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Abstract: This study investigated whether the coadministration of vitamin E (VitE) diminishes the
harmful effects provoked by plasticizer bisphenol S (BPS) in the serum metabolites related to hepatic
and renal metabolism, as well as the endocrine pancreatic function in diabetic male Wistar rats.
Rats were divided into five groups (n = 5–6); the first group was healthy rats (Ctrl group). The
other four groups were diabetic rats induced with 45 mg/kg bw of streptozotocin: Ctrl-D (diabetic
control); VitE-D (100 mg/kg bw/d of VitE); BPS-D (100 mg/kg bw/d of BPS); The animals from
the VitE + BPS-D group were administered 100 mg/kg bw/d of VitE + 100 mg/kg bw/d of BPS.
All compounds were administered orally for 30 days. Body weight, biochemical assays, urinalysis,
glucose tolerance test, pancreas histopathology, proximate chemical analysis in feces, and the activity
of antioxidants in rat serum were assessed. The coadministration of VitE + BPS produced weight
losses, increases in 14 serum analytes, and degeneration in the pancreas. Therefore, the VitE + BPS
coadministration did not have a protective effect versus the harmful impact of BPS or the diabetic
metabolic state; on the contrary, it partially aggravated the damage produced by the BPS. VitE is
likely to have an additive effect on the toxicity of BPS.

Keywords: bisphenol S; endocrine-disrupting compounds; diabetic rats; vitamin E; biochemistry

1. Introduction

Bisphenol A (BPA) is an established endocrine disrupting (ED) compound used in
the manufacture of polycarbonate plastics and epoxide resins [1]. The adverse effects of
BPA are most often induced by oxidative stress and the dynamic balance of enzymatic
antioxidants, in addition to the classical genomic and non-genomic mechanisms [2–4].
In recent years, BPA has been subject to more stringent regulations from international
government organizations. As a result, the industry has increased the use of alternatives,
such as bisphenol S (BPS), the primary alternative to BPA [5,6].
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The annual BPS manufacture or import rate was 1000 to 10,000 tons in the ECHA report
in 2015 [7]. BPS was detected as the second most frequent compound after BPA in food
samples from the United States [8]. Additionally, BPS has been detected in Chinese river
water and sediments [9,10]. In 2015, the presence of BPS was determined in surface water
samples from China, India, Japan, and Korea [11]. Since BPS is found in the environment
and is produced in quantities of thousands of tons, BPS can be considered omnipresent in
the global environment.

Recent studies have shown that BPS alters serum metabolites, organ weights, and
reproductive endpoints; moreover, it acts as an obesogen and has a potency of hormonal
activities in the same order of magnitude and of similar action as BPA [12,13]. It has been
reported that the toxicity of bisphenols may be exacerbated by a poor diet, metabolic
disorders such as diabetes mellitus (DM), and coexisting diseases [14]. In addition, BPS
modulates type 1 DM (T1DM) development [15]. However, much remains unknown about
BPS’ potential toxicities, including its effect on T1DM.

According to the International Diabetes Federation Atlas, about 415 million people
were estimated to have DM globally in 2015. That total has been projected to increase to
642 million by 2040 [16]. T1DM is an autoimmune disease characterized by pancreatic
β-cell destruction and has been growing in incidence globally [17]. Genetic, nutritional,
and environmental factors are known to be associated with the development of T1DM,
including exposure to environmental obesogens [18].

Since the harmful effects of bisphenols as ubiquitous compounds are of great impor-
tance for human health, efforts have been made to propose alternatives to counteract or
reduce the consequences of their exposure, such as the use of chitosan [19], micronutri-
ents [20,21], and plants or extracts of these with antioxidant properties [22–24], as well as
vitamins E (VitE), C and B [25–27].

Vitamins, like VitE, protect the cell membrane from oxidation and have potent cholesterol-
lowering and antioxidant properties [28,29]. Although results about the effects of VitE in
DM models are not conclusive, it has been reported that oral administration of VitE for
three weeks reduced blood glucose levels in experimental T1DM Wistar rats [30]. Moreover,
supplementation with antioxidants, such as VitE, may also benefit diabetic patients [31].

The protective effect of VitE on the toxicity produced by administering BPA has
presented favorable results. In Wistar rats, 200 mg/kg body weight (bw) of VitE protected
the muscle tissue and blood cells from changes in biochemical parameters and antioxidant
imbalance produced by 20 mg/kg bw of BPA [32]. Male rats treated with 1000 mg/kg of
VitE for five weeks also showed similar results [33]. Thus, their use as a compound that
attenuates the harmful effects of BPS could be promising. Consequently, the study of VitE
as a protector from the damaging effects produced by BPS in a DM model is of interest.

Worldwide, the number of people that suffer from DM is rapidly increasing. Since
ubiquitous exposure to bisphenols can exacerbate the pathogenesis of the disease, this arti-
cle aimed to investigate whether exposure to VitE can reduce the harmful effects produced
by BPS in diabetic rats on the structure and function of the pancreas, activity of antioxi-
dant enzymes, absorption of nutrients, and liver and kidney function using biochemical
assessment, the area under the curve (AUC) as a glucose tolerance index, and proximate
chemical analysis (PCA) in stools. To our knowledge, this is the first study to evaluate the
effects of coadministration of VitE with BPS in a male rat diabetic model.

Contrary to what we expected, the results obtained in this trial suggest that coadmin-
istration of 100 mg/kg bw/d of VitE with 100 mg/kg bw/d of BPS for 30 days aggravates
the damage induced by BPS to the diabetic metabolic state.

2. Materials and Methods
2.1. Chemicals

Bisphenol S (BPS; Sigma-Aldrich Inc., Toluca, Mexico, CAS No. 80-09-1; purity of
99%); BPS was dissolved in olive oil Merainsa® without antioxidants (vehicle) purchased
from local commercial sources. VitE (α-tocopherol; Sigma-Aldrich Inc., Mexico, CAS



Toxics 2023, 11, 626 3 of 24

No. 10191-41-0; purity of 100%). Streptozotocin (STZ; Sigma-Aldrich Inc., Mexico, CAS
No. 18883-66-4; purity of ≥95% by HPLC). The name and references (brand, catalog num-
ber, lot, expiration) are shown in Table 1.

Table 1. Information on kits used for biochemical assays.

Brand Name Catalog
Number Lot Expiration

SEKISUI
Diagnostics®

Albumin 200-05 59489 29 February 2024
ALT 318-30 61318 11 February 2023
AST 319-10 60989 8 April 2023
BUN 283-30 61232 31 July 2023

Creatinine 221-30 58181 31 August 2023
HDL-c 1001-80 59195 27 January 2023
LDL-c 1014-80 58142 6 October 2022

Total protein 200-55 61229 30 November 2024

SYNER-MED® Total bilirubin IR701 242105 24 May 2023
ALT: alanine aminotransferase, AST: aspartate aminotransferase, BUN: blood urea nitrogen, HDL-c: high-density
lipoprotein cholesterol, LDL-c: low-density lipoprotein cholesterol.

