and toxicological
mechanisms of insulin overdose through animal models and to search for specific molecular
markers after insulin overdose so as to provide a reference for the clinical treatment of
insulin overdose and theoretical support for the forensic diagnosis of insulin.

2. Materials and Methods
2.1. Experimental Animals

A total of 24 SPF male SD rats (8 weeks, 310 g ± 20 g) were purchased from Chongqing
Medical University Laboratory Animal Center. All rats were maintained at 22–24 ◦C
(12 h light/dark cycle) with sterile rat chow and water ad libitum. All rats were sacrificed
or died under intraperitoneal sodic pentobarbital anesthesia (100 mg/kg, ip). All animal
procedures were performed in accordance with animal care ethics, and all animal experi-
ments for this study were approved by the Experimental Animal Care and Use Committee
of Chongqing Medical University.

2.2. Experimental Design

All rats fasted overnight before the experiment and were provided with pure water
only. In total, 24 SD rats were randomly divided into the control group, insulin overdose
group, and insulin overdose recovery group (n = 8). The rats in the insulin overdose
group were intraperitoneally injected with 20 IU/kg of insulin (insulin aspart injection,
Novonordisk A/S, Copenhagen, Denmark). Their blood glucose levels were measured
every 30 min from the end of their tail veins using a glucometer (Accu-Chek-performa,
Roche, Mannheim, Germany) until they died, and their physical signs were recorded
throughout the experiment. The rats in the recovery group were intraperitoneally injected
with 20 IU/kg of insulin; a 0.3 mL mixture of 50% glucose and bicarbonate buffer (1:1) was
injected intraperitoneally when blood glucose dropped to 1.5 mmol/L (27 mg/dL); 5 mL of
a 50% glucose solution (H50020071, TaiJi, Chongqing, China) was injected intraperitoneally
for resuscitation if the rats developed convulsions or opisthotonos; they were fed in cages
after their blood glucose levels rose above 3.9 mmol/L (70 mg/dL) and were sacrificed
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3 days later. The rats in the control group were injected intraperitoneally with the same
volume of sterile normal saline (BL158 A, Biosharp, Hefei, China) only; blood glucose levels
were measured every 30 min, and the rats were sacrificed 3 h later. Plasma, the quadriceps
femoris muscle, and the liver were collected from all rats and stored at −80 ◦C for further
analysis. The experimental protocol is shown in Figure 1A.
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Figure 1. (A) Experimental protocol. Rats were divided into three groups: Control (n = 8), Insulin
overdose (n = 8), Recovery (n = 8). Blood glucose was measured per 30 min in all rats. Control
group rats were injected with normal saline (ip). Insulin overdose group rats were injected with
insulin (20 IU/kg,ip). Recovery group rats were injected with insulin (20 IU/kg,ip) injected with a
0.3 mL mixture (50%-glucose: bicarbonate buffer = 1:1, ip) after blood glucose dropped to 1.5 mmol/L
(27 mg/dL) (blue arrow), and intraperitoneally injected with 5 mL of 50%-glucose (red arrow).
(B) Blood glucose in all rats was recorded within 3 h.

2.3. Biochemical Index

The glucose content in liver and skeletal muscle tissue was determined using the
glucose colorimetric method kit (E-BC-K234-M, Elabscience, Wuhan, China) according
to the manufacturer’s instructions. Lactate levels in plasma and the skeletal muscle,
potassium levels in plasma and the skeletal muscle, and ALT and AST levels in plasma
were determined using kits (A019-2-1, C001-2-1, C009-2-1, C010-2-1, NanJing Jiancheng
Bioengineering Institute, NanJing, China) according to the manufacturer’s instructions.
The plasma total ketone body content was determined via ultraviolet spectrophotometry
according to the manufacturer’s instructions (BC5060, Solarbio, Beijing, China). All tissue
homogenates were obtained using a Cryogenic freezing grinder (JXFSTPRP-CL, JINXIN,
Shanghai, China).

