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Abstract: In order to illustrate pollution characterization, source apportionment, and risk assessment
of VOCs in Beijing, Baoding, and Shanghai, field observations of CO, NO, NO2, O3, and volatile
organic compounds (VOCs) were conducted in 2019. Concentrations of VOCs were the highest in
Beijing (105.4 ± 52.1 ppb), followed by Baoding (97.1 ± 47.5 ppb) and Shanghai (91.1 ± 41.3 ppb).
Concentrations of VOCs were the highest in winter (120.3 ± 61.5 ppb) among the three seasons
tested, followed by summer (98.1 + 50.8 ppb) and autumn (75.5 + 33.4 ppb). Alkenes were the
most reactive VOC species in all cities, accounting for 56.0%, 53.7%, and 39.4% of ozone formation
potential in Beijing, Baoding, and Shanghai, respectively. Alkenes and aromatics were the reactive
species, particularly ethene, propene, 1,3,5-trimethylbenzene, and m/p-xylene. Vehicular exhaust
was the principal source in all three cities, accounting for 27.0%, 30.4%, and 23.3% of VOCs in Beijing,
Baoding, and Shanghai, respectively. Industrial manufacturing was the second largest source in
Baoding (23.6%) and Shanghai (21.3%), and solvent utilization was the second largest source in
Beijing (25.1%). The empirical kinetic modeling approach showed that O3 formation was limited
by both VOCs and nitric oxides at Fangshan (the suburban site) and by VOCs at Xuhui (the urban
site). Acrolein was the only substance with an average hazard quotient greater than 1, indicating
significant non-carcinogenic risk. In Beijing, 1,2-dibromoethane had an R-value of 1.1 × 10−4 and
posed a definite carcinogenic risk.

Keywords: VOCs; ozone; PSCF; source apportionment; EKMA; risk assessment

1. Introduction

In September 2013, the Chinese government implemented the Action Plan on Air Pol-
lution Prevention and Control, resulting in significant reductions in ambient concentrations
of CO, SO2, NO2, and fine particulate levels nationwide [1–3]. However, O3 pollution has
not decreased and appears to be worsening in China. The O3 concentration showed an
increasing trend of 1–3 ppbv/y from 2013 to 2017 in eastern China [4]. Volatile organic
compounds (VOCs) and nitrogen oxides (NOx) are the main precursors of O3. The relation-
ship between O3 and its precursors is highly nonlinear due to the complex photochemical
reactions that occur in the atmosphere [5–7]. Conditions for forming ground-level O3 can
be divided into VOC-limited, NOx-limited, and both VOC- and NOx-limited [8]. In most
developed areas of China, including the Yangtze River Delta, Jing-Jin-Ji, and Pearl River
Delta regions, O3 formation is reported to be VOC-limited [9–11]. Thus, controlling VOC
emissions is critical for reducing O3 pollution in China.

High concentrations of VOCs have adverse effects on public health by affecting the
respiratory and cardiovascular systems [12–16]. Previous studies showed that cancer
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risk is greater in high-VOC-exposure areas than in clean areas [17,18]. Hazardous VOCs,
including non-carcinogens and carcinogens, account for 20–40% of all non-methane VOCs
in China [19]. Many VOC species, including benzene and 1,3-Butadiene, are classified as
hazardous air pollutants by the United States Environmental Protection Agency (USEPA)
and other international agencies [20–23].

The Beijing–Tianjin–Hebei (BTH) and Yangtze River Delta (YRD) regions are two
of the largest urban agglomerations in China. Numerous studies of VOCs have been
performed in BTH and YRD. Several studies have examined the general characteristics of
VOCs and discussed their spatiotemporal variations [24–28]. Other studies have focused
on the relative reactivity and ozone formation potential (OFP) of VOCs [29–32]. Several
studies have aimed to reveal the health effects of VOCs [33–38]. Additionally, the emission
inventory [39], regional transport [36,40–42], and source apportionment [26,43–46] of VOCs
have been discussed.

