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Abstract: We conducted an evaluation of the impact of meteorological factor forecasts on the pre-
diction of fine particles in Chengdu, China, during autumn and winter, utilizing the European
Cooperation in Science and Technology (COST)733 objective weather classification software and
the Community Multiscale Air Quality model. This analysis was performed under four prevailing
weather patterns. Fine particle pollution tended to occur under high-pressure rear, homogeneous-
pressure, and low-pressure conditions; by contrast, fine particle concentrations were lower under
high-pressure bottom conditions. The forecasts of fine particle concentrations were more accurate
under high-pressure bottom conditions than under high-pressure rear and homogeneous-pressure
conditions. Moreover, under all conditions, the 24 h forecast of fine particle concentrations were more
accurate than the 48 and 72 h forecasts. Regarding meteorological factors, forecasts of 2 m relative
humidity and 10 m wind speed were more accurate under high-pressure bottom conditions than
high-pressure rear and homogeneous-pressure conditions. Moreover, 2 m relative humidity and 10 m
wind speed were important factors for forecasting fine particles, whereas 2 m air temperature was
not. Finally, the 24 h forecasts of meteorological factors were more accurate than the 48 and 72 h
forecasts, consistent with the forecasting of fine particles.

Keywords: Chengdu; CMAQ; objective synoptic weather classification; PM2.5; WRF

1. Introduction

Various synoptic weather patterns affect fine particle transmission and diffusion in
Chengdu, Sichuan Province, China, during autumn and winter [1,2]. The suspended
fine particles that affect human health are mainly located near the surface, and their
transport and diffusion are mainly affected by near-surface meteorological factors under
different weather patterns [3,4]. Therefore, fine particle forecasting is directly affected by
the forecasting of near-surface meteorological factors [5,6]. Hence, comprehending the
impact of near-surface meteorological factor predictions on the estimation of fine particle
concentrations in air quality models is crucial, considering diverse weather patterns, air
quality indices, and temporal intervals.

Objective synoptic weather classification is based on cluster analysis of geopotential
height and wind field datasets, and can be used to classify synoptic data. Many studies on
fine particle pollution have applied this approach to analyze the impact of meteorological
conditions. For instance, several studies on regional wind fields using objective synoptic
weather classification reported that recirculation and stagnant wind fields provide condi-
tions favorable for the development of fine particle pollution [7]. This method can also
reveal how meteorological conditions contribute to regional fine particle pollution [8]. For
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instance, weakened airflows resulting from climate change can increase fine particle concen-
trations [9], which was also predicted using the EC-Earth climate model [10]. Additionally,
aerosol optical depth and fine particle concentrations influence weather patterns [11].

The boundary layer structures associated with fine particle pollution differ among
weather patterns [12]; thus, objective weather classification can be used to study both fine
particle and ozone control. For example, in northeast China and the Poyang and Dongting
Lakes areas, ozone pollution is dominated by weather patterns, whereas fine particles are
mainly controlled by human activities [13,14]. Fine particle concentrations differ from ozone
concentrations under identical weather patterns [15]. Typically, ozone pollution occurs
under low-pressure, high-temperature, and high-radiation conditions [16]. In addition,
objective synoptic weather classification has been employed to analyze dust pollution,
pollen pollution, and the urban heat island effect under different weather conditions. For
instance, in southern Beijing, strong heat island effects occur under weak high-pressure
systems [17]. Moreover, during summer in the Iberian Peninsula, dust pollution tends to
occur under southerly winds [18], while in Poland warm and dry anomalous anticyclonic
systems may contribute to pollen pollution [19].

The Community Multiscale Air Quality (CMAQ) model is the most commonly used
model to forecast regional atmospheric pollution, including fine particle concentrations.
The CMAQ model has been used to analyze forecasts of fine particle concentrations. For
instance, various studies have examined the direct impact of meteorological factor forecasts
on the prediction of atmospheric pollutants [20], the utilization of micro-pulse lidar obser-
vations [21], the incorporation of Global Positioning System Zenith Total Delay data [22],
and the implementation of an urban canopy parameterization scheme [23] to enhance
the accuracy of fine particle forecasting using the CMAQ model. Researchers have also
used machine learning [24], four-dimensional variational assimilation [25], and Kalman
filter [26] methods to optimize fine particle forecasts by the CMAQ model. Also, the CMAQ
model has been used to analyze the impact of changes in meteorological conditions on the
regional transmission of fine particles [27,28], thereby facilitating policy-making related to
the control of regional fine particulate emissions [29]. Finally, the CMAQ model has been
used to identify the relative importance of emission sources, road sources, and regional
transmission in regional air pollution [30], and to help predict future emission scenarios
and trends of fine particles [31]. Overall, studies have focused on the impacts of different
weather patterns on atmospheric pollutant emissions and distributions using the CMAQ
model. Comparatively few studies have examined fine particle forecast accuracy using
objective synoptic weather classification methods.