2.2. Experimental Design

A completely blind, randomized experiment with repeated measures over time was
performed. The male rats were divided into five groups (n = 5–6) as follows (Figure 1).
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Twenty-six male Wistar rats weighing 250–300 g from the Animal Facility of the
Cell Physiology Institute of the National Autonomous University of Mexico (UNAM) in
Mexico City were used. The Institutional Committee for the Care and Use of Labora-
tory Animals, Faculty of Chemistry, UNAM, Mexico, approved the experimental proce-
dures for the Care and Use of Experimental Animals in the present article (Trade number:
FQ/CICUAL/467/22). Also, all experimental methods were designed according to Mexi-
can legislation NOM-062-ZOO-1999. All animals were housed in polycarbonate cages with
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stainless steel covers in a controlled temperature room at 20 ◦C (12 h light/dark cycle and
relative humidity of 50 ± 10%). The animals remained for 14 days in acclimatization before
the beginning of the experiment. Throughout the experiment, rats had free access to water
and pellet laboratory chow BIO-DIETA-LAB 7300 (ABENE®, Atizapán de Zaragoza, Estado
de México, Mexico). Guaranteed analysis: Raw protein, 23.5% min; Crude fat, 6% min; Raw
fiber, 4% max; Ash, 8% max; Humidity, 12% max; Nitrogen free extract (NFE), 46.5%.

Diabetes was induced with an intraperitoneal injection of 45 mg/kg bw of streptozo-
tocin (STZ). To confirm the diagnosis of diabetes, rats were checked 1 and 2 days after drug
administration by measuring blood glucose with a commercial glucometer (OneTouch®

ultra mini-Johnson & Johnson, Milpitas, CA, USA) and test strips (OneTouch® mini) after
4 h of fasting. Rats with values above 200 mg/dL glucose were considered diabetic. We
started BPS and/or VitE administration 7 days after the streptozotocin (STZ) injection to
ensure all rats treated with STZ were diabetic. All animals were weighed weekly in the
first 3 weeks and on day 30. Doses were administered orally daily for 30 days between
9:00 and 11:00 a.m. In the VitE-BPS-D group, VitE was administered 30 min before BPS
administration.

The dose of 100 mg/kg bw/d of BPS used in this study was chosen based on re-
sults from our group, in which we observed that this dose produced harmful effects in
reproductive variables in Wistar rats in a chronic administration for 15 weeks (work in
progress). Additionally, BPS administered to adult male Sprague Dawley rats increased
serum glucose, total cholesterol, and triglycerides with 30, 60, and 120 mg/kg bw/daily
for 30 days [34]. Also, 100 mg/kg bw/d of VitE protected against alterations produced by
bisphenols in antioxidant enzymes and liver damage [35,36]. Moreover, it improved blood
urea and creatinine levels and increased antioxidant enzyme activities in the kidney [37].

Stools for the proximate chemical analysis were obtained from massage in the perianal
zone of animals each day for 3 days before euthanasia. In addition, we made a pool for
each group to evaluate absorbed nutrients and digestibility.

The animals were weighed, and euthanasia was carried out under anesthesia with
Ketamine (PISA®, Mexico City, México) 40–80 mg/kg plus Xylazine (PISA®, México)
5–10 mg/kg according to Al-Mousawi et al. (2010) [38], followed by decapitation on the
day after the end of the treatment. The blood was immediately collected, and serum
samples were obtained by centrifugation in a centrifuge: Bejman J221, rotor BejmanJA-18.1,
for 15 min at 169× g at 4 ◦C and stored at −80 ◦C until use for antioxidant and biochemical
analysis. At euthanasia, the pancreas was collected and fixed in 4% w/v paraformaldehyde
in phosphate-buffered saline. Urine was obtained directly from the bladder with a sterile
needle syringe, deposited in collecting tubes, and stored at −80◦ until use. The samples
were randomly numbered by people who recorded data before technics, and investigators
analyzed them. Until the statistical analysis, the results from the samples were grouped.

2.3. Antioxidant Enzyme Activity

The activities of glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-
S-transferase (GST) in rat serum were measured according to Pérez-Rojas et al. 2011 [39].
The GPx activity was assessed by the disappearance of NADPH at 340 nm in a coupled assay
containing H2O2, glutathione (GSH), and GR. GR activity was evaluated by disappearing
NADPH at 340 nm in a reaction mixture containing oxidized glutathione as a substrate. GST
activity was assayed at 340 nm in a mix determining GSH /1-chloro-2,4-dinitrobenzene
(CDNB) complexes [39].

2.4. Glucose Tolerance Test

For the oral glucose tolerance test (OGTT), animals were fasted for 4 h (morning fast,
from 8:00 a.m. until 12:00 p.m.), and blood samples were obtained from the tail vein.
Animals were administered 2 g/kg bw of glucose by oral gavage, and blood samples were
taken at 0, 15, 30, 45, 60, 90, and 120 min. The blood glucose was measured using blood
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glucose test strips (OneTouch® mini) and a glucometer (OneTouch® ultra mini-Johnson &
Johnson). The AUC values were considered as glucose tolerance indexes.

2.5. Biochemical Assays

Albumin, alanine aminotransferase (ALT), albumin/globulin (A/G) ratio, aspartate
aminotransferase (AST), total bilirubin, blood urea nitrogen (BUN), creatinine, globulin,
high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c),
total cholesterol, total protein, and urea were determined by enzymatic colorimetric as-
says in a DIRUI model CS-T240 auto-chemistry analyzer according to the manufacturer’s
instructions. The parameters A/G ratio, globulin, and urea were calculated. These param-
eters are significantly affected in diabetic conditions [40] and BPS administration. Thus,
we considered evaluating serum parameters to determine if the coadministration of VitE
with BPS attenuated the damage produced by BPS. Additionally, we compared the results
with clinical laboratory parameters for Wistar rats and other studies made with diabetic
rats [41–43].

2.6. Urinalysis

Leukocytes, nitrites, urobilinogen, protein, pH, blood, specific gravity, ketones, biliru-
bin, glucose, and reactive strips were used for urine analysis (GIMA URS-10T (24076)). We
read the reagent areas visually at the time specified in the color chart for a semi-quantitative
result according to the manufacturer’s protocol [44]. We conducted a physical evaluation
based on Queremel et al. (2022) [45].

2.7. Nutrient Absorption and Digestibility

Proximal feces and feed analyses were performed to evaluate the percentage of nutri-
ents retained or absorbed in the animals’ digestive tracts. The PAC was made in the Animal
Nutrition and Biochemistry Department, Faculty of Veterinary Medicine (UNAM) [46]. The
insoluble ash in hydrochloric acid 2N (AIA) was obtained in feed pellets and stools [47].
To evaluate the digestibility, we used the formula: (100 − (% AIA in dry matter in feed/%
AIA in dry weight in stools) × 100) + 20.20

2.8. Pancreas Histology

After fixation, the samples were dehydrated by increasing ethanol concentrations,
cleared with xylene, and incorporated into paraffin. Pancreas tissue was cut to a thickness
of 5 µm and mounted on glass slides. The cuts were then dewaxed into xylene, rehydrated
by decreasing ethanol concentrations, and stained with hematoxylin and eosin dyes for
histological examination. Twenty-six histological sections stained with the hematoxylin
and eosin technique were reviewed in a LEICA MOPA-UNIPREC-01 bi-head optical mi-
croscope. All the tissue in the slide was evaluated by sliding the slide in a zigzag pattern,
observing first with the 4× objective, followed by 10× and 40×. In some specific cases,
100×magnification was used. We evaluated damage grades with symbols: “−” and “+”.
The symbol “−” indicated no damage; “+” indicated scarce damage; “++” was considered
moderate damage; and “+++” was considered severe damage. To evaluate the pancreas
morphometry, we took five photos of each animal’s sample in 4× objective and measured
the area and number of Langerhans islets with the ImageJ program. Evaluation of the
histological alterations was based on Zachary (2016) and Shubin et al. (2016) [48,49].