Beijing, the capital of China, and Baoding, one of the most air-polluted cities, are both
located in the BTH region. Shanghai is one of the most economically developed cities in
the YRD and has relatively concentrated energy consumption and pollutant emissions.
Most previous studies have been limited to a small number of sampling locations or a
short sampling period. In this study, field observations of CO, NO, NO2, O3, and VOCs
were conducted in these three megacities. The main objectives of this study were to:
(1) characterize the concentrations and spatiotemporal variations of VOCs; (2) discuss the
regional transport and source apportionment of VOCs; (3) determine the roles of VOCs
in ground-level O3 formation; (4) estimate the carcinogenic and non-carcinogenic risks of
VOCs; and (5) identify the key hazardous VOCs in the three cities.

2. Methodology
2.1. Sampling Site and Period

Ten sites in the three cities were selected for this study, among which four were in
Beijing, three were in Baoding, and three were in Shanghai (Figure 1). The sampling sites
in each city included a background site, an urban site, and a suburban site. A continuous 2-
week period in each of the four seasons was selected. However, due to the COVID-19 crisis,
sampling in the spring was terminated. Thus, the sampling periods were 15–28 August in
the summer, 13–26 October in the autumn, and 18–31 December in the winter of 2019.
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Periodic calibration was performed every 5 d. Calibration curve results for a given target 
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2.2. Sampling and Analysis

CO, NO, NO2, and O3 were observed using a sensor-based air monitoring instrument
developed by the Chinese Research Academy of Environmental Sciences. This instrument
passed an intercomparison assessment with an instrument produced by TSI Corporations.
The correlation coefficient was 0.92, and the two instruments’ relative error was 8%. VOCs
were sampled at 16:00 at each site using a 3.2-L Summa canister (Entech Instruments Inc.,
Simi Valley, CA, USA). In total, 99 VOCs were observed, including 29 alkanes, 13 alkenes,
1 alkyne (acetylene), 16 aromatics, 32 haloalkanes, and 8 oxygenated VOCs (OVOCs).
VOC samples were analyzed using the Agilent 5973N gas chromatography–mass selective
detector flame ionization detector (Agilent Technologies, Santa Clara, CA, USA). A liquid
nitrogen primary cryogenic trap with glass beads at −160 ◦C was used to trap VOCs. Then,
the trap was heated to 10 ◦C, and target compounds were transferred to a secondary trap
at −50 ◦C. Next, the VOCs were transferred using helium to a third trap at −170 ◦C. A
DB-1 capillary column (60 m × 0.32 mm × 1.0 µm, Agilent Inc.) was used with helium as
the carrier gas. Rigorous quality assurance and quality control procedures were employed.
Periodic calibration was performed every 5 d. Calibration curve results for a given target
species with less than 10% variation relative to the actual values were considered acceptable.
Meteorological data were obtained from the China Meteorological Station Data Sharing
Service System (http://cdc.cma.gov.cn/home.do, accessed on 5 January 2021).

2.3. Determination of the Ozone Formation Potential

The OFP can be used to characterize the maximum amount of O3 production possible
from a given VOC species alone under optimal conditions. The key compounds responsible
for O3 formation can be determined from the respective OFPs [38]. The OFPs are calculated
based on the maximum incremental reactivity (MIR) of each individual species and given
by the following equation:

OFPi = VOCsi ×MIRi (1)

where OFPi is the OFP of VOC species i, VOCsi is the concentration of VOC species i,
and MIRi is the O3 formation coefficient for VOC species i at the maximum incremental
reactivity of O3 [47].