2.4. ELISA for Hormone Levels

Insulin in plasma and the skeletal muscle were determined using the Iso-Insulin
ELISA kit (10-1128-01, Mercodia, Uppsala, Sweden) with standardized cross-reaction
validation. Glucagon (MM-21295R1, MEIMIAN, Yancheng, China) and C-peptide (MM-
0588R1, MEIMIAN, Yancheng, China) levels in the plasma were determined using reagent
vendors standardized ELISA kits according to the manufacturer’s protocol.

2.5. Liver Pathology

Liver weights were determined by analytical balance. Liver tissues were fixed in
Carnoy’s solution, embedded in paraffin, sectioned at 4 µm, and stained using H&E to
observe pathological changes in the liver.

2.6. Glycogen Determination

The absolute glycogen content in fresh liver and skeletal muscle was determined using
an anthrone method kit (A043-1-1, NanJing Jiancheng Bioengineering Institute, NanJing,
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China) according to the manufacturer’s instructions. Parts of the liver and skeletal muscle
from the same site were fixed in Carnoy’s solution, embedded in paraffin, sectioned at
4 µm, and stained with PAS. Image J was used to analyze the degree of PAS staining.

2.7. Western Blotting Analysis

Skeletal muscle samples were ground and homogenized in a RIPA lysis buffer contain-
ing protease inhibitors and phosphatase inhibitors (P0013B, Beyotime, Shanghai, China),
and total protein supernatants were obtained after centrifugation and protein concen-
trations were determined using the BCA protein assay kit (P0010, Beyotime, Shanghai,
China). The protein supernatant was mixed with bromophenol blue and boiled at 95 ◦C
for 10 min. Total proteins (20 ug) were separated via 10% SDS-PAGE gel electrophore-
sis and transferred onto PVDF membranes (PR05505, Immobilon, Darmstadt, Germany).
After blocking with 5% free-fat milk for 2 h at room temperature, membranes were incu-
bated with the primary antibodies against GSK3 (1:5000, ab185141, abcam, Cambridge,
UK), Phosphorylated-GSK3-Ser9 (1:5000, ab75814, abcam, Cambridge, UK), AKT (1:1000,
T55561F, Abmart, Shanghai, China), Phosphorylated-AKT-Ser473 (1:1000, T40067F, Ab-
mart, Shanghai, China), Phosphorylated-AKT-Thr308 (1:1000, T40068F, Abmart, Shang-
hai, China), PI3K (1:5000, 60225-1-lg, proteintech, Wuhan, China), Phosphorylated-PI3K
(1:1000, bs-3332R, Bioss, Beijing, China), GLUT4 (1:1000, 66846-1-lg, proteintech, Wuhan,
China), Na+/K+-ATPase (1:5000, 14418-1-AP, proteintech, Wuhan, China), and β-actin
(1:5000, 66009-1-lg, proteintech, Wuhan, China) overnight at 4 ◦C, then incubated with HRP
secondary antibodies(1:2000, proteintech, Wuhan, China), detected using ECL(BL520B,
Biosharp, Hefei, China), and visualized using the ChemiDoc imaging system(Bio-Rad,
California, USA). Total protein normalization was performed using 10% acryl-amide TGX
Stain-freeTM gels(Bio-Rad, California, USA). Protein levels were quantified using Image
Lab 5.2.1 software. The mean density of protein bands was normalized to β-actin and
control data, expressed as fold changes relative to the control.

2.8. Confocal Immunofluorescent Staining

Skeletal muscles were fixed in a 4% formaldehyde solution, embedded in paraffin,
and sectioned at 4 µm for immunofluorescence staining to detect the expression and
subcellular localization of GLUT4 and Na+/K+-ATPase. Sections were deparaffinized,
antigen-repaired, blocked, and incubated with the anti-GLUT4 antibody (1:200, 66846-
1-lg, proteintech, Wuhan, China) and anti-Na+/K+-ATPase antibody (1:400, 14418-1-AP,
proteintech, Wuhan, China) overnight at 4 ◦C. After washing with PBS, sections were
incubated with the fluorescent secondary antibody CoraLite594/CoraLite488 (1:100, pro-
teintech, Wuhan, China) for 2 h at room temperature, washed again with PBS, stained with
nuclei and sealed with the DAPI-containing anti-fluorescence-quenching agent (P0131,
Beyotime, Shanghai, China). Imaging was performed using the Leica confocal microscope
(STELLARIS, Leica, Hessen, Germany) and analyzed using Leica LAS X software.

