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Abstract: This study addresses the challenge of assessing the carcinogenic potential of hazardous
chemical mixtures, such as per- and polyfluorinated substances (PFASs), which are known to con-
tribute significantly to cancer development. Here, we propose a novel framework called HNNMixCancer

that utilizes a hybrid neural network (HNN) integrated into a machine-learning framework. This
framework incorporates a mathematical model to simulate chemical mixtures, enabling the creation
of classification models for binary (carcinogenic or noncarcinogenic) and multiclass classification
(categorical carcinogenicity) and regression (carcinogenic potency). Through extensive experimen-
tation, we demonstrate that our HNN model outperforms other methodologies, including random
forest, bootstrap aggregating, adaptive boosting, support vector regressor, gradient boosting, kernel
ridge, decision tree with AdaBoost, and KNeighbors, achieving a superior accuracy of 92.7% in binary
classification. To address the limited availability of experimental data and enrich the training data,
we generate an assumption-based virtual library of chemical mixtures using a known carcinogenic
and noncarcinogenic single chemical for all the classification models. Remarkably, in this case, all
methods achieve accuracies exceeding 98% for binary classification. In external validation tests,
our HNN method achieves the highest accuracy of 80.5%. Furthermore, in multiclass classification,
the HNN demonstrates an overall accuracy of 96.3%, outperforming RF, Bagging, and AdaBoost,
which achieved 91.4%, 91.7%, and 80.2%, respectively. In regression models, HNN, RF, SVR, GB,
KR, DT with AdaBoost, and KN achieved average R2 values of 0.96, 0.90, 0.77, 0.94, 0.96, 0.96, and
0.97, respectively, showcasing their effectiveness in predicting the concentration at which a chemical
mixture becomes carcinogenic. Our method exhibits exceptional predictive power in prioritizing
carcinogenic chemical mixtures, even when relying on assumption-based mixtures. This capability
is particularly valuable for toxicology studies that lack experimental data on the carcinogenicity
and toxicity of chemical mixtures. To our knowledge, this study introduces the first method for
predicting the carcinogenic potential of chemical mixtures. The HNNMixCancer framework offers a
novel alternative for dose-dependent carcinogen prediction. Ongoing efforts involve implementing
the HNN method to predict mixture toxicity and expanding the application of HNNMixCancer to
include multiple mixtures such as PFAS mixtures and co-occurring chemicals.

Keywords: hybrid neural network; dose-dependent carcinogenicity; chemical mixtures; machine
learning; per- and polyfluorinated substances

1. Introduction

Identifying carcinogenic chemicals is crucial for human health, as they present a severe
toxicological risk that can lead to adverse health effects, including cancer development.
Carcinogens are substances that have the potential to initiate or promote the development
of cancerous cells in living organisms. The standard method for assessing the carcinogenic
potential of chemicals is the 2 year rodent carcinogenicity assay, which has been used for
over 50 years [1]. This assay involves exposing rodents to various doses of a chemical
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over an extended period and monitoring for the development of tumors. While this
method has provided valuable insights into the carcinogenicity of numerous substances,
these long-term animal studies are resource-intensive, time-consuming, and ethically
challenging. Moreover, environmental exposure to carcinogenic chemicals rarely occurs
in isolation but rather involves complex mixtures. These mixtures consist of various
manmade contaminants that pervade the air we breathe, the water we drink, the soil in
which we grow our food, and the food we consume, leading to adverse health effects,
including cancer. Notable examples of these contaminants include pesticides, per- and
polyfluorinated substances (PFASs), polycyclic aromatic hydrocarbons (PAHs), metals, and
polychlorinated biphenyls (PCBs). These substances find their way into the environment
through industrial processes, waste disposal, and the use of certain consumer products. As
a result, individuals are exposed to a multitude of chemicals simultaneously, increasing the
complexity of evaluating their carcinogenic potential.