2.4. Positive Matrix Factorization Receptor Model

The sources of PM2.5 were analyzed using the positive matrix factorization (PMF)
receptor model. First, the error associated with the chemical component weights of the
receptor was determined. Then, the main sources of contamination and their contribution
ratios were determined using the least squares method. PMF is a type of multivariate
factor analysis in which a mathematical method decomposes matrix X containing sample
data for a given species into two matrices: factor contributions (G) and factor spectra
(F). This method does not require the input of a source spectrum and ensures that the
decomposition factor contribution (G) and factor spectrum (F) are non-negative [48]. The
following formula represents the matrix X:

xij = ∑p
k=1 gik fkj + eij (2)

where xij is the concentration of species j in sample i, p is the number of factors, gik is the
contribution of factor k to sample i, fkj is the contribution of factor k to species j, and eij is
the error of species j in sample i.

The uncertainty of a sample was calculated from the error fraction and the method
detection limit (MDL). If the concentration was unknown, it was set to 1/2 of the geometric
mean value. If the concentration was below the MDL, it was set to 1/2 of the MDL, and the
uncertainty was set to 5/6 of the MDL. If the concentration was higher than the MDL, the
uncertainty calculation was based on the error fraction as follows:

Unc =
√
(Error Fraction× concentration)2 + (0.5×MDL)2 (3)

http://cdc.cma.gov.cn/home.do
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The PMF analysis depends on the objective function (Q) to minimize the residual and
uncertainty, as shown in Equation (4). The calculation of Qexp is shown in Equation (5).

Q = ∑n
i=1 ∑m

j=1

[
xij −∑

p
k=1 gik × fkj

uij

]2

(4)

Qexp = n×m− p× (n + m) (5)

where n and m are the numbers of species and samples, respectively, and uij is the uncer-
tainty of the jth species in the ith sample.

Several aspects were considered to define a reasonable result (Liu et al., 2021) [22]:
(1) the value of Q/Qexp from PMF should be close to one; (2) the change rate of Q/Qexp
should be stable; and (3) the explored factors should be physically plausible and inter-
pretable. Ultimately, a five-factor solution was determined in this study. The Q/Qexp values
were 1.3, 1.4, and 1.4 for Beijing, Baoding, and Shanghai, respectively.

2.5. Potential Source Contribution Function

The potential source contribution function (PSCF) was employed in this study using
the software Meteoinfo (3.6.3) to identify the local and long-range transport pathways of
VOCs. The PSCF is a backward-trajectory-based method that combines pollutant concen-
trations, reflecting the potential for this area to become a source of VOC pollution [49]. The
PSCF is a position function defined by unit indexes i and j:

PSCFij =
mij

nij
Wij (6)

where nij is the number of trajectory endpoints that fall within the ijth grid cell, mij is the
number of endpoints corresponding to trajectories that exceed the threshold criterion at the
receptor site [50], and ij is the grid cell. The arbitrary weighting function Wij was applied
to reduce the uncertainty caused by small values of nij:

Wij =


0.70 3nave > nij ≥ 1.5nave
0.42 1.5nave > nij ≥ nave

0.05 nave > nij

(7)

where nave is the average value of the endpoints of the trajectory through all the grids.
In this study, the nave was 1.33, 1.31, and 1.19 for Fangshan, Jiading, and Jingxiu sites,
respectively. In this study, the 24-h backward trajectory was calculated at 1-h intervals
according to Beijing local time (UTC + 8). The arrival height was set to 100 m above the
ground. Meteorological data were obtained from the National Oceanic and Atmospheric
Administration (ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas0p5/, accessed on 6 Jan-
uary 2021) with a grid resolution of 0.25◦ × 0.25◦. The threshold value was the average
VOC concentration during the observation (Beijing 105.4 ppb, Baoding 97.1 ppb, Shanghai
91.1 ppb). The total number of trajectories was 1008 at each site.