2.9. Statistical Analysis

All data were evaluated for normality with D’Agostino & Pearson test or the Shapiro–
Wilk test when the number of samples was small. When data were normal, we used
ANOVA and a correction for multiple comparisons by controlling the false discovery rate
(FDR) using the two-stage step-up method of Benjamini, Krieger, and Yekutieli (q ≤ 0.05).
When data were not normal, we used a generalized linear model (GLM) and a Tukey
Kramer post hoc test. Body weight values and blood glucose were evaluated in two-way
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ANOVA, considering one factor the group and the other the treatment day. Additionally,
the mean of all body weights obtained in each group during the treatment period was
considered the total weight. We use GLM to compare the total percentage of loss or weight
gain between groups. The Prism 2.01 program (Graph Pad, San Diego, CA, USA) was
used to calculate ANOVA, and IBM® SPSS Statistics version 28 was used to evaluate the
non-normal data. A probability value of p ≤ 0.05 was considered significant. In the case
of the FDR test, we considered it significant when the individual p value was ≤ 0.05 and
when the program showed the comparisons as “discovery” (q ≤ 0.05). Data are expressed
as mean ± standard error of the mean (SEM) unless otherwise stated.

3. Results
3.1. Body Weight

The weight of the Ctrl-D group was significantly lower than that of the Ctrl group
on day 0 (* p = 0.0035), day 7 (* p = 0.0155), day 14 (* p = 0.0123), day 21 (* p = 0.0049),
and day 30 (* p = 0.0072). The weight of the BPS-D group was significantly lower than
that of the Ctrl group on day 0 (* p = 0.0086), day 7 (* p = 0.0091), day 14 (* p = 0.008),
day 21 (* p = 0.0013) and day 30 (* p = 0.0004). The weight of the VitE + BPS-D group was
significantly lower than that of the Ctrl group during the treatment period (* p = 0.0146 on
day 0; * p = 0.0008 on day 7; * p = 0.0026 on day 14; * p = 0.0019 on day 21, and * p = 0.0008
on day 30) (Figure 2a). There was no statistical difference between the VitE-D and Ctrl or
the Ctrl-D groups (Figure 2a). The VitE + BPS group showed a percentage of weight loss
significantly higher than that of all groups (* p < 0.0001, # p = 0.0002, $ p = 0.0004, & p = 0.005
for Ctrl, Ctrl-D, BPS-D, and VitE groups, respectively). On day 30, the animals from the
VitE + BPS-D group had lost almost 23% of their initial weight. In contrast, the VitE-D
group maintained its initial weight. The Ctrl-D and BPS-D groups lost 8% of their body
weight at 30 days of treatment (Figure 2b). The total weights of the Ctrl-D, VitE-D, BPS-D,
and VitE + BPS-D groups were significantly lower than that of the Ctrl group (* p < 0.0001 in
these comparisons). In addition, the total weight of the VitE + BPS-D group was statistically
lower than those of the Ctrl-D (# p = 0.0003), BPS-D ($ p = 0.0001), and VitE-D (& p < 0.0001)
groups (Figure 2c). Before the treatment period (at the streptozotocin administration day), the
animals’ weights were similar between all groups: Ctrl (325.9 ± 5.511), Ctrl-D (315.6 ± 10.03),
VitE-D (321.8 ± 8.941), BPS-D (322 ± 2.345), and VitE + BPS-D (323.6 ± 7.125). Data were
evaluated by one-way ANOVA F (DFn:4, DFd:21) 0.2872, p = 0.8830.

Data were evaluated by two-way ANOVA (Figure 2a): interaction: F (DFn:20, DFd:105)
= 4.206, p < 0.0001; treatment day: F (DFn:1.619, DFd:34) = 8.068, p = 0.0025; group: F
(DFn:4, DFd:21) = 6.780, p = 0.0011. Data were analyzed by generalized linear model (GLM)
and Tukey Kramer post hoc test (Figure 2b). Data were evaluated by one-way ANOVA:
(Figure 2c): F (DFn:4, DFn:151) = 21.05, p < 0.0001 (Figure 2c).

3.2. Enzymatic Antioxidant Activities

The activity of GPx, GST, and GR was measured in serum to determine which an-
tioxidant enzymes are involved in the potential protective effect of VitE against damage
provoked by BPS.

We found that GR activity was significantly increased in animals from the Ctrl-D group
compared with the Ctrl group (* p = 0.0011). However, BPS-D, VitE-D, and VitE + BPS-D
were considered as no discovery when compared with the Ctrl group (q = 0.0521; q = 0.1097
and q = 0.1062, respectively), although the individual p values were 0.011; 0.0467 and
0.0337, respectively. We did not observe a significant difference between the groups when
evaluating GPx and GST (Figure 3).
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Figure 3. Effects of Vitamin E (VitE), bisphenol S (BPS), or VitE + BPS on (a) glutathione peroxidase
(GPx), (b) glutathione reductase (GR), and (c) glutathione-S-transferase (GST) activity in serum of
treated male Wistar rats. Data are presented as mean ± SEM, n = 5–6 animals per group. * p ≤ 0.05
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Data were evaluated by one-way ANOVA (Figure 3a) F (DFn:4, DFd:21 = 1.329,
p = 0.2921); (Figure 3b) F (DFn:4, DFd:21) = 4.059, p = 0.0136; (Figure 3c) F (DFn:4, DFd:20)
= 1.090, p = 0.3881.
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3.3. Glucose Tolerance