In the present study, the daily sea level pressure and 10 m wind fields in Chengdu,
China, during autumn and winter in the period 2018–2022 were classified into dominant
weather patterns based on the COST733 weather classification software. Subsequently,
we conducted an analysis on the effectiveness of the CMAQ model in simulating fine
particles from 1 November 2021 to 28 February 2022, while also assessing the influence of
meteorological factor predictions on the forecast accuracy of fine particles.

2. Materials and Methods
2.1. Objective Synoptic Weather Classification

Using the objective synoptic weather classification software developed by the Eu-
ropean Union COST733 Project, daily sea level pressure and 10 m wind fields, obtained
from the fifth-generation reanalysis (ERA5) product provided by the European Center for
Medium-Range Numerical Weather Forecasting, were decomposed into several compo-
nents using principal component (PC) analysis. Components were sorted based on their
eigenvalues. Components explaining large amounts of variance were selected and defined
as PCs. The number of PCs should be less than or equal to the number of observation days.
The cumulative variance explained by the selected PCs exceeded 85%. The selected PCs
were obliquely rotated and classified into several groups representing weather patterns
according to the magnitudes of the component loadings [32,33].
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2.2. Model Parameters

In the Weather Research and Forecasting (WRF) model, the forecast area covers most
of Southwest China (Figure 1a). Based on the Global Forecast System (GFS) data provided
by the National Centers for Environmental Prediction, observations including the Earth’s
surface, radiosonde, radar, and satellite datasets were assimilated as the initial conditions
and model boundary using an observation data assimilation analysis system [34,35]. GFS
data were obtained for free every day, with high stability and data quality. By calculating
meteorological elements including heat, moisture, humidity, and air flow velocity, the GFS
provides the global atmospheric circulation situation and distribution of meteorological
elements. In addition, the GFS forecasts future changes in atmospheric environment. The
WRF model was initiated every day at 00:00 UTC to generate a 72 h forecast, which provided
the meteorological data for the CMAQ model. The domain in the WRF model, which
centered on 29.2 ◦N, 99 ◦E, had a horizontal resolution of 920 × 660 (~3 km) with 51 vertical
levels. The WRF model initially decodes and preprocesses a wide range of observational
data sources, including soundings, high altitude winds, aircraft reports, conventional
ground stations, airport surfaces, ships, buoys, ground-based automated stations, radar,
and satellites. The process of assimilation is subsequently conducted by employing an
observational data assimilation analysis system to revise the initial fields of the WRF model.
Following the formatting of the data and their vertical interpolation, predictions were
generated utilizing the WRF integration module. Regarding the physical parameterization
schemes, we applied the Yonsei University scheme (YSU) as the boundary layer scheme, the
Thompson microphysical process scheme, the Noah land surface process scheme, the Fifth-
Generation Penn State/NCAR Mesoscale Model scheme (MM5) as the near-surface process
scheme, and a newer version of the Rapid Radiative Transfer Model scheme (RRTMG) as
the shortwave and long wave radiation scheme. The cumulus parameterization scheme was
closed. The YSU scheme enhances the depiction of the entrainment process by intensifying
the mixing of thermally driven free convection and reducing the mixing of mechanically
driven forced convection. On the other hand, the Thompson scheme is the pioneering
microphysical process scheme that incorporates the impacts of aerosols, making it well-
suited for high-resolution numerical simulation investigations. The RRTMG radiation
scheme prioritizes the examination of aerosol impacts on the atmosphere. Consequently,
incorporating the RRTMG radiation scheme enables the consideration of pollution effects
on the atmosphere, thereby enhancing the simulation’s fidelity to real-world conditions.

Toxics 2023, 11, x FOR PEER REVIEW 3 of 11 
 

 

were obliquely rotated and classified into several groups representing weather patterns 
according to the magnitudes of the component loadings [32,33]. 