2.6. Observation-Based Model

The observation-based model (OBM) was used in this study in combination with the
Master Chemical Mechanism (v3.3.1; http://mcm.leeds.ac.uk/MCM/, accessed on 10 Jan-
uary 2021), a near-explicit mechanism describing the oxidation reactions of 146 primary
VOCs and the latest inorganic chemistry data from the International Union of Pure and
Applied Chemistry evaluation [51]. The OBM has been widely used to identify photo-
chemical reactivity and photochemical products in various environments [52]. Hourly
concentrations of the observed VOCs and four trace gases (CO, NO, NO2, and SO2) and
hourly meteorological parameters (temperature and relative humidity) were used as input
data. The instantaneous concentration of VOCs was converted to hourly concentrations

ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas0p5/
http://mcm.leeds.ac.uk/MCM/


Toxics 2023, 11, 651 5 of 17

according to the linear regressions with CO, following the method by Yang et al. [53]. The
OBM assesses the sensitivity of O3 photochemical production by calculating the relative
incremental reactivity and altering the concentrations of its precursors without requiring
detailed or accurate knowledge about these emissions [54]:

RIR(X) =

[
PO3(X)− PO3(X−4X)

]
/PO3(X)

4S(X)/S(X)
(8)

where X is a precursor of O3, ∆X is the change in the concentration of X, P(O3) represents the
net O3 production rate, S(X) is the measured concentration of precursor X, and ∆S(X)/S(X)
represents the relative change in S(X), which was 20% in this study.

2.7. Human Health Risk Assessment

The USEPA proposed a method that uses the ambient mass concentration of air
pollutants as an exposure evaluation parameter. The health risk of VOCs is divided into
non-carcinogenic and carcinogenic risks, which are represented by the hazard quotient
(HQ) and the lifetime carcinogenic risk (R), respectively [55]. An HQ less than 1 indicates
no significant non-carcinogenic risk for adults, and an R-value less than 1 × 10−6 suggests
an acceptable carcinogenic risk [38]. The specific calculation is shown in the Supplemental
Material File.

3. Results and Discussion
3.1. Chemical Characteristics of Volatile Organic Compounds

The concentrations of VOCs were the highest in winter (120.3 ± 61.5 ppb) among the
three seasons assessed, followed by summer (98.1± 50.8 ppb) and autumn (75.5± 33.4 ppb),
as shown in Figure 2. However, total VOCs were similar in the winter. In Baoding, VOC
concentrations in the winter were significantly higher than those in the summer and
autumn. VOC concentrations in the winter were 1.9 times those in the summer in Baoding.
Baoding is a city of heavy industry, and the increase in industrial and heating emissions in
the winter has led to an increase in VOC concentrations. VOC concentrations in the winter
were close to those in the summer in Beijing and Shanghai. High temperatures and high
solar radiation lead to higher solvent volatilization and plant-related VOC emissions in the
summer. VOC concentrations in the autumn were the lowest of the three seasons.

Toxics 2023, 11, 651 6 of 19 
 

 

winter were close to those in the summer in Beijing and Shanghai. High temperatures and 
high solar radiation lead to higher solvent volatilization and plant-related VOC emissions 
in the summer. VOC concentrations in the autumn were the lowest of the three seasons. 

 
Figure 2. Concentrations and chemical characteristics of VOCs in different seasons during the ob-
servation period. 

Alkanes were the dominant VOC species in all seasons, especially winter, exceeding 
40% of the total (see Figure 3). The concentrations of haloalkanes were the second highest, 
and their proportion among the other VOCs decreased in the winter. The concentrations 
of alkenes were highest in the summer, and those of OVOCs and aromatics were highest 
in the autumn. The concentration of alkenes was higher in Beijing, and that of OVOCs was 
higher in Shanghai. The aromatic concentrations were at similar proportions in all three 
cities. VOC concentrations were highest in Beijing (105.4 ± 52.1 ppb), followed by Baoding 
(97.1 ± 47.5 ppb) and Shanghai (91.1 ± 41.3 ppb). The VOC concentrations in Beijing were 
1.09 and 1.16 times those in Baoding and Shanghai, respectively. There were few differ-
ences in VOC concentrations throughout the year among the three cities. The differences 
in VOCs among cities were related to air pollutant emissions, sampling locations, and 
meteorological conditions. 