Blood glucose in all diabetic rat groups was higher than in the Ctrl group in 0
(* p ≤ 0.0001 for Ctrl-D, BPS-D, and VitE + BPS-D, and * p = 0.0008 for VitE-D), 15
(* p = 0.0005 for Ctrl-D, * p ≤ 0.0001 for BPS-D and VitE + BPS-D, and * p = 0.0018 for
VitE-D), 30 (* p ≤ 0.0001 for Ctrl-D, BPS-D, VitE + BPS-D and * p = 0.0018 for VitE-D), 45
(* p ≤ 0.0001 for Ctrl-D, BPS-D, VitE + BPS-D and * p = 0.0006 for VitE-D), 60 (* p ≤ 0.0001
for all groups), 90 (* p≤ 0.0019 for Ctrl-D, * p≤ 0.0003, for VitE-D, * p≤ 0.0001 for BPS-D and
VitE + BPS-D), and 120 min (* p = 0.0022 for Ctrl-D, * p = 0.0004 for VitE-D, * p ≤ 0.0001 for
BPS-D and VitE + BPS-D groups). Blood glucose was higher in the VitE + BPS-D group than
in the Ctrl-D group (# p = 0.0286) (Figure 4a). The Ctrl-D, BPS-D, VitE-D, and VitE + BPS-D
groups exhibited a statistically higher total glucose response (AUC values) to the glucose
load relative to the Ctrl (* p < 0.001 in all cases). The VitE-D, BPS-D, and VitE + BPS-D
groups presented statistically higher AUC values than the Ctrl-D group (# p = 0.0035,
# p < 0.0001, and # p = 0.0076, respectively). There was no difference in blood glucose levels
between the VitE-D and VitE + BPS-D groups (Figure 4b). Data were evaluated by two-way
ANOVA (Figure 4a): interaction: F (DFn:24, DFd:126) = 2.262, p = 0.0019; time (min): F
(DFn:3.204, DFd:67.28) = 7.610, p = 0.0001; group: F (DFn:4, DFd:21) = 94.63, p < 0.0001;
one-way ANOVA: (Figure 4b): F (DFn:4, DFn:21) = 477.4, p < 0.0001.
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Figure 4. (a) Blood glucose concentrations (mg/dL) following administration of glucose load (2 g/kg
bw) in male Wistar rats. (b) Mean total glucose area under the curve (AUC). Data are presented as
mean± SEM, n = 5–6 animals per group. * p≤ 0.05, compared to the Ctrl group; # p≤ 0.05, compared
to the Ctrl-D group (specific p values are included in the text).

3.4. Biochemical Assays

Creatinine, AST, HDL-c, LDL-c, and A/G ratio are presented in Table 2. Compared
with the Ctrl group, exposure to VitE + BPS significantly increased HDL-c, LDL-c, and
A/G (* p = 0.0099, 0.0008, and 0.0028, respectively); the Ctrl-D group revealed an increase
in HDL-c (* p = 0.0014), and A/G (* p = 0.005); and exposure to VitE produced an increase
in HDL-c (* p = 0.0095). In addition, exposure to BPS produced no significant difference
compared to the Ctrl in all analytes (Table 2). However, the LDL-c increased significantly
in the VitE + BPS-D group versus the VitE-D group (& p = 0.01). Regarding the reference
values (RV), no alteration in creatinine or A/G levels was observed in the five groups. All
groups showed higher AST and HDL-c levels than the RV, except the Ctrl group (Table 2).

BUN levels were significantly higher in the VitE + BPS-D group than in the Ctrl,
Ctrl-D, VitE-D, and BPS-D groups (* p = 0.0048, # p = 0.0054, & p = 0.0062 and $ p = 0.0036,
respectively). Total cholesterol was significantly higher in the VitE + BPS-D than in the
Ctrl, BPS-D, and VitE-D (* p = 0.0027, # p = 0.0118, & p = 0.0075, respectively). ALT was
significantly higher in the VitE + BPS-D (* p = 0.001) and Ctrl-D (* p = 0.009) groups than in
the Ctrl group (Figure 5).
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Table 2. Biochemical assays in serum.

Analyte RV Ctrl Ctrl-D VitE-D BPS-D VitE + BPS-D

Creatinine (µmol/L) 09.00–70.00 58.50 ± 3.32 55.40 ± 3.01 52.20 ± 1.59 56.40 ± 3.44 58.60 ± 7.90

AST (U/L) 46.00–245.0 213.17 ± 17.99 379.20 ± 92.38 283.00 ± 53.85 349.40 ± 93.67 423.50 ± 82.12

HDL-c (mmol/L) 0.6–0.75 0.69 ± 0.05 1.16 ± 0.10 * 1.05 ± 0.08 * 0.95 ± 0.05 1.05 ± 0.15 *

LDL-c (mmol/L) 0.49–0.05 0.36 ± 0.03 0.50 ± 0.11 0.47 ± 0.04 0.54 ± 0.02 0.80 ± 0.15 *,&

Albumin /globulin 0.44–2.68 1.08 ± 0.04 0.82 ± 0.07 * 0.92 ± 0.08 0.98 ± 0.02 0.80 ± 0.06 *

Data are expressed as mean ± SEM. AST: aspartate aminotransferase; HDL-c: high-density lipoprotein cholesterol;
LDL-c: low-density lipoprotein cholesterol. RV: reference value. * p ≤ 0.05, versus Ctrl group. VitE + BPS-D
versus VitE-D: & p ≤ 0.05 (specific p values are included in the text).
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Figure 5. Effects of Vitamin E (VitE), bisphenol S (BPS), VitE + BPS on (a) blood urea nitrogen (BUN;
reference value (RV): 4.02–9.13 mmol/L); (b) total cholesterol (RV: 0.51–2.85 mmol/L); (c) alanine
aminotransferase (ALT; RV: 19–48 U/L); (d) albumin (RV: 30–50 g/L); (e) globulin (RV: 15–25 g/L);
(f) total protein (RV: 56–76 g/L); (g) urea (RV: 4.28–8.57 mmol/L); (h) total bilirubin (RV: 0.86–2.57
µmol/L). Values are means ± SEM (n = 5/6) of male-treated Wistar rats. Solid line range: minimum
reference value; dotted line: maximum reference value. * p ≤ 0.05 versus Ctrl group; # p ≤ 0.05 versus
Ctrl-D; $ p ≤ 0.05 versus BPS-D; & p ≤ 0.05 versus VitE-D (specific p values are included in the text).
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The BPS, VitE, and VitE + BPS exposure statistically decreased albumin levels in
diabetic animals compared with the Ctrl group (* p = 0.0002, * p < 0.0001, * p < 0.0001,
respectively). Moreover, the Ctrl-D group also presented lower albumin levels than the
Ctrl group (* p = 0.0005). Data established that globulin was not altered in any group.
Total protein data indicated that exposure to BPS, VitE, and VitE + BPS in diabetic animals
significantly decreased the levels compared to the Ctrl group (* p = 0.0033, 0.0026, 0.009, re-
spectively). Urea levels were significantly higher in animals from group VitE + BPS-D than
in the Ctrl, Ctrl-D, VitE-D, and BPS-D groups (* p = 0.0002, 0.0002, 0.0003 and 0.0001, respec-
tively). Total bilirubin levels were significantly higher in animals from the VitE + BPS-D and
Ctrl-D groups compared to animals from the Ctrl group (* p = 0.0004, 0.0104, respectively)
(Figure 5).

The Ctrl group was in the RV in total cholesterol, protein, bilirubin, and albumin.
The values for BUN and ALT analytes of the Ctrl group were slightly higher than the
RV. However, urea and globulin levels in this group were at least twice the value of the
minimum Ctrl RV. All treated groups presented, as compared to the RV, higher levels
in the ALT and globulin analytes, in contrast with the albumin, where all experimental
groups were lower than the RV. The VitE + BPS-D group was the one that presented more
alterations as compared to the RV in BUN, total cholesterol, ALT, albumin, urea, and total
bilirubin (Figure 5).