2.9. Statistical Analysis

The results are expressed as the mean ± SEM. GraphPad Prism version 8.0.2 was
used for statistical analysis and graphs. One-way ANOVA was used to compare multiple
groups. Tukey’s post hoc test was performed only if F reached p < 0.05 with homogeneity
of variance. p-values < 0.05 were considered statistically significant.

3. Results
3.1. Blood Glucose Levels and Corresponding Symptoms after Insulin Overdose

Following the insulin overdose injection, blood glucose levels decreased significantly
over time, and various symptoms appeared, as shown in Figure 1B and Table 1. When
blood glucose dropped below 1.5 mmol/L (27 mg/dL), severe symptoms were observed,
including irregular convulsions, hypermyotonia, eclampsia, opisthotonos, etc. The blood
glucose levels in the insulin overdose group decreased further until death. By contrast, after
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the injection of glucose, the blood glucose levels in the recovery group increased rapidly
to more than 3.9 mmol/L (70 mg/dL); the symptoms gradually disappeared, and all the
rats survived.

Table 1. Blood glucose levels and corresponding symptoms in rats. Data are expressed as the
mean ± SEM.

Time
Blood Glucose

Symptoms
mmol/L

—
X± SEM mg/dL

—
X±SEM

0 h 5.5 ± 0.4 99.0 ± 7.2 Normal behavior
0.5 h 2.5 ± 0.4 45.0 ± 7.2 Blunted response; hypodynamia; hypotonia
1 h 1.5 ± 0.3 27.0 ± 5.4 Irregular convulsions; hypermyotonia

1.5 h 1.2 ± 0.2 21.6 ± 3.6 Eclampsia; opisthotonos
2 h 0.9 ± 0.2 16.2 ± 3.6 Collapse; uroclepsia; near-death

2.5 h 0.8 ± 0.1 14.4 ± 1.8 Death

3.2. Effects of Insulin Overdose on Biochemical Indexes

As shown in Figure 2A–C, compared with the control group, glucose levels in plasma,
liver, and muscle tissue were significantly decreased in the insulin overdose group
(p < 0.0001). After 3 days of recovering from an insulin overdose, glucose levels in the
blood, liver, and muscle tissue returned to normal. As shown in Figure 2D,E, lactate levels in
the skeletal muscle and plasma were significantly increased in the insulin overdose group
compared with the control group (muscle p < 0.0001, plasma p < 0.001). In the recovery group,
lactate levels in skeletal muscle and plasma returned to normal. The glucose consumption
and lactate accumulation indicated that glycolysis increased after the insulin overdose. In
addition, the plasma total ketone body level in the recovery group was slightly increased,
but there was no significant difference compared with the other groups (p > 0.05), Figure 2F.
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Figure 2. Energy index determination. (A–C) Glucose levels in plasma, liver, and skeletal muscle
of each group; (D,E) Lactate levels in plasma and skeletal muscle of each group; (F) Plasma ketone
body levels of each group. Data are expressed as mean ± SEM, ns p > 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001, One-way ANOVA.
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As shown in Figure 3A,B, compared with the other groups, the plasma potassium level
decreased in the insulin overdose group (p < 0.01), while the potassium level in skeletal
muscle was increased in the insulin overdose group (p < 0.05). These data indicate that
insulin overdose alters potassium distribution in plasma and the skeletal muscle.
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As shown in Figure 3C,D, compared with the other groups, plasma alanine aminotrans-
ferase (ALT) and aspartate transaminase (AST) in the recovery group were significantly
increased (p < 0.0001), indicating that liver function was damaged after insulin overdose
and glucose resuscitation.