The assessment of chemical mixture carcinogenicity is hindered by the vast number of
combinations, resource-intensive experiments, and the absence of computational methods,
resulting in limited data on the carcinogenicity of chemical mixtures. Furthermore, assess-
ing the carcinogenic chemical mixtures is a formidable task due to the added intricacy
introduced by varying concentrations of the individual chemical components. Each chemi-
cal within a mixture can interact with other chemicals, potentially amplifying or attenuating
their carcinogenic effects. Determining the precise contribution of each component to the
overall carcinogenic potential becomes challenging, requiring sophisticated experimen-
tal designs and analytical techniques. Typically, the carcinogenic potential of chemical
combinations is assessed, focusing on whether one chemical promotes the carcinogenicity
initiated by another chemical, even if the second chemical, in isolation, does not exhibit
carcinogenic properties at carcinogenic doses or different concentrations [2–4]. Animal
models are commonly used for such assessments, wherein animals are exposed to specific
combinations of chemicals to observe their collective effects on tumor development and
progression. Moreover, in-vitro cell line models have been utilized to study the combined
carcinogenic effects of chemicals. Studies have demonstrated synergistic effects on DNA
adduct formation when phthalates, a group of chemicals commonly found in plastics
and personal care products, are co-exposed in these cell line models [5,6]. These findings
highlight the importance of considering chemical interactions within mixtures and their
potential to enhance carcinogenic outcomes. Additionally, research has investigated the
synergistic and combined anticancer effects of anticancer drugs in animal models and cell
lines to combat carcinogenicity [7–9]. To support the current study, an extensive collec-
tion of literature references on the combined effects of carcinogens and noncarcinogens in
chemical mixtures is utilized in this study [10–63] (see Supplementary Materials).

The computational method offers a highly efficient and cost-effective alternative to
traditional experimental approaches for assessing the carcinogenic potential of chemical
mixtures. While the concentration addition (CA) model has been widely utilized to calcu-
late the toxicity of binary mixtures [64,65], its application in evaluating the carcinogenicity
of mixtures has been somewhat limited. In an effort to overcome this limitation, Walker
et al. conducted a study employing the dioxin toxic equivalency factor (TEF) approach to
determine the dose-additive carcinogenicity of three compound mixtures of dioxins [66].
The TEF approach allows for the conversion of different dioxin congeners into a common
unit of toxicity, enabling the calculation of an equitoxic ratio for each compound in the
mixture. By employing equal ratios of toxic equivalency (TEQs) for each compound, they
aimed to represent an equitoxic ratio in their assessment of the mixture’s carcinogenic
potential. However, a significant challenge encountered when utilizing computational
methods to evaluate mixture carcinogenicity is the lack of available information regarding
the specific carcinogenic concentrations of classified carcinogens. Identifying the precise
concentrations at which individual chemicals exhibit carcinogenic effects is crucial for
accurate assessments. Unfortunately, such data are often unavailable or incomplete, im-
peding the comprehensive evaluation of mixture carcinogenicity using computational
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approaches. To address these challenges and improve the accuracy of mixture carcinogenic-
ity assessments, further research is needed to expand the application of computational
models beyond simple single chemical simulations or the simple application of quantita-
tive structure–activity relationship (QSAR) methods for chemical mixtures. This includes
developing and refining approaches that account for varying levels of carcinogenic potency
among mixture components and integrating a vast number of mixture data to enhance the
predictive capabilities of computational models.

Traditional experimental methods for assessing carcinogenicity in animal models face
significant limitations due to the vast number of chemical combinations and the wide
range of doses associated with each chemical within a mixture. Furthermore, the lack of
computational methodologies capable of evaluating the carcinogenic effects of chemical
mixtures exacerbates this challenge. Consequently, it is crucial to develop innovative
approaches to gain a more comprehensive understanding of the risks posed by both known
and unknown mixtures. This challenge is particularly evident in the case of PFASs, a class
of chemicals known for their persistent nature, the tendency to exist as mixtures, and the
potential to induce cancer. Recognizing this gap, the primary objective of our study is to
introduce a novel methodology that addresses these challenges by predicting the dose-
dependent carcinogenic potential of chemical mixtures while simultaneously enriching the
dataset on carcinogenic mixtures. To accomplish this, in addition to using the literature-
reported carcinogenic mixtures, we expand the mixtures dataset by generating assumption-
based virtual chemical mixtures for all the classification models. Assumptions are based
on the existing carcinogenic and noncarcinogenic mixtures (see details in Section 2). By
incorporating these virtual mixtures, we aim to supplement the limited dataset and provide
a more comprehensive representation of chemical mixtures. This dataset augmentation
allows for a broader exploration of various mixture compositions and concentrations,
enabling more robust predictions of carcinogenicity.