Table 1 provides a comparison of the monitoring results from this study with previ-
ous observations of VOC species. The ethane, ethylene, propane, and acetylene concentra-
tions in Shanghai were higher than those in previous reports. The concentrations of tolu-
ene and benzene in Shanghai were lower, and those of ethane and propane in Beijing were 
higher than those in previous studies. The ethylene, acetylene, and toluene concentrations 
in Beijing are similar to previously reported levels. The concentrations of VOC species in 
Baoding were higher than those in previous studies. Although the COVID-19 pandemic 
lockdown had a certain influence on industrial production in China, the concentration of 
VOC species did not show an obvious decreasing trend. 

Figure 2. Concentrations and chemical characteristics of VOCs in different seasons during the
observation period.



Toxics 2023, 11, 651 6 of 17

Alkanes were the dominant VOC species in all seasons, especially winter, exceeding
40% of the total (see Figure 3). The concentrations of haloalkanes were the second highest,
and their proportion among the other VOCs decreased in the winter. The concentrations
of alkenes were highest in the summer, and those of OVOCs and aromatics were highest
in the autumn. The concentration of alkenes was higher in Beijing, and that of OVOCs
was higher in Shanghai. The aromatic concentrations were at similar proportions in all
three cities. VOC concentrations were highest in Beijing (105.4 ± 52.1 ppb), followed
by Baoding (97.1 ± 47.5 ppb) and Shanghai (91.1 ± 41.3 ppb). The VOC concentrations
in Beijing were 1.09 and 1.16 times those in Baoding and Shanghai, respectively. There
were few differences in VOC concentrations throughout the year among the three cities.
The differences in VOCs among cities were related to air pollutant emissions, sampling
locations, and meteorological conditions.
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Figure 3. Chemical characteristics of VOCs observed in the three cities.

Table 1 provides a comparison of the monitoring results from this study with previous
observations of VOC species. The ethane, ethylene, propane, and acetylene concentrations
in Shanghai were higher than those in previous reports. The concentrations of toluene
and benzene in Shanghai were lower, and those of ethane and propane in Beijing were
higher than those in previous studies. The ethylene, acetylene, and toluene concentrations
in Beijing are similar to previously reported levels. The concentrations of VOC species in
Baoding were higher than those in previous studies. Although the COVID-19 pandemic
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lockdown had a certain influence on industrial production in China, the concentration of
VOC species did not show an obvious decreasing trend.

Table 1. Comparison of the monitoring results for VOC species between the present study and
previous reports.

Reference Sampling Period Sampling
Site

Site
Category

Monitoring
Method Ethane Ethylene Propane Acetylene Toluene Benzene

Dai et al. (2010) [33] 2007–2010 Shanghai Urban Manual — — 4.81 — 4.70 1.81
Zheng et al. (2019) [56] Autumn 2016 Shanghai Urban Online 2.22 1.52 3.59 1.17 5.04 0.70
Zheng et al. (2019) [56] Autumn 2016 Shanghai Suburban Online 3.01 0.99 4.22 0.03 0.96 0.44
Zhang et al. (2020) [7] 7 April to 25 September 2018 Shanghai Suburban Online 1.26 1.56 2.93 0.73 1.87 —
This study Summer to Winter 2019 Shanghai Urban Manual 5.98 2.60 6.87 2.89 2.28 0.93
Zhang et al. (2020) [7] Autumn 2016 Beijing Urban Online 3.42 2.13 2.85 0.68 2.00 4.74
Zhang et al. (2020) [7] Winter 2016 Beijing Urban Online 4.60 2.43 6.70 0.26 1.82 6.04
Zhang et al. (2020) [7] Spring 2017 Beijing Urban Online 1.93 0.59 2.33 0.51 1.17 5.41
Zhang et al. (2020) [7] Summer 2017 Beijing Urban Online 2.33 0.57 2.65 0.90 1.34 6.99
Shi et al. (2020) [39] December 2016 to January 2017 Beijing Urban Online — 12.07 — 8.98 3.63 3.27
This study Summer to Winter 2019 Beijing Urban Manual 7.37 2.59 7.21 2.27 1.81 1.14
Wang et al. (2021) [28] May to September 2019 Baoding Urban Online 3.98 1.51 2.19 0.37 0.58 0.31
This study Summer to Winter 2019 Baoding Urban Manual 5.01 2.16 5.85 2.27 2.61 1.94