3.3. Effects of Insulin Overdose on Glucose Metabolic Hormones

As shown in Figure 4A,B, compared with the other groups, the insulin levels of plasma
and skeletal muscle in the insulin overdose group significantly increased (p < 0.0001). After
recovery, the insulin levels in plasma and skeletal muscle decreased to the control level
(p > 0.05). Plasma C-peptide levels in the insulin overdose group decreased significantly
compared with the control group (p < 0.0001); after recovery, plasma C-peptide levels to
returned to the control group (p > 0.05), as shown in Figure 4C. In addition, plasma glucagon
levels in the insulin overdose group were significantly increased compared with the control
group (p < 0.0001), but plasma glucagon levels in the recovery group decreased to the
control level (p > 0.05), as shown in Figure 4D. These hormone levels indicate that after
insulin overdose, endogenous insulin secretion is suppressed, while glucagon secretion is
stimulated sharply.
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(C) Plasma C-peptide levels in each group; (D) Plasma glucagon levels in each group. Data are
expressed as mean ± SEM, ns p > 0.05, **** p < 0.0001, One-way ANOVA.

3.4. Glycogen Deposition after Insulin Overdose and Glucose Recovery

Liver H&E staining, as shown in Figure 5A, resulted in the congestion of the central
hepatic vein and hepatic sinuses in the insulin overdose group, including swelling and
balloon-like changes in hepatocytes in the recovery group. As shown in Figure 5B,C, there
was no significant change in the liver mass and liver coefficient in the insulin overdose
group compared with the control group (p > 0.05), while the liver mass and liver coefficient
were significantly increased in the recovery group (p < 0.0001). Compared with the control
group, as shown in Figure 6A–C, liver glycogen in the insulin overdose group decreased
significantly (PAS staining p < 0.0001, glycogen quantification p < 0.01), while liver glycogen
in the recovery group increased significantly (PAS staining p < 0.05, glycogen quantification
p < 0.0001). Compared with the control group, as shown in Figure 7A–C, skeletal muscle
glycogen in the insulin overdose group decreased significantly (PAS staining p < 0.0001,
glycogen quantification p < 0.05), while skeletal muscle glycogen in the recovery group
increased significantly (PAS staining p < 0.05, glycogen quantification p < 0.05). These
data indicate that glycogen in both the liver and skeletal muscle decreased after an insulin
overdose. However, the glycogen of the liver and skeletal muscle increased after insulin
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overdose and glucose resuscitation, and hepatocyte degeneration and balloon-like changes,
resulting in glycogenic hepatopathy.
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3.5. Insulin Overdose Activates the PI3K-AKT Signaling Pathway in Skeletal Muscle

AKT is a key protein that regulates cellular metabolism. As shown in Figure 8A–C,
there were no significant changes in the total protein loading amount and the expression of
the reference β-actin in each group. As shown in Figure 8B,D, compared with the other
groups, the ratio of P-PI3K to total PI3K in the insulin overdose group was significantly
increased (p < 0.01 VS control group, p < 0.05 VS recover group). As shown in Figure 8B,E,
compared with the other groups, the ratio of P-AKT-Ser473 to total AKT was significantly
increased in the insulin overdose group (p < 0.0001 VS control group, p < 0.0001 VS recover
group), while the ratio of P-AKT-Thr308 to the total AKT was not significantly changed
in the hypoglycemia group (p > 0.05). As shown in Figure 8B,F, compared with the other
groups, the ratio of P-GSK3-Ser9 to total GSK3 was significantly increased in the insulin
overdose group (p < 0.0001 VS control group, p < 0.0001 VS recover group). These data
indicate that insulin overdose significantly activates the PI3K-AKT signaling pathway in
skeletal muscle and stimulates the ability of glycogen synthesis.
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3.6. Insulin Overdose Promotes GLUT4 and Na+-K+-ATPase Translocation in Skeletal Muscle