2.2. Model Parameters 
In the Weather Research and Forecasting (WRF) model, the forecast area covers most 

of Southwest China (Figure 1a). Based on the Global Forecast System (GFS) data provided 
by the National Centers for Environmental Prediction, observations including the Earth’s 
surface, radiosonde, radar, and satellite datasets were assimilated as the initial conditions 
and model boundary using an observation data assimilation analysis system [34,35]. GFS 
data were obtained for free every day, with high stability and data quality. By calculating 
meteorological elements including heat, moisture, humidity, and air flow velocity, the 
GFS provides the global atmospheric circulation situation and distribution of meteorolog-
ical elements. In addition, the GFS forecasts future changes in atmospheric environment. 
The WRF model was initiated every day at 00:00 UTC to generate a 72 h forecast, which 
provided the meteorological data for the CMAQ model. The domain in the WRF model, 
which centered on 29.2 °N, 99 °E, had a horizontal resolution of 920 × 660 (~3 km) with 51 
vertical levels. The WRF model initially decodes and preprocesses a wide range of obser-
vational data sources, including soundings, high altitude winds, aircraft reports, conven-
tional ground stations, airport surfaces, ships, buoys, ground-based automated stations, 
radar, and satellites. The process of assimilation is subsequently conducted by employing 
an observational data assimilation analysis system to revise the initial fields of the WRF 
model. Following the formatting of the data and their vertical interpolation, predictions 
were generated utilizing the WRF integration module. Regarding the physical parameter-
ization schemes, we applied the Yonsei University scheme (YSU) as the boundary layer 
scheme, the Thompson microphysical process scheme, the Noah land surface process 
scheme, the Fifth-Generation Penn State/NCAR Mesoscale Model scheme (MM5) as the 
near-surface process scheme, and a newer version of the Rapid Radiative Transfer Model 
scheme (RRTMG) as the shortwave and long wave radiation scheme. The cumulus param-
eterization scheme was closed. The YSU scheme enhances the depiction of the entrainment 
process by intensifying the mixing of thermally driven free convection and reducing the 
mixing of mechanically driven forced convection. On the other hand, the Thompson 
scheme is the pioneering microphysical process scheme that incorporates the impacts of 
aerosols, making it well-suited for high-resolution numerical simulation investigations. 
The RRTMG radiation scheme prioritizes the examination of aerosol impacts on the at-
mosphere. Consequently, incorporating the RRTMG radiation scheme enables the consid-
eration of pollution effects on the atmosphere, thereby enhancing the simulation’s fidelity 
to real-world conditions. 

 
Figure 1. (a) The domains of the WRF and CMAQ models. The red dot indicates the position of 
Chengdu, China; (b) spatial distributions of environmental monitoring stations (red dots) and me-
teorological stations (green dots) in Chengdu. 

Figure 1. (a) The domains of the WRF and CMAQ models. The red dot indicates the position
of Chengdu, China; (b) spatial distributions of environmental monitoring stations (red dots) and
meteorological stations (green dots) in Chengdu.

In the CMAQ model, the forecast area covered the Sichuan Basin (Figure 1a). We
used the Multi-resolution Emission Inventory model for Climate and air pollution research
(MEIC) model developed by Tsinghua University, which includes industrial, civil, agricul-
tural, and traffic pollutant sources, and also considers major atmospheric air pollutants
(e.g., PM2.5, PM10, SO2, NOX, etc.) [36,37]. In the CMAQ model, the forecast concentration
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for the preceding day (beginning at 00:00 UTC) was used as the initial condition, and
the vertical chemical profile file (i.e., bcon_profile) was used as the boundary condition
in the chemical model. The CMAQ model was initiated from 00:00 UTC every day to
perform a 72 h forecast. The domain in the CMAQ model had a horizontal resolution
of 350 × 300 (~3 km) with 16 vertical levels. Finally, the cb05tucl_ae6_aq setting for the
chemical mechanism and aero6 setting for the aerosol mechanism were selected.

2.3. Forecast Evaluation Method and Dataset

The autumn–winter period is defined as November through the following Febru-
ary. Four autumn–winter periods are included in the analysis period of 2018–2022 (i.e.,
November–February in 2018–2019, 2019–2020, 2020–2021, and 2021–2022); hereafter, this
period is referred to as autumn–winter in 2018–2022.

The air quality index (AQI) derived from the China National Environmental Monitor-
ing Centre (CNEMC) and daily PM2.5 concentration in Chengdu during autumn–winter in
2018–2022 were used for pollutant monitoring. The daily PM2.5 concentration, which was
output from the CMAQ model and averaged over the seven environmental monitoring
stations in Chengdu (red dots, Figure 1b) from 1 November 2021 to 28 February 2022, was
the forecasted air pollutant.