3.2. The Ozone Formation Potential of Volatile Organic Compounds

The OFP values of VOC species at the sampling sites were calculated (see Figure 4).
Both VOCs and VOC OFP were at their maximum in Beijing. The concentrations of VOCs
in Baoding and Shanghai were similar, but the OFP values were significantly lower in
Shanghai than in Baoding. Alkenes were the most reactive species of VOCs in all cities,
accounting for 56.0%, 53.7%, and 39.4% of the OFP in Beijing, Baoding, and Shanghai,
respectively. Aromatics were the second most reactive species of VOCs, accounting for
20.7%, 21.0%, and 28.3% of the OFP in Beijing, Baoding, and Shanghai, respectively.
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Notably, the OFP values of VOCs at Fangshan, a suburban site near a petrochemical
plant, were the highest in Beijing. The OFP of VOCs at the urban Jingxiu site were the
highest in Baoding. The OFPs of VOCs at Jiading, a background site, were the highest
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among sites in Shanghai. The top 10 VOC species with regard to OFP were identified and
are shown in Table 2. The most reactive species were alkenes and aromatics, particularly
ethene, propene, 1,3,5-trimethylbenzene, and m/p-xylene. The emission sources of these
species should be strictly controlled.

Table 2. Top 10 VOC species with the highest OFP values in the three cities.

Cities VOCs OFP

Beijing

Ethene 32.6
Trans-2-butene 29.5

1-Butene 18.8
Propene 18.4

Cis-2-butene 17.4
1,3,5-Trimethylbenzene 13.3

1-Pentene 13.1
Isoprene 12.2
1-Hexene 10.2

m/p-xylene 9.7

Baoding

Ethene 26.5
Cis-2-pentene 16.4
1,3-Butadiene 16.1

Propene 15.1
Trans-2-butene 14.0

1-Pentene 11.6
Toluene 11.3

m/p-xylene 9.1
1,3,5-Trimethylbenzene 8.6

1-Butene 7.8

Shanghai

Ethene 24.6
m/p-xylene 12.7

Propene 12.4
Toluene 9.9

Cis-2-pentene 8.0
1-Pentene 7.5
Acrolein 7.1

1,2,3-Trimethylbenzene 6.9
1-Hexene 6.4
O-xylene 5.9

3.3. Potential Source Areas of Volatile Organic Compounds

The Fangshan, Jingxiu, and Jiading sites were selected for source area analysis due to
their high VOC concentrations and OFP values. The potential source areas of VOCs for
the three cities were simulated, as shown in Figure 5. Three main potential source areas
of VOCs for Fangshan were identified: the southeast region along the border of Beijing,
Tianjin, and Hebei; the southwest region along the Taihang Mountains; and the western
region. Two main potential source areas of VOCs were identified for Jingxiu: the northeast
region near Beijing and the southeast region in Hebei. The potential source areas of VOCs
for Jiading were located around the site and at sea. VOCs can be transported to and from
the sea via airflow and ship emissions.