WB results, as shown in Figure 9A–C, with GLUT4 and Na+-K+-ATPase expression
levels were not significantly different among all groups (p > 0.05). However, compared with
the other groups, confocal microscopy immunofluorescence images, as shown in Figure 10,
indicated that the signals of GLUT4 and Na+-K+-ATPase on the sarcolemma were signifi-
cantly increased in the insulin overdose group. The above data and the phosphorylation of
PI3K-AKT suggest that insulin overdose stimulates GLUT4 and Na+-K+-ATPase translo-
cation to the sarcolemma through the PI3K-AKT signaling pathway. Figure 11 shows
the schematic diagram of the membrane translocation of GLUT4 and Na+-K+-ATPase
stimulated by insulin overdose, which was drawn by ourselves.
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Figure 10. Immunofluorescence images in each group. (A) Immunofluorescence images of GLUT4 in
skeletal muscle, scale 100 µm; (B) Immunofluorescence images of Na+/K+-ATPase in skeletal muscle,
scale 100 µm.
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Figure 11. Schematic diagram of the regulation of GLUT4 translocation, Na+/K+-ATPase translo-
cation, and glycogen synthase kinase phosphorylation after insulin overdose in skeletal mus-
cle. IR: insulin receptor; IRS1: insulin receptor substrate 1; PI3K: Phosphoinositide-3-Kinase;
PIP2: phosphatidylinositol-4,5-bisphosphate; PIP3: phosphatidylinositol-3,4,5-bisphosphate; PDK1:
Phosphoinositide-dependent kinase; mTORC: Mammalian Target of Rapamycin; AKT: Protein ki-
nase B; aPKC: atypical Protein kinase C; AS160: TBC1D4, TBC1 domain family, member 4; GSK3β:
glycogen synthase kinase 3 beta; NKA: Na+/K+ ATPase 1; GLUT4: solute carrier family 2 (facilitated
glucose transporter), member 4.

4. Discussion

Insulin has a variety of effects on peripheral tissues, such as promoting glucose trans-
port from extracellular to intracellular, regulating cellular glucose metabolism, promoting
substance synthesis, inhibiting glycogenolysis, inhibiting gluconeogenesis, etc. [24,25]. The
physiological effects of insulin are mainly realized through the PI3K-AKT signaling path-
way, in which AKT plays an important role in substance metabolism [24,26,27]. As shown
in Figure 11, insulin binds to the insulin receptor (IR), phosphorylates the tyrosine site of in-
sulin receptor substrate 1 (IRS1) in the skeletal muscle, and then activates Phosphoinositide-
3-Kinase (PI3K). Activated PI3K catalyzes Phosphatidylinositol-4,5-bisphosphate (PIP2)
to Phosphatidylinositol-3,4,5-bisphosphate (PIP3), which acts as a second messenger to
activate Protein kinase B (AKT) through phosphoinositide-dependent kinase (PDK1) and
the Mammalian Target of Rapamycin (mTORC), respectively [26–28]. Phosphorylation
at Thr308 is required for AKT activation, while phosphorylation at Ser473 is required for
complete AKT activation [27,29]. In this study, as shown in Figure 8, we found that the
phosphorylation levels of PI3K and Akt were significantly increased in skeletal muscle cells
after insulin overdose, which verified that insulin overdose also exerts its effects mainly
through the PI3K-Akt signaling pathway in skeletal muscle cells.

Glucose transporter 4, as an insulin-sensitive glucose transporter, is mainly distributed
in the skeletal muscle and adipose tissue [30,31]. Without insulin stimulation, more than
95% glut4 is stored in cells as vesicle GSV [30,32,33]. When insulin stimulates the cells,
the downstream proteins are activated through the PI3K-Akt signaling pathway [33,34].
This leads to GLUT4 vesicles losing their anchoring function and translocating to the cell
membrane in the form of vesicles, thereby promoting glucose absorption and playing
a vital role in lowering blood glucose levels [30,33,35]. The half-life of insulin in the
body is only 4–6 min [2,25]. After insulin binds to the receptor, the signaling pathway is
activated, and the insulin–receptor complex is rapidly degraded after internalization [2,32].
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Therefore, physiological doses of insulin do not cause the sustained translocation of GLUT4
to the membrane of skeletal muscle cells [32,33]. In this study, as shown in Figure 9B, we
found no significant difference in the expression of GLUT4 between the insulin overdose
group and the control group. However, as shown in Figures 8B and 10A, the intensified
immunofluorescence signal of GLUT4 on the skeletal sarcolemma and the activation of the
PI3K-Akt signaling pathway following insulin overdose suggested that excessive insulin
facilitated the translocation of GLUT4 to the muscle membrane, leading to increased glucose
absorption in the skeletal muscle. Furthermore, excess insulin can maintain the continuous
translocation of GLUT4 to skeletal sarcolemma, and considering the specific effect of insulin
on GLUT4, the detection of GLUT4 signal intensity in skeletal sarcolemma could be useful
for the forensic diagnosis of insulin overdose.