Daily 2 m temperature, 2 m relative humidity, and 10 m wind fields averaged over the
14 meteorological stations in Chengdu (dark green dots, Figure 1b) from 1 November 2021
to 28 February 2022 were used as the meteorological observation values.

The outputs from the WRF model were first processed using the Meteorology–Chemistry
Interface Processor (MCIP) weather model in the CMAQ model. Then, the mean daily
2 m temperature, 2 m relative humidity, and 10 m wind fields over the 14 meteorological
stations in Chengdu were calculated as the forecasted meteorological factors.

The accuracies of the forecasts were evaluated using the following equation:

R =

N
∑

i=1

(
Oi − O

)(
Pi − P

)
√

N
∑

i=1
(Oi − O)

2
√

N
∑

i=1
(Pi − P)2

(1)

where R is the correlation coefficient between the observation and forecast time series; Pi
and Oi are the ith forecast and observation, respectively; P and O are the average of all
forecasts and observations, respectively; and N is the ensemble number. R values closer to
1 indicate a more accurate forecast [38].

3. Results
3.1. Objective Synoptic Weather Classification

Figure 2 presents the four weather patterns derived from the objective synoptic
weather classification method using the ERA5 product during autumn–winter in Chengdu:
high-pressure rear, high-pressure bottom, homogeneous-pressure, and low-pressure con-
ditions. The total variance explained by all weather patterns exceeds 85%. Under high-
pressure rear conditions (Figure 2a), the Sichuan Basin, northern Shanxi Province, and
Chongqing are controlled by a high-pressure center with a maximum value of 1025 hPa;
Chengdu, which is located at the rear of this high-pressure center, is dominated by northerly
and weak southerly winds with a speed of ~1 m/s. Under high-pressure bottom condi-
tions (Figure 2b) in Gansu and Shanxi provinces, the high-pressure center has a maximum
value of 1035 hPa. At the bottom of the high-pressure center, Chengdu is dominated by
easterly winds with speeds of 1.5–3.0 m/s. Homogeneous-pressure conditions (Figure 2c)
are characterized by homogeneous pressure of around 1022.5 hPa in Chengdu, in which
northerly winds with an amplitude of ~1 m/s prevail. Finally, under low-pressure condi-
tions (Figure 2d), low pressures (minimum of 1005 hPa) occur in the Sichuan Basin, Gansu,
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Shanxi, and Guizhou provinces, and Chongqing, and Chengdu is affected by northerly
winds with a speed of ~1 m/s.
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Under all four weather patterns, Chengdu has areas with relatively low-pressure
centers, indicating that it is dominated by cyclonic convergence. Cyclonic convergence
induces the advection of air pollutants around Chengdu toward the city center and leads
to the upward transportation of air pollutants due to the cyclone-induced pumping effect.
Meanwhile, a cold, high-pressure pattern controls northern Sichuan Province, generating
northerly winds. These winds transport cold air to Chengdu, which facilitates the diffusion
of air pollutants. Due to weak pressure gradients, the wind fields in Chengdu are relatively
small under the high-pressure rear, homogeneous-pressure, and low-pressure conditions;
as a result, Chengdu is prone to air pollution.

3.2. Correlation Analysis of Objective Weather Classifications and Fine Particle Concentrations

Table 1 presents the cumulative occurrence of each weather pattern, number of days
and rate of fine particle concentrations exceeding the standard, and fine particle con-
centrations. The occurrence of weather patterns followed the decreasing order of high-
pressure bottom (78.4%), high-pressure rear (12.5%), homogeneous-pressure (7.5%), and
low-pressure (1.7%) conditions. In total, 142 days (29.5%) had fine particle concentrations
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above the air quality standard. The proportions of above-standard fine particle concen-
trations for each of the four weather patterns were consistent with the weather pattern
proportions, and followed the decreasing order of low-pressure (87.5%), homogeneous-
pressure (52.8%), high-pressure rear (35.0%), and high-pressure bottom (25.2%) conditions.

Table 1. Cumulative occurrence of each of the four dominant weather patterns, number of days and
rate of fine particle concentrations exceeding the standard, and range of fine particle concentrations
exceeding the standard in Chengdu during autumn–winter in 2018–2022.