In our study, we develop an innovative hybrid neural network method called ‘HNN-
MixCancer’ specifically designed to predict the carcinogenic potential of various chemical
binary mixtures accurately. This method combines the strengths of neural network algo-
rithms with a mathematical framework that models the unique characteristics of chemical
mixtures. By leveraging the complex relationships between mixture components and their
concentrations modeled by a mathematical framework, the HNNMixCancer provides reliable
predictions on the carcinogenicity of these mixtures. To ensure accuracy, we construct
classification models within the HNN-MixCancer framework, considering factors such as
the chemical composition and concentrations of the mixtures. Additionally, we enhance
the training data by introducing assumption-based virtual chemical mixtures. Preliminary
results from the HNNMixCancer demonstrate promising outcomes, successfully predicting
the dose-dependent carcinogenic potential of chemical mixtures. Rigorous testing and vali-
dation processes against known experimental data are conducted to evaluate the model’s
performance, ensuring its reliability and accuracy in predicting the carcinogenic properties
of diverse chemical mixtures.

The HNNMixCancer opens up new avenues for predicting the carcinogenic potential of
chemical mixtures in terms of carcinogenic or noncarcinogenic, categorical carcinogenicity,
and carcinogenic potency, offering a valuable tool for risk assessment and decision-making
in various industries and regulatory bodies. The introduction of this novel methodology,
alongside the enhanced dataset on carcinogenic mixtures, represents a significant advance-
ment in computational toxicology. Furthermore, the method developed in this study lays
the foundation for future research endeavors, inspiring further innovation and exploration
of new approach methodologies (NAMs) in profiling mixture carcinogenesis alternatives to
animal models.
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2. Methods
2.1. Data Collection
2.1.1. Mixtures from the Literature and Drug Combination Database (DCDB)
Literature-Derived Mixtures

We obtained 54 carcinogenic binary chemical mixtures, including PFAS (Supplemen-
tary Table S1), and 25 binary drug mixtures without carcinogenic effects but exhibiting
anticancer properties (Supplementary Table S2) from various literature sources.

Mixtures from the Drug Combination Database (DCDB)

We obtained 942 drug combinations from the DCDB database at http://public.synergylab.
cn/dcdb/download.jsf (accessed on 20 June 2021). Out of these combinations, 757 binary
combinations were mapped with the corresponding drug bank ID using the DCC_ID of
each drug. Mordred descriptors were calculated for a subset of 646 drug combinations. The
SMILES and drug bank ID information for the DCDB drug combinations were sourced from
www.drugbank.ca.

Literature-Derived and DCDB Mixture Data for Binary Classification Models

We gathered 54 carcinogenic and 25 noncarcinogenic chemical combinations from
the existing literature, along with 30 drug combinations from DCDB identified as noncar-
cinogens. Due to the absence of precise dose values in this dataset, we assumed equal
concentrations of the chemical components in each mixture when calculating descriptors.

Validating Binary Classification Models with Assumption-Based Virtual Mixture Dataset

To test the accuracy of the prediction models developed for assumption-based virtual
binary mixtures, we utilized a validation set comprising 54 carcinogenic and 25 non-
carcinogenic binary mixtures collected from the literature (Section 1) and 30 binary drug
combinations from the DCDB. The procedure for constructing the assumption-based virtual
binary mixtures is described in Section 2.