Skeletal muscle stores more than 70% of the total body K+, with a total amount of
about 2600 mmol, which is 46 times the total extracellular K+ and 236 times the total
plasma K+, and contains abundant Na+-K+-ATPase [36,37]. Therefore, slight K+ changes
in skeletal muscle can cause significant changes in plasma K+ [36,38]. K+ homeostasis
on a moment-to-moment basis is mainly achieved by the transmembrane transport of
extracellular K+ to skeletal muscle [38–40]. Studies have shown that insulin may activate
the PI3K-Akt signaling pathway and promote the translocation of intracellular vesicles
containing Na+-K+-ATPase to the skeletal sarcolemma through atypical protein kinase C
(aPKC) [40,41]. Interestingly, it has also been shown that muscle contractions during intense
exercise or during epilepsy promote the diffusion of K+ from the muscles to the capillaries,
thereby raising blood potassium levels [36,41]. In this study, as shown in Figure 9C, we
found no significant difference in the expression level of Na+-K+-ATPase between the
insulin overdose group and the control group. However, as shown in Figure 10B, there was
an enhanced immunofluorescence signal of Na+-K+-ATPase on the skeletal sarcolemma,
suggesting that excessive insulin activates the PI3K-Akt signaling pathway, leading to the
translocation of Na+-K+-ATPase to the skeletal sarcolemma and subsequently increasing
the transport of blood potassium into the muscles. It is important to emphasize that
the decrease in blood potassium levels after insulin overdose is primarily attributed to
the skeletal muscle-mediated translocation of potassium rather than absolute potassium
loss. Clinical cases have provided evidence that aggressively supplementing potassium
in response to initial hypokalemia during the early stages of an insulin overdose can lead
to hyperkalemia once the underlying cause of the insulin overdose is resolved [42,43].
Therefore, it is necessary to prolong the monitoring of the plasma potassium level and
consider conservative potassium supplementation in clinical practice for the decrease in
plasma potassium induced by insulin overdose. In addition, due to the relatively specific
effect of insulin on Na+-K+-ATPase, it is worthwhile to further investigate the detection of
the signal intensity of Na+-K+-ATPase in skeletal sarcolemma for the forensic diagnosis of
insulin overdose.

Studies have shown that the body activates counterregulatory systems to prevent
hypoglycemia in response to decreased blood glucose levels [44–46]. After an exoge-
nous insulin overdose, the secretion of endogenous insulin decreases, and the release of
glucose-raising hormones increases, among which glucagon plays a major role [44,45,47].
Furthermore, hypoglycemia can increase the ability of glucagon to produce glucose in the
liver [48,49], and the dual effect of hypoglycemia and glucagon surpasses the inhibitory
impact of insulin, resulting in enhanced glycogen decomposition but has no significant
effect on gluconeogenesis [45,48,50]. In this study, as shown in Figure 4A,D, plasma in-
sulin levels and glucagon levels were significantly increased after insulin overdose, while
liver glycogen and glucose contents were significantly decreased, confirming the hepatic
glycogen depletion caused by insulin overdose. Previous studies have shown that, during
intense exercise, glucose is the only fuel for muscles, while muscles produce large amounts
of lactate that diffuse along the concentration gradients [51–54]. In this study, symptoms
such as persistent muscle twitching during insulin overdose may lead to substantial glu-
cose consumption and the production of significant amounts of lactic acid in the skeletal
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muscle. Although insulin overdose promotes GLUT4 cell membrane translocation and
glycogen synthase kinase activation in the skeletal muscle, it eventually leads to glycogen
consumption in the skeletal muscle under the dual effects of energy consumption and the
negative feedback regulation mechanism after insulin overdose. Therefore, the detection of
glycogen levels in the liver and skeletal muscle is beneficial for the forensic diagnosis of
insulin overdose, but it needs to be differentiated from other causes of death.