Weather Pattern
Cumulative
Occurrence

(Days)

Number of Days above
the PM2.5 Standard

(Days)

Occurrence Rate of PM2.5
Levels above the

Standard (%)

Range of PM2.5
Concentrations above
the Standard (µg/m3)

High-pressure rear 60 21 35.0 76–144

High-pressure bottom 377 95 25.2 76–186

Homogeneous pressure 36 19 52.8 76–131

Low pressure 8 7 87.5 77–155

In terms of the occurrence rate of above-standard fine particle concentrations, the
low-pressure pattern had the highest rate (87.5%), followed by the homogeneous-pressure
pattern (52.8%); by contrast, the high-pressure rear and bottom patterns had occurrence
rates below 50%. Under low-pressure and homogeneous-pressure conditions, Chengdu
experiences low pressures with relatively small pressure gradients; this results in weak wind
fields that limit the capacity for air pollutant diffusion. This explained the high occurrence
rates of above-standard fine particle concentrations under low-pressure and homogeneous-
pressure conditions. By contrast, under high-pressure bottom conditions, Chengdu is
governed by cold air from the north, which increases pressure gradients, strengthens wind
speeds, and enhances the diffusion capacity of air pollutants; thus, this weather pattern is
associated with the lowest rate of above-standard fine particle concentrations. Overall, fine
particle pollution is more likely to occur under low-pressure, homogeneous-pressure, and
high-pressure rear conditions than under high-pressure bottom conditions.

3.3. Forecast Accuracy for Objective Weather Classifications and Fine Particle Pollution
3.3.1. Forecast Accuracy for Objective Weather Classifications

Based on the objective synoptic weather classification using the fine particle concen-
trations provided by the CNEMC, we evaluated the 24, 48, and 72 h forecasts of the CMAQ
model for each weather pattern and fine particle concentrations. However, under the low-
pressure conditions, there is only 1 day with above-standard fine particle concentrations;
due to this low sample size, this pattern could not be further analyzed.

Under high-pressure bottom conditions, the R values between the forecasted and
monitored fine particle concentrations are 0.67, 0.66, and 0.55 for the 24, 48, and 72 h
forecasts, respectively (Table 2), which are greater than those under high-pressure rear
and homogeneous-pressure conditions. Overall, the correlations between monitored and
forecasted fine particle concentrations are greater for the 24 h forecast than for the 48 or
72 h forecasts.

To further evaluate the ability of the CMAQ model, we assessed the 24, 48, and 72 h
forecasts of daily fine particle concentrations in Chengdu categorized by AQI under each
weather pattern for the period of 1 November 2021 to 28 February 2022 (Figure 3). The
percentages of days with good, moderate, unhealthy for sensitive groups, unhealthy, and
very unhealthy are 23.3%, 51.7%, 19.2%, 5%, and 0.8%, respectively. Under high-pressure
bottom conditions, the CMAQ model most accurately forecasted good, moderate, unhealthy
for sensitive groups, and unhealthy AQIs for the 24 h forecast (R = 0.68, 0.65, 0.66, and
0.73, respectively), compared with the 48 and 72 h forecasts. Under high-pressure rear
conditions, the CMAQ model most accurately forecasted moderate AQIs for the 48 h
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forecast (R = 0.66) and unhealthy for sensitive groups AQIs for the 24 h forecast (R = 0.56).
Under homogeneous-pressure conditions, the CMAQ model most accurately forecasted
moderate AQIs for the 24 h forecast (R = 0.65); however, this weather pattern lasted only
1–2 days; otherwise, the AQIs were good or unhealthy. Modeling of homogeneous-pressure
conditions yields similar results with respect to unhealthy and unhealthy for sensitive
groups. Due to the small sample sizes, the forecast accuracies under high-pressure rear and
homogeneous-pressure conditions could not be further analyzed.

Table 2. Evaluation of the 24, 48, and 72 h forecasts of daily fine particle concentrations under each of
the four weather patterns, as well as the cumulative occurrence of each weather pattern, in Chengdu
from 1 November 2021 to 28 February 2022.