2.1.2. Compilation of Mixture Data for the Creation of an Assumption-Based Virtual
Mixture Dataset

Due to the limited availability of experimental data on the carcinogenicity of chemical
mixtures for the purpose of developing machine learning models, we sought out individual
chemicals classified as carcinogenic or noncarcinogenic from reputable data sources. These
sources included the Military Exposure Guideline (MEG), the National Toxicology Program
(NTP) of the US Department of Health and Human Services, the International Agency
for Research on Cancer (IARC), the Japan Society for Occupational Health (JSOH), and
the Carcinogenic Potency Database (CPDB). Subsequently, using a series of assumptions
outlined above, we then generated mixtures comprising both carcinogenic and noncarcino-
genic substances.

Chemical Exposure Guidelines for Deployed Military Personnel Version 1.3 (MEG)

The carcinogenicity data were sourced from the Technical Guide 230 Environmental
Health Risk Assessment and Chemical Exposure Guidelines for Deployed Military Per-
sonnel (MEG) [67]. The MEG dataset encompasses acute and chronic exposure data for
carcinogenic air, water, and soil chemicals. These carcinogenic chemicals are classified into
five distinct groups: Group A (human carcinogen), Group B (probable human carcinogen),
Group C (possible human carcinogen), Group D (not classifiable), and Group E (no evidence
of carcinogenicity).

National Toxicology Program (NTP)

We collected carcinogenic chemicals classified by the National Toxicology Program
(NTP) [68] that fall into two distinct groups: (1) chemicals that are reasonably anticipated
to be human carcinogens and (2) chemicals that are known to be human carcinogens.

http://public.synergylab.cn/dcdb/download.jsf
http://public.synergylab.cn/dcdb/download.jsf
www.drugbank.ca
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International Agency for Research on Cancer (IARC)

We collected IARC monographs volume 1–125 [69] carcinogenic chemicals that are
categorized into five groups: Group 1 (carcinogenic to humans), Group 2A (probably
carcinogenic to humans), Group 2B (possibly carcinogenic to humans), Group 3 (not
classifiable as to its carcinogenicity to humans), and Group 4 (probably not carcinogenic
to humans).

The Japan Society for Occupational Health (JSOH)

We collected carcinogenic chemicals from the JSOH (Japan Society for Occupational
Health) [70] published Recommendations for Occupational Exposure Limits, which catego-
rize carcinogenic chemicals into three groups: Group 1 (carcinogenic to humans), Group
2A (probably carcinogenic to humans), and Group 2B (possibly carcinogenic to humans).

Carcinogenic Potency Database (CPDB)

We obtained the median toxicity dose (TD50) rat carcinogenicity data from the CPDB [71]
of the NIH. TD50 refers to the dose rate in mg/kg body weight/day that, when administered
throughout life, induces cancer in half of the test animals. For rat carcinogenicity, we obtained
561 carcinogenic chemicals annotated with TD50 values and 605 annotated as noncarcinogenic
chemicals.

2.1.3. Generating Virtual Mixtures for Binary Classification Models: Assumptions
and Methods

We employed permutations and combinations methods to generate binary and multi-
ple mixture combinations from individual chemicals including emerging PFAS chemicals.
Considering the vast number of possible combinations, we used a representative sampling
approach to capture the diverse range of combinations while reducing the total number.
This was accomplished by selecting chemical samples representing highly similar, medium
similar, and low similar (diverse) combinations using similarity metrics such as Tanimoto
similarity coefficients [72]. For the purpose of generating virtual binary mixture datasets,
we employed various assumptions-based cases to form different combinations of mixtures.
These combinations were utilized to determine whether each combination was classified
as carcinogenic or noncarcinogenic, with the ultimate goal of attaining the highest level
of predictive accuracy. Additionally, we applied the read-across procedure [73], which
assumes that similar molecules exhibit similar characteristics, to assign carcinogenic prop-
erties. In all of the aforementioned assumptions, we assigned a value of ‘1’ to indicate
carcinogenicity for a component chemical or resultant mixture and a value of ‘0’ to indicate
a noncarcinogen. For the training and test datasets, we included 80% of the generated data
in the training set and the remaining 20% in the test set, following all assumptions.

Assumptions Creating the Chemical Mixture Combinations—Case Examples

Case 1: If each chemical in a combination is carcinogenic, and the resultant mixture is
considered carcinogenic or toxic (1 + 1 = 1).