When endogenous insulin is released from the pancreas, equimolar amounts of the
C-peptide are released simultaneously, and the C-peptide is metabolized and cleared more
slowly than insulin, so the C-peptide can be used to assess the level of endogenous insulin
secretion [55–57]. In the normal body, the ratio of insulin to C-peptide (I:C) is less than
1 [55]. When hyperinsulinemia occurs, such as pancreatic β-cell tumors and the rare insulin
autoimmune syndrome, the insulin level and C-peptide level increase simultaneously, and
the ratio of insulin to C-peptide (I:C) is still less than one [55,58]. However, when exogenous
insulin is injected into the body, endogenous insulin secretion is inhibited, resulting in a
decrease in the C-peptide level, and the ratio of the insulin level to C-peptide (I:C) is greater
than one [55,57]. In this study, as shown in Figure 4C, the level of C-peptide decreased
significantly after insulin overdose, and the ratio of insulin to the C-peptide (I:C) was much
greater than one, which could be diagnosed as an exogenous insulin overdose. Therefore,
both forensically and clinically, measurements of insulin and the C-peptide, as well as the
ratio of insulin to the C-peptide (I:C), can be used to determine whether an insulin overdose
is endogenous or exogenous.

For the immunological detection of insulin, it is necessary to consider the influence
of insulin analog cross-reactions [59,60]. In this study, the Mercodia Iso-Insulin Elisa kit
validated by an insulin analog cross-reaction was used for detection to exclude the interfer-
ence of a cross-reaction on the detection value. Studies have shown that insulin is easily
distributed widely throughout the body through blood vessels [61,62]. Clinically, hypo-
glycemia caused by an exogenous insulin overdose can be diagnosed via the simultaneous
detection of an absolute increase in insulin, a decrease in the C-peptide level, and a decrease
in the blood glucose level of <2.8 mmol/L (50 mg/dL) [63]. However, in forensic prac-
tice, insulin in postmortem blood is easily degraded by hemolysis, corruption, and other
influences, which makes it extremely difficult to detect insulin in postmortem blood [64].
In addition, postmortem blood glucose shows a wide range of fluctuations, resulting in
blood glucose parameters that are also of no value in forensic pathology [65]. Interestingly,
Duckworth found that the muscle is the third major organ for insulin metabolism [66], and
Bryant confirmed that insulin is more stable in acidic media [67]. In this study, as shown in
Figures 2E and 4B, both insulin and lactate levels were increased in the skeletal muscle after
insulin overdose. Given the ample sample size of the muscle and the acidic environment
provided by postmortem glycolysis, there is great potential for forensic insulin detection
from muscle.

Glycogenic hepatopathy is a rare complication of poor glycemic control in patients
with type 1 diabetes mellitus [68,69], which is pathologically characterized by elevated liver
transaminase, hepatomegaly, and glycogen deposition [70,71]. In this study, rats developed
glycogenic hepatopathy similar to those in type 1 diabetes after resuscitation and insulin
overdose. In the recovery group, as shown in Figure 3C,D, Figures 5 and 6, AST and ALT
were significantly increased, the liver weight and liver coefficient were significantly in-
creased, HE staining showed hepatomegaly and ballooning degeneration, and PAS staining
and glycogen measurement confirmed that liver glycogen was significantly increased. Stud-
ies have shown that transient glycogenic hepatopathy generally does not cause persistent
liver damage, but it is easily misdiagnosed by clinicians as non-alcoholic fatty liver disease
(NAFLD) in patients with type 2 diabetes [70,72], which requires differential diagnosis
by clinicians.
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5. Conclusions

In conclusion, our study shows that insulin overdose also plays a role in skeletal
muscle cells mainly through the PI3K-Akt signaling pathway, and the detection of GLUT4
and Na+-K+-ATPase signals in the skeletal muscle cell membrane is helpful for the forensic
diagnosis of insulin overdose. Glycogen detection in the liver and skeletal muscle is helpful
for the forensic diagnosis of insulin overdose, but it needs to be differentiated from other
causes of death. Skeletal muscle has great potential as a substitute for blood to detect
an insulin overdose, and the ratio of insulin to C-peptide (I:C) can be used to determine
whether it is an exogenous insulin overdose.
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