Data were evaluated by one-way ANOVA: Creatinine, F (DFn:4, DFd:21) = 0.3682,
p = 0.8285; AST, F (DFn:4, DFd:20 = 1.592, p = 0.2134 ); HDL-c, F (DFn:4, DFd:21) = 4.053;
p = 0.0137; LDL-c, F (DFn:4, DFd:21) = 4.064, p = 0.0136; Albumin /globulin, F (DFn:4,
DFd:21) = 3.902, p = 0.0160; BUN, F (DFn:4, DFd:21 = 3.914, p = 0.0158); Total cholesterol, F
(DFn:4, DFd:21) = 3.562, p = 0.0228; ALT, F (DFn:4, DFd:21); = 4.382, p = 0.0099; Albumin,
F (DFn:4, DFd:21) = 11.51, p< 0.001; Globulin, F (DFn:4, DFd:21) = 1.684, p = 0.1911; Total
protein, F (DFn:4, DFd:21) = 4.564, p = 0.0083; Urea, F (DFn:4, DFd:21) = 7.948, p = 0.0005;
Total bilirubin, F (DFn:4, DFd:21) = 4.788, p = 0.0067.

3.5. Pancreatic Histology

The histological examination of the Ctrl group for endocrine and exocrine hematoxylin
and eosin-stained pancreas indicated no apparent pathological changes and a typical ap-
pearance of the pancreatic tissue. The exocrine pancreas of the Ctrl-D group displayed
vacuolization, and the endocrine pancreas presented a reduction in Langerhans islets
area and number as compared to the Ctrl (* p = 0.001, p < 0.00001, respectively), tissue
degeneration, and lipid infiltration. In the VitE-D group, the exocrine pancreas did not
display any apparent pathological changes, like in the Ctrl group. Regarding the endocrine
pancreas, a decrease in the area and the number of Langerhans islets (* p = 0.018, 0.0002,
respectively), lipid infiltration, and slight tissue degeneration were observed compared to
the Ctrl group. The exocrine pancreas of animals from the BPS-D group exhibited slight
to moderate degeneration; the endocrine pancreas presented degeneration and decreased
Langerhans islets area and number compared to the Ctrl group (* p = 0.007, * p < 0.00001,
respectively), and decreased number of Langerhans islets compared to the VitE-D group
(& p = 0.014) and lymph node histiocytosis. The exocrine pancreas of the VitE + BPS-D
group exhibited slight to moderate vacuolization and lymph node edema. Although
the Langerhans islets in two animals of this group presented atrophy, the other three
presented no apparent pathological changes in the endocrine pancreas. In addition, the
Langerhans islets number was lower than in the Ctrl and VitE-D groups (* p < 0.00001,
& p = 0.005, respectively), and its mean area was significantly lower than in the Ctrl
(* p = 0.0004) (Figure 6, Table 3). Data were analyzed by GLM and Tukey Kramer post hoc
test (Figure 6p,q).
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Figure 6. Effects of vitamin E (VitE), bisphenol S (BPS), or VitE + BPS on pancreas histology, stain
with H&E. Bar = 100 µm. Photomicrographs of pancreatic tissue in 4×, 10×, and 40×magnification
of (a–c) Ctrl group; (d–f) Ctrl-D group; (g–i) VitE-D group; (j–l) BPS-D group; (m–o) VitE + BPS-D
group. Inset in (b) indicates the 100×magnification of the exocrine parenchyma of the Ctrl group.
Inset in (n) denotes the 100×magnification of the exocrine parenchyma of the VitE + BPS-D group;
yellow arrows indicate vacuolization inside of cells. (p) Boxplot of the number of Langerhans islets;
* p ≤ 0.05 versus Ctrl and & p ≤ 0.05 versus VitE-D. (q) Mean Langerhans islets area (µm2); * p ≤ 0.05
versus Ctrl (specific p values are included in the text). White arrows indicate Langerhans islets; blue
stars show the pancreatic duct; the green circle exhibits the vacuolization and degeneration of the
exocrine pancreas; the green arrowhead displays the lipid infiltration in Langerhans islets cells.
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Table 3. Pancreas histological evaluation.

Group ID Langerhans
Islets Atrophy

Endocrine
Degeneration

Endocrine Lipid
Infiltration

Exocrine
Degeneration

Exocrine
Vacuolization Findings

Ctrl

1 − − − − − NF
2 − − − − − NF
3 − − − − − NF
4 − − − − − NF
5 − − − − − NF
6 − − − − − NF

Ctrl−D

1 +++ ++ ++ − ++ NF
2 +++ ++ − − ++ NF
3 ++ ++ ++ − ++ NF
4 ++ − − − − NF
5 +++ − − − − NF

VitE−D

1 + − − − − NF
2 − − ++ − − NF
3 − + + − − NF
4 ++ − − − +++ LE
5 − + − − − NF

BPS−D

1 − − − + − NF
2 ++ − − + − NF
3 − ++ − + − LNH
4 ++ − − − − NF
5 − ++ − ++ − NF

VitE +
BPS−D

1 ++ − − +++ − NF
2 − − − ++ − NF
3 ++ − − − ++ NF
4 − − − + − LE
5 − − − − − LE

ID: Animal identification; LE: Lymph node edema; LNH: Lymph nodes histiocytosis; NF; No Findings; −: no
damage; +: scarce damage; ++: moderate damage; +++: severe damage.

3.6. Urinalysis

We performed a urinalysis to evaluate the alterations in renal metabolism produced by
administering VitE, BPS, and their combination. The highest turbidity in the urine samples
was observed in the samples from the BPS-D group, where two animals exhibited a value
of 2+, and one 1+. In the VitE + BPS-D group, one animal presented a value of 1+, and
another showed 2+. One animal from the VitE-D group had a 2+ value. Two animals from
the Ctrl-D group exhibited 1+. One animal from the Ctrl group displayed a 1+ value.

All animals had negative nitrites, urobilinogen, red blood, and ketones. Two animals
from the Ctrl-D group and one from the VitE + BPS-D group showed 17 pmol/L of
bilirubin. In the other animals, the result was negative. The specific gravity in the Ctrl-D,
VitE-D, BPS-D, and VitE + BPS-D groups was significantly higher than in the Ctrl group
(* p < 0.0001, * p = 0.0004, * p < 0.0001, * p < 0.0001, respectively). That in the VitE-D group
was significantly lower than in the BPS-D ($ p < 0.0004) and Ctrl-D groups (# p < 0.0264).
The VitE + BPS-D group presented specific gravity values similar to that in the Ctrl-D
group but significantly different than those in the Ctrl, BPS-D, and VitE groups (* p < 0.0001,
$ p = 0.0404, & p = 0.0498, respectively) (Table 4).