3.4. Source Apportionment of Volatile Organic Compounds

We did not analyze species with a concentration below the MDL more than 50% of the
time or with a significantly low signal-to-noise ratio [2,12]. After screening, 53 compounds
in Beijing and Baoding and 47 compounds in Shanghai were selected. Five sources (vehicu-
lar exhaust, industrial manufacturing, solvent utilization, fuel combustion, and biogenic
VOCs) were identified using the PMF model. Modeled source profiles and the relative
contributions of individual sources to each species analyzed are shown in Figure 6.
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In the source profiles for Beijing, the first source was characterized by significant
amounts of methyl cyclopentane, n-undecane toluene, and 2-butanone, which are repre-
sentative of industrial manufacturing [57]. The second source was characterized by high
concentrations of carbon tetrachloride, tetrachloroethylene, and acetone, which are widely
used as solvents [58]. The third source was associated with high concentrations of acetylene
and alkane, such as isopentane, n-octane, and n-dodecane, which are major species in
vehicular emissions [59]. The fourth source profile was rich in 1-butene, propane, and
2-methylhexane, tracers of fuel combustion [60]. The fifth source represented 97% of the
total isoprene, considered the most important biogenic hydrocarbon [61].

In the source profiles for Baoding, the first source was characterized by a high concen-
tration of isoprene(biogenic). The second source was characterized by significant amounts
of 3-methylpentane, trans-2-butene, and 1-butene, which are representative of fuel combus-
tion. The third source was associated with high concentrations of 1,2,4-trichlorobenzene
and acetone, widely used as solvents. The fourth source profile was rich in benzene, toluene,
n-undecane, and n-nonane, major species emitted from industrial manufacturing. The
fifth source was characterized by high concentrations of acetylene, propane, and propene,
tracers of vehicular exhaust.

In the source profiles for Shanghai, the first source was characterized by significant
amounts of acetone, n-propyl benzene, and tetrachloroethylene, which are widely used as
solvents. The second source profile was rich in dichloromethane, trichloromethane, toluene,
and n-dodecane, major species emitted from industrial manufacturing. The third source
represented 92% of the total isoprene, considered the most important biogenic hydrocarbon.
The fourth source was characterized by high concentrations of 1-butene and 1-hexene,
which are representative of fuel combustion. The fifth source was associated with high
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concentrations of methyl tertiary butyl ether, ethene, and ethane, major species emitted in
vehicular exhaust.
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Figure 7 illustrates the percentage source contributions during the sampling period in
the three cities. Vehicular exhaust was the largest contributor in all three cities, accounting
for 27.0%, 30.4%, and 23.3% of VOCs in Beijing, Baoding, and Shanghai, respectively. Indus-
trial manufacturing was the second largest contributor in Baoding (23.6%) and Shanghai
(21.3%), and solvent utilization was the second largest contributor in Beijing (25.1%). Fuel
combustion was the third largest contributor in Beijing (23.2%) and Shanghai (20.7%), and
solvent utilization was the third largest contributor in Baoding (20.0%). Biogenic sources
of VOCs were also important, accounting for 11.5%, 11.9%, and 18.1% of VOCs in Beijing,
Baoding, and Shanghai, respectively.
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3.5. Empirical Kinetic Modeling Approach

Meteorological data for the Fangshan and Xuhui sites were obtained from the China
Meteorological Station Data Sharing Service System. Thus, the empirical kinetic modeling
approach (EKMA) curves for those two sites in the summer period were simulated using
the OBM model, as shown in Figure 8. During the sampling period in summer, the average
temperature and relative humidity were 30.4 ◦C and 60% in Fangshan and 31.5 ◦C and
71% in Xuhui. The EKMA plot was split into two areas by a ridgeline denoting the local
maxima in the rate of O3 formation. The upper–left and lower–right areas represent O3
formation under VOC-limited and NOx-limited conditions, respectively. The base scenario
point for the Fangshan site is located near the ridgeline, indicating a VOCs- and NOx-



Toxics 2023, 11, 651 12 of 17

limited condition. The base scenario point for the Xuhui site is located in the upper-left
area, indicating VOCs limitation. Fangshan is a suburban site, and Xuhui is an urban
site. Previous studies have reported that urban and suburban areas in China were under
VOC-limited and both VOC- and NOx-limited conditions [8,62], respectively.
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3.6. Health Risk Assessment of Volatile Organic Compounds