Weather Pattern Cumulative
Occurrence (Days)

Forecast
Duration

R Value of Predicted
PM2.5

High-pressure rear 10
24 h 0.65
48 h 0.65
72 h 0.54

High-pressure bottom 103
24 h 0.67
48 h 0.66
72 h 0.55

Homogeneous pressure 6
24 h 0.65
48 h 0.64
72 h 0.54

Low pressure 1
24 h -
48 h -
72 h -
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Figure 3. Evaluations of the 24, 48, and 72 h forecasts of daily fine particle concentrations in Chengdu
during the period of 1 November 2021 to 28 February 2022 under the four dominant weather patterns
( 1© high-pressure rear, 2© high-pressure bottom, 3© homogeneous pressure, and 4© low pressure)
based on the AQI: (a) good; (b) moderate; (c) unhealthy for sensitive groups; (d) unhealthy; and
(e) very unhealthy.



Toxics 2023, 11, 777 8 of 11

Overall, according to the AQI-based analysis, the model more accurately forecasted
fine particle concentrations under high-pressure bottom conditions than high-pressure
rear conditions. Moreover, 24 h forecasts were more accurate than 48 and 72 h forecasts.
However, the AQI-based forecasts under each weather pattern have discrepancies, possibly
resulting from our focus on daily pollution without accounting for pollution processes.
For instance, assuming that fine particles could not readily accumulate on the first day
of a weather pattern (i.e., a good AQI), the modeled air quality tends to deteriorate to
unhealthy for sensitive groups on the second day; however, this trend differs from the
observed results, which tend toward a moderate AQI on the second day. This difference
may be attributable to the accumulated fine particle concentrations in the CMAQ model.

3.3.2. Effects of Meteorological Factors on Fine Particle Forecast Accuracy

We examined the potential influence of hourly 2 m temperature, 2 m relative humidity,
and 10 m wind speed predictions on the prognostication of fine particle concentrations
within each weather pattern for 24, 48, and 72 h forecasts (Table 3). The 24 h forecasts of
2 m relative humidity (R = 0.64) and 10 m wind speed (R = 0.73) are more accurate under
high-pressure bottom conditions than high-pressure rear or homogeneous-pressure condi-
tions. However, no distinct differences are observed in the forecasts of 2 m temperature
among the weather patterns. Considering that the forecasts of daily fine particle concen-
trations are more accurate under high-pressure bottom conditions than high-pressure rear
or homogeneous-pressure conditions, 2 m relative humidity and 10 m wind speed likely
influence the forecasting of fine particle concentrations. Under all weather patterns, the
24 h forecasts of the investigated meteorological factors are better than the 48 and 72 h
forecasts, consistent with the fine particle concentration results.

Table 3. Evaluation of the 24, 48, and 72 h forecasts of temperature, relative humidity, and wind
speed for each of the four weather patterns, as well as the cumulative occurrence of each weather
pattern, in Chengdu from 1 November 2021 to 28 February 2022.

Weather Pattern
Cumulative
Occurrence

(Days)

Forecast
Duration

R Value of 2 m
Temperature

R Value of 2 m
Relative

Humidity

R Value of 10 m
Wind Speed

High-pressure rear 10
24 h 0.95 0.63 0.73
48 h 0.91 0.52 0.68
72 h 0.89 0.53 0.66

High-pressure bottom 103
24 h 0.95 0.64 0.73
48 h 0.92 0.51 0.67
72 h 0.89 0.50 0.65

Homogeneous pressure 6
24 h 0.95 0.63 0.72
48 h 0.91 0.50 0.67
72 h 0.89 0.50 0.66

Low pressure 1
24 h - - -
48 h - - -
72 h - - -

4. Conclusions

In the present study, we analyzed the forecasting accuracy of fine particle concentra-
tions in Chengdu during autumn–winter under four dominant weather patterns derived
from COST733 objective weather classifications and the CMAQ model. Our main conclu-
sions are summarized as follows.

During the autumn–winter period in Chengdu, fine particle pollution tends to occur
under high-pressure rear, homogenous-pressure, and low-pressure conditions, and does
not readily occur under high-pressure bottom conditions.
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The daily fine particle concentrations under high-pressure bottom conditions are better
forecasted in the 24 h forecast than in the 48 and 72 h forecasts. Similarly, the 24 h forecasts
are better than the 48 and 72 h forecasts under the other weather patterns.

The 24 h forecasts of 2 m relative humidity and 10 m wind speed are more accurate
under high-pressure bottom conditions compared to high-pressure rear and homogeneous-
pressure conditions. Whereas 2 m temperature has no impact on the forecasting of fine
particle concentrations, 2 m relative humidity and 10 m wind influence the fine particle
concentration forecasts. Under all weather patterns, the 24 h forecasts of the meteorological
factors are better than those of the 48 and 72 h forecasts, consistent with the fine particle
concentration forecasts.
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