Regarding glucose, we observed that the values in the Ctrl-D, VitE-D and VitE + BPS-D
groups were significantly higher than that in the Ctrl group (* p = 0.008, 0.26, 0.0003, re-
spectively). The glucose in the VitE + BPS-D group was higher than in the BPS-D group
($ p = 0.21) (Table 3). The highest leukocyte count was observed in the VitE-D group
compared with the Ctrl group (* p = 0.035), and the lowest count was observed in the
VitE + BPS-D group. All groups had no significant difference in urine pH value or protein
content (g/L). The one-way ANOVA F (DFn:4, DFd:20) = 21.23, p < 0.0001 evaluated the
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specific gravity; pH F (DFn:4, DFd:20) = 2.746, p = 0.0571. Leukocytes (cells/µL), protein
(g/L), and glucose (mmol/L) were evaluated by GLM and Tukey post hoc tests.

Table 4. Urinalysis test data.

Analyte Ctrl Ctrl-D VitE-D BPS-D VitE + BPS-D

Specific gravity 1.01 ± 0.00 1.06 ± 0.00 * 1.04 ± 0.01 *,#,$ 1.07 ± 0.00 * 1.05 ± 0.01 *,$,&

Leukocytes (cells/µL) 6.00 ± 3.67 92.00 ± 13.47 178.00 ± 22.00 * 103.00 ± 83.27 59.00 ± 13.47

pH 6.90 ± 0.25 5.50 ± 0.27 5.90 ± 0.40 5.80 ± 0.34 5.60 ± 0.40

Protein (g/L) 0.14 ± 0.04 0.10 ± 0.00 0.26 ± 0.04 4.38 ± 3.90 0.10 ± 0.00

Glucose (mmol/L) 6.00 ± 3.67 48.00 ± 7.35 * 42.00 ± 7.35 * 27.00 ± 3.00 64.00 ± 12.88 *,$

Data are expressed as mean ± SEM. * p ≤ 0.05, vs. Ctrl; # p ≤ 0.05 vs. Ctrl-D; & p ≤ 0.05 vs. VitE-D; $ p ≤ 0.05 vs.
BPS-D (n = 5 for group).

Data are expressed as mean± SEM. * p≤ 0.05, vs. Ctrl; # p≤ 0.05 vs. Ctrl-D; & p ≤ 0.05
vs. VitE-D; $ p ≤ 0.05 vs. BPS-D (n = 5 for group).

3.7. Nutrient Absorption and Digestibility

We conducted a PCA to evaluate the effects of VitE, BPS, and their combination on
nutrient absorption and digestibility since both compounds are absorbed partially in the
intestine [50,51]. The values obtained in the PCA of the food administered to the animals
were like the ones reported by the food producers (FS) (BIO-DIETA-LAB 7300 (ABENE®,
Mexico), in their guaranteed analysis. The Ctrl group exhibited the highest percentage of
raw protein, fat, ash, AIA, and digestibility in the stool. At the same time, the nitrogen-free
extract (NFE) was lower than in the other groups. Diabetic rats (Ctrl-D, VitE-D, BPS-D,
and VitE + BPS-D groups) absorbed more nutrients than the Ctrl group, as indicated by
decreased raw protein, raw fat, and ash. Still, the digestibility was lower. Animals from the
VitE-D and VitE + BPS-D groups showed values closest to the Ctrl group in raw protein,
fat, and ash (Table 5). Pool data was presented as percent.

Table 5. Proximate chemical analysis in pellets and stools.

Nutrient FS Food Ctrl Ctrl-D VitE-D BPS-D VitE + BPS-D

Humidity (%) 12.0 11.03 56.47 60.95 46.64 57.60 46.05

Dry matter (%) 88.0 88.97 43.53 39.05 53.36 42.40 53.95

Raw protein 1 (%) 23.5 21.10 12.45 8.77 10.06 8.51 10.47

Raw fat 1 (%) 6.0 5.47 2.59 1.29 1.92 1.47 1.89

Ash 1 (%) 8.0 9.67 13.01 9.04 11.91 9.47 11.77

Raw fiber 1 (%) 4.0 5.58 3.97 3.99 4.51 3.53 5.05

NFE 1 (%) 46.5 47.15 11.51 15.96 24.96 19.42 24.77

AIA (%) - 0.84 2.31 1.10 2.07 1.62 1.70

Digestibility (%) - - 83.84 43.84 79.62 68.35 70.79

Data are expressed as a percent of pools in each group. 1 Results expressed on a wet basis. AIA: Ash insoluble in
acid; FS: Guaranteed analysis of food sellers; NFE: Nitrogen-free extract; PCA: Proximate chemical analysis.

4. Discussion

Exposure to environmental chemicals such as bisphenols causes potential risks, in-
cluding obesity and metabolic disorders such as DM, which is a chronic disorder that
leads to alterations in the intracellular metabolism and hyperglycemia that alters insulin
responsiveness and hepatic gluconeogenesis, provoking hormonal disturbances [52,53].
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The present research aimed to evaluate whether exposure to BPS induces alterations
in the structure and function of the pancreas, activity of serum antioxidant enzymes,
absorption of nutrients, and liver and kidney functions and if coadministration with VitE
could protect from the harmful effects produced by BPS in a Wistar male rat diabetic model.
In this study, we demonstrated that BPS in diabetic rats (BPS-D group) decreased the
tolerance to glucose, plasma albumin, and total proteins compared to the control (Ctrl
group). Additionally, the VitE coadministration with BPS aggravated the damage in the
liver and kidney of male rats according to an increase in BUN, total cholesterol, ALT, urea,
and total bilirubin.

Body weight is one of the indicators of animals’ general health condition [54]. Fur-
thermore, it is known that one of the effects of DM is a decrease in body weight [55].
Accordingly, all diabetic animals presented a lower body weight than the Ctrl animals.

At the end of the experiment, the animals from the VitE-D group had gained about
24 g from their initial weight, and the Ctrl-D group had gained around 3 g. This weight
gain is consistent with some publications that suggest that VitE reduces the characteristic
symptoms of diabetes, such as weight loss [56]. Contrarily, Shamsi et al. (2004) reported that
oral administration of VitE for 3 weeks induced weight loss in healthy and diabetic rats [30].
Also, there are reports where VitE administration does not produce alterations in body
weight [57,58]. Thus, the difference between the results is probably due to the different
doses of VitE used since there are reports that the effects of VitE are dose-dependent [30].
Regarding BPS, and in concordance with our results, in a study performed with Wistar
rats treated with BPS, there were no differences in rat body weight [59]. Contrarily, male
Sprague–Dawley rats with diabetes induced with streptozotocin and administered BPA
showed a decrease in body weight; in the same study, administering the same dose of BPA
in healthy rats increased this parameter [60]. Thus, the effect of bisphenols depends on the
amount, health condition, and age at the time of administration.

Concerning the body weight, the VitE + BPS-D group lost around 46 g compared with
their initial weight and presented the lowest weight compared to all other groups. Thus,
rats in the VitE + BPS-D group were more susceptible to weight loss when BPS and VitE
were concomitantly administered. On the other hand, there were no significant differences
in total body weight between the Ctrl-D, BPS-D, and VitE-D groups. It is possible that
administering BPS and VitE separately may not reduce weight, but their combined use may
have a more significant impact.