Forty-four species were targeted for health risk assessment, and their non-carcinogenic
and carcinogenic risks are presented in Figure 9. The USEPA states that pollutants with
an HQ of less than 1 pose no significant non-carcinogenic risk to adults. In this study, the
average HQ values of the selected VOC species ranged from 5.3 × 10−6 to 16.9 × 10−6 in
Beijing, 4.8 × 10−6 to 8.9 × 10−6 in Baoding, and 8.8 × 10−6 to 18.3 × 10−6 in Shanghai.
Acrolein was the only substance with an average HQ value greater than 1, indicating
significant non-carcinogenic risk. VOC species with carcinogenic risks of >10−4, 10−5 to
10−4, 10−5 to 10−6, and <10−6 are classified as definite, probable, possible, and negligible
risks, respectively [63]. In this study, the average R-value for the selected VOC species
ranged from 4.7 × 10−9 to 1.1 × 10−4 in Beijing, from 6.7 × 10−9 to 6.2 × 10−5 in Baoding,
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and from 3.9 × 10−9 to 7.9 × 10−5 in Shanghai. In Beijing, 1,2-dibromoethane had an
R-value of 1.1 × 10−4, posing a definite carcinogenic risk. Five, seven, and six VOC
species posed probable carcinogenic risks in Beijing, Baoding, and Shanghai, respectively.
Six, four, and six VOC species posed possible carcinogenic risks in Beijing, Baoding, and
Shanghai, respectively. Among these species, hexachloro-1,3-butadiene, trichloromethane,
1,2-dichloroethane, and carbon tetrachloride posed high carcinogenic risks in all three cities.
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4. Conclusions

In this study, field observations of CO, NO, NO2, O3, and VOCs were conducted in
three megacities in China: Beijing, Baoding, and Shanghai. VOC concentrations were
highest in Beijing (105.4 ± 52.1 ppb), followed by Baoding (97.1 ± 47.5 ppb) and Shanghai
(91.1 ± 41.3 ppb). VOC concentrations were highest in winter (120.3 ± 61.5 ppb) among the
three seasons assessed, followed by summer (98.1± 50.8 ppb) and autumn (75.5± 33.4 ppb).
Alkanes were the dominant species in all three cities, with concentrations exceeding 40%.

Alkenes were the most reactive VOC species in all three cities, accounting for 56.0%,
53.7%, and 39.4% of the OFP in Beijing, Baoding, and Shanghai, respectively. Aromatics were
the second most reactive VOC species in all cities, accounting for 20.7%, 21.0%, and 28.3% of
the OFP in Beijing, Baoding, and Shanghai, respectively. Most reactive species were alkenes
and aromatics, particularly ethene, propene, 1,3,5-trimethylbenzene, and m/p-xylene.

Vehicular exhaust was the largest VOC source in all three cities, accounting for 27.0%,
30.4%, and 23.3% of VOCs in Beijing, Baoding, and Shanghai, respectively. Industrial
manufacturing was the second largest contributor in Baoding (23.6%) and Shanghai (21.3%),
and solvent utilization was the second largest contributor in Beijing (25.1%). Biogenic VOCs
were also important, accounting for 11.5%, 11.9%, and 18.1% of VOCs in Beijing, Baoding,
and Shanghai, respectively.

The EKMA approach indicated that O3 formation at the Fangshan site was limited
by both VOCs and NOx, while that at the Xuhui site was limited by VOCs. Acrolein
was the only substance with an average HQ value greater than 1, indicating a significant
non-carcinogenic risk. In Beijing, 1,2-dibromoethane had an R-value of 1.1 × 10−4, posing a
definite carcinogenic risk. Hexachloro-1,3-butadiene, trichloromethane, 1,2-dichloroethane,
and carbon tetrachloride posed high carcinogenic risks in all three cities.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxics11080651/s1, Table S1: RfC and IUR values of selected VOC
species in this study [64].
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