BPS has been demonstrated to act as an endocrine-disrupting compound [61]. Nev-
ertheless, in the literature, most BPS toxicity studies have focused on the reproductive
effects [62,63]. However, besides its inherent effects on the reproductive system, BPS is also
known to alter glucose levels [64] and oxidative stress by affecting antioxidant activity.

The OGTT currently serves as the gold standard for evaluating glucose metabolism [65,66].
In the present study, OGTT results revealed increased blood glucose concentrations in the
BPS-D, VitE-D, and VitE + BPS-D groups, as compared to the Ctrl and Ctrl-D groups, indi-
cating abnormal metabolism of glucose, which remains in the bloodstream. Additionally,
the effect of BPS on increasing blood glucose concentration has been reported in other
studies. Mandrah et al. (2020) [59] reported that in Wistar rats, a hyperglycemic condition
was initiated by sub-chronic exposure to BPS [59]. In contrast, a significant increase in
glucose tolerance was reported in 36-day-old Wistar male rats perinatally treated with
BPS [64]. The differences between the two studies may be due to the period in which the
animals were exposed to BPS and the administration method.

In the present study, VitE did not decrease the glucose levels in diabetic rats, as
evaluated through AUC values. It has been reported that the effects of VitE on blood
glucose depend on the dose and the metabolism state [67]. VitE decreased blood glucose
levels in diabetic models, such as T1DM Wistar rats [30] and humans [68]. In contrast, other
studies reported that VitE did not improve the regulation of glucose-stimulated insulin
secretion in hyperglycemic mice [69] and did not change blood glucose levels in diabetic
patients [70].
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Administration of a single dose of STZ selectively destroys β-cells in the pancreas and
produces a permanent diabetic state [71]. In the present study, the alterations observed in
the pancreas histology in the diabetic experimental groups were expected: vacuolization, re-
duction of Langerhans islet area and number, tissue degeneration, and lipid infiltration [72].
However, an increase in pancreatic damage was observed in the BPS-D group compared to
the Ctrl and Ctrl-D groups. Vacuolization is one of the first alterations recognized when
there has been cell damage and corresponds to the accumulation of endogenous substances,
a product of the alteration in cell metabolism [48,49]. If the injury is prolonged, it will
produce cell degeneration and can later end in cell death, which is observed in reducing
the number and area of Langerhans islets. BPS escalated the damage in the pancreas,
provoking degeneration of both the endocrine and exocrine pancreas [73,74]. However,
the coadministration of VitE with BPS protected, to some extent, the endocrine pancreas
since no apparent pathological changes were observed in three of five animals from this
group. In agreement with our results, it has been previously reported that VitE improves
the histoarchitecture of the pancreas in diabetic animals [75,76].

Bisphenols’ effects depend on several factors, such as the animal model, the dose,
the period of administration, etc. Bisphenols affect pancreatic β-cell insulin content and
secretion in a non-monotonic dose–response manner (NMDR) [77]. In contrast to our results,
the administration of BPA to rats for eight weeks did not induce histological alterations
or differences in the size of Langerhans islets [78]. Supplemented VitE participates in
the inflammatory response mechanisms in the pancreas and has anti-inflammatory and
beneficial effects [79].

The primary route of human exposure to BPS is through food and liquids stored
in plastic containers [54]. After oral ingestion, BPS passes to the intestine and the liver,
where it is metabolized in animals and humans [80,81]. The liver is a critical tissue for
maintaining glucose and cholesterol homeostasis [82] and transforming bisphenols into a
glucuronic-conjugated form [54]. Thus, the liver is an organ vulnerable to BPS toxicity.

The results from our study suggest that the liver was one of the organs extremely af-
fected by the coadministration of VitE and BPS. The VitE + BPS-D group showed significant
changes from the RV in 12 of the 14 analytes examined. However, compensatory actions
such as HDL-c increase were observed, with no improvement due to the parallel rise in
LDL-c, which is associated with liver failure (bilirubin, AST, and ALT) [83]. In addition,
animals of the VitE + BPS-D group showed a significant increase compared with those in the
other experimental groups in BUN, total cholesterol, ALT, and urea. The increase in hepatic
enzymes observed in the present article was like that in other studies evaluating BPS’ effect
in Wistar rats [81], where the authors considered that BPS produced potential hepatic
intoxication [81]. In addition, the effects caused by BPS on the liver function observed in
the present research were similar to those caused by BPA [84,85].

The Ctrl-D, VitE-D, BPS-D, and VitE + BPS-D groups showed a decrease in albumin
and total protein compared to the Ctrl group. Serum proteins were expected to decrease
in the diabetic animals compared with the Ctrl group because, in a diabetic condition, the
serum proteins are lost in the urine [86,87]. However, the total protein in the VitE-D and
BPS-D groups also showed a significant decrease (p≤ 0.05) compared with the Ctrl-D group.
Thus, it is necessary to evaluate the function of VitE and BPS in the damage produced by
the diabetic condition. The total cholesterol was increased significantly in animals from the
VitE + BPS-D group versus those in the Ctrl, BPS-D, and VitE-D groups. Thus, VitE + BPS-D
probably alters sex hormone levels in the blood, exacerbating the hepatic steroid alterations
that occur in a diabetic state [71,88].

After the Ctrl group, the Ctrl-D group revealed levels closest to the reference values. It
has been reported that when T1DM is induced pharmacologically in an experimental rat
model, the animals present changes in serum chemistry and liver enzymes [30,40] due to
disorders in the metabolism of carbohydrates, fats, and proteins [89]. These alterations are
consistent with the changes observed in the Ctrl-D group’s HDL-c, ALT, and total bilirubin.
However, we observed significant alterations between experimental groups treated with
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STZ; we consider that the effects of BPS and the coadministration of VitE and BPS are
independent of the effect of STZ and could be related to kidney failure and liver overwork.

Regarding the VitE + BPS-D group, LDL-c was significantly higher than in the Ctrl
and VitE-D groups and about 0.3 mmol/L above the Ctrl-D and BPS-D values. VitE is an
antioxidant that protects the hepatic cells against oxidative stress and prevents fatty liver
disease [90]. It has been described that supplementation with VitE decreased LDL-c levels,
total plasma cholesterol, triglycerides, and oxidative susceptibility in patients with DM [91].
Additionally, in another study, VitE decreased the same parameters in diabetic rats [92].
Therefore, the difference between our results and the mentioned studies could be because
of a difference in the extent of the experiment.

In the PCA, there was a decrease in the percentage of nutrients quantified between the
groups of rats with DM compared with the Ctrl group (raw protein, raw fat, and ash). This
could be due to the metabolic demands of the sick subjects under experimentation; rats
without metabolic alterations do not require nutrients available in the diet beyond those
used for homeostatic balance. On the other hand, rats with DM require essential nutrients
to compensate for the metabolic state of disease triggered by diabetes, using physiological
digestive mechanisms and adaptations to absorb elements in the diet [93–95]. For example,
studies suggest that in rats, diabetes induced by streptozotocin is connected to a rise in
glucose absorption through the small intestinal mucosa [94,95]

The observed out-of-range values in the Ctrl group in the serum biochemistry could
be associated with a diet rich in fat, possibly produced by the oil used as the vehicle and
the high protein in the diet. According to dietary recommendations for rodents, a diet with
around 14% protein is considered ideal for their organic maintenance [96]. In our study, the
percentage of protein was 35% because diabetic animals needed more nutrients.

It has been reported that i.p. administration of STZ in male Wistar rats induced un-
controlled diabetes and increased endogenous biliary excretion and plasma bilirubin, as
well as enhanced hepatic conjugation and subsequent biliary excretion of the pigment [71].
Similarly, we observed that the serum levels of bilirubin in all experimental groups were in-
creased compared to the Ctrl group. Still, this increase was only significantly different from
the Ctrl in the VitE + BPS-D and Ctrl-D groups and was out of the reference range. Thus,
the effect of the coadministration of VitE + BPS on the hepatic transport and excretion of
bilirubin in streptozotocin-induced diabetes male Wistar rats requires further investigation.

Since the harmful effects of bisphenols are of great importance for human and animal
health, and the complications of DM may be linked to oxidative stress [67], efforts have
been made to propose alternatives to counteract or decrease the negative consequences of
their use [97–100].

In healthy rats, the effects of coadministration of vitamins with bisphenols are con-
tradictory; i.e., male rats treated with VitE showed improved kidney function tests and
alleviated BPA-induced oxidative stress in the kidney and nephrotoxicity [33]. In adult
male Wistar rats, the administration of VitE had a protective effect on the administration of
BPA (in reproductive parameters) [25]. In contrast, administering vitamin C aggravated
bisphenol damage in histopathological lesions in the testis [27]. Korkmaz et al. [101,102]
demonstrated that the coadministration of vitamin C with BPA augments kidney and liver
damage in male rats [101,102]. Vitamin C loses its effectiveness as an antioxidant at high
concentrations. However, it can act as a pro-oxidant in tissues, reducing metals to forms
that react with oxygen that produce initiators of lipid peroxidation [103]. Also, excess VitE
can produce dangerous effects by disrupting the detoxification chain of oxidative stress,
and radicals will remain with pro-oxidant properties [104,105].

Mammalian cells have enzymatic and non-enzymatic antioxidant defense mechanisms
that reduce cell injury produced by interacting lipids, proteins, DNA molecules, and reac-
tive oxygen species (ROS). Under normal metabolism, the continuous formation of ROS and
other free radicals is essential for normal physiological functions such as ATP production,
catabolic and anabolic processes, and cellular redox cycles [106]. In DM, oxidative stress
is increased due to the impairment in the antioxidant defense and increased oxidation
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of proteins or lipids. Hyperglycemia is an inducer of ROS and nitrogen species [107]; it
increases the formation of advanced glycosylation products that result from the reaction of
glucose and other monosaccharides with proteins, producing chemically and biologically
modified molecules that lead to various imbalances [56]. Moreover, it activates the protein
kinase C, producing changes in cell permeability [108]. The development of the chronic
complications of DM may be linked to oxidative stress [109–111]. Thus, an unbalanced
production of ROS in cells plays a role in the pathogenesis of DM [14].

We evaluated the antioxidant enzymes because it has been reported that BPA-induced
toxicity is closely linked to the impairment of oxidant–antioxidant systems balance, altering
GSH content as well as superoxide dismutase and catalase levels in the blood and the
function of many vital organs and cells, such as the liver, kidney, testes, and pancreas,
accompanied by increased production of ROS, mitochondrial dysfunction, and modulation
of cell signaling pathways [14,112,113]. Antioxidants are present in all body fluids and may
interact with the free radicals produced by bisphenol exposure and disrupt the sequence
of oxidation reactions before DNA, RNA, lipids, and proteins are damaged [14,114]. This
research did not detect differences between GPx, GR, and GST activity in the serum in
the VitE-D, BPS-D, and VitE + BPS-D groups versus the Ctrl and Ctrl-D groups. Thus, we
consider that the alterations in GR observed in the diabetic experimental groups versus the
Ctrl group (healthy rats) are expected because of the alteration in the antioxidant defense
in diabetes as mentioned above.

In diabetic animals, there are alterations in drug metabolism because there are reduced
concentrations of cytochrome P450 and impairment of some phase II pathways, such as glu-
curonidation or conjugation [115,116]. VitE and BPS metabolism are very similar in humans
and animals [117]. The metabolism of BPS is generally performed by liver cytochrome
P450 and CYP3A4 enzymes [118–121]; in addition, VitE is metabolized as a xenobiotic
by the cytochrome P450 and increases the expression of cytochrome P-450-3A [104,122];
its metabolism uses liver-binding proteins, which selectively bind α-tocopherol. The α-
tocopherol transfer protein mediates its transport from the liver to lipoproteins to maintain
homeostatic control of α-tocopherol concentrations in blood and tissues [117,123]. There-
fore, the effects reported in this article may be due to an additive effect of VitE on the toxicity
of BPS because some reports indicate that VitE and BPS or their metabolites accumulate in
the liver [122,124,125].

Some studies have reported the beneficial effects regarding the coadministration of
VitE with bisphenols in other organs, such as the testes [126], the lungs [127], and the
kidneys [33]. The difference in these studies is that they used healthy rats with the regular
activity of cytochrome P450, and the animals may have been capable of metabolizing both
compounds. However, it was reported that VitE could produce beneficial effects and be
safe in some organs, such as the testes, because it is essential for normal spermatogenesis
but, at the same time, not safe for the liver and kidneys. This must, therefore, be considered
when using or recommending VitE for treatment purposes [128].

Considering the concentrations of antioxidants and bisphenols used in different animal
models is essential. Because bisphenols do not produce a monotonic response [61], the
VitE effects depend, among other factors, on the quantity of lipids in the body. We agree
with Mączka et al. (2022), who mention that it is necessary to account for the influence of
bisphenols on the metabolism and the power of doses of antioxidants used to attenuate
their harmful effects [14]. Although there is limited information about the impact of
antioxidants on BPS effects, our results support the results that indicate that BPA toxicity
may be aggravated by metabolic disorders and coexisting diseases [14]. However, a gap
remains to be investigated between the roles of the coadministration of VitE with BPS in
the pathogenesis of DM.

5. Conclusions

Approaches using antioxidants to counteract the adverse effects of bisphenols and
DM have been considered in the last decade. Most of the works directed at evaluating
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antioxidants’ protective effects against BPA harmful effects showed promising results.
However, there are other reports where the antioxidants did not attenuate BPA toxicity
effects; on the contrary, they exacerbated the damage produced by BPA. Furthermore, there
are limited studies that evaluate BPS. In this article, we demonstrated that coadministration
of VitE with BPS alters glucose levels, pancreas histology, and serum metabolites related to
liver and kidney functionality, exacerbating the toxicity of BPS in diabetic rats. Therefore, it
is necessary to consider that the replacement of BPA by its analogs, such as BPS, is inherent.
Evaluating the attenuating effects of antioxidants on the toxicity produced by these BPA
analogs is a field of research that is necessary to continue to determine the optimal dosage
and treatment regimen of the antioxidants to counteract bisphenol toxicity.
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