Case 2: If each chemical in a combination is noncarcinogenic, and the resultant mixture
is considered noncarcinogenic (0 + 0 = 0).

Case 3: If each chemical in a combination is noncarcinogenic, but the resultant mixture
is carcinogenic (0 + 0 = 1). In the context of this case 3 assumption scenario for creating a
virtual binary mixture, the description of how two chemicals that are noncarcinogenic can
result in a carcinogenic mixture is provided in the Supplementary Materials.

Case 4: If at least one chemical in a combination is carcinogenic, and the resultant
mixture is considered carcinogenic (1 + 0 = 1). Here, the first chemical is carcinogenic, and
the second chemical is noncarcinogenic.

Case 5: If at least one chemical in a combination is carcinogenic, and the resultant
mixture is considered carcinogenic (0 + 1 = 1). Here, the first chemical is noncarcinogenic,
and the second chemical is carcinogenic.
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Similar assumptions were made for other mixture combinations, including multiple
mixtures. More explanations of cases 4 and 5 and multiple mixtures are provided in the
Supplementary Materials.

Considerations of Chemical Dose and Concentration

In this study, we report only the results of the virtual binary mixtures obtained from
Case 1 (the combinations were formed by mixing carcinogen with another carcinogen
chemical that produces a carcinogenic mixture) and Case 2 (the mixtures were formed by
mixing noncarcinogen with another noncarcinogen chemical that produces a carcinogenic
combination). Importantly, mixture formation requires concentration information of each
component chemical that makes the mixture to calculate the mixture descriptor. Therefore,
we used the reported concentration information associated with a chemical while making
mixture combinations. In instances where concentration information was unavailable for
certain chemical data, we assigned equal concentrations to those cases during the mixture
formation process.

Binary chemical classification into carcinogenic and noncarcinogenic categories in-
volved creating virtual mixtures from the following two data sources.

(i) Data source 1 (MEG): Obtained 106 carcinogenic chemicals (Group A, B, and C) and
three noncarcinogenic chemicals (Group E) with concentration information. Chemicals
in Group D were not considered in either class. We created 5565 carcinogenic binary
mixtures from all possible combinations of the 106 carcinogenic single chemicals. We
also created three noncarcinogenic binary mixtures from possible combinations of
the three noncarcinogenic single chemicals. Then, we calculated the concentration
fraction using the concentration of each single chemical and computed the descriptors
of the mixtures.

(ii) Data source 5 (CPDB): After removing duplicates and conflicting chemicals, this
dataset contributed 508 carcinogenic and 580 noncarcinogenic chemicals compared
to data source 1 (MEG). For CPDB data, we calculated the concentration fraction
using the TD50 value of each single chemical for carcinogenic mixtures and equal
concentration for noncarcinogenic mixtures (as TD50 values do not apply to non-
carcinogens). Then, we computed the descriptors of the mixtures.

The training set for the binary classification model included 5565 carcinogenic mixtures
from MEG and 5000 randomly selected mixtures (out of 128,778) from CPDB. It also
included three noncarcinogenic combinations from MEG and 10,000 randomly selected
mixtures (out of 167,910) from CPDB. Thus, the final training set consisted of 10,565
carcinogenic mixtures and 10,003 noncarcinogenic mixtures.

Preparation of Distinct Test Dataset: Separating Compounds into Training and Test Set

To make a distinct test dataset, compounds were separated into training and test sets
to develop binary classification models, ensuring that the compounds in the test set were
not present in the training set.

(i) Data source 1 (MEG): The 106 carcinogenic chemicals were divided into 84 for training
and 22 for test sets. From these data, 3486 training and 231 test set carcinogenic binary
mixtures were created by considering all possible combinations.

(ii) Data source 5 (CPDB): Among the 508 carcinogens, 408 were allocated for training, and
100 were allocated for the test set. These data created 83,028 training and 4950 test sets
carcinogenic binary mixtures by considering all possible combinations. Additionally,
the 580 noncarcinogens were divided into 464 for training and 116 for testing. From
these data, 107,416 training and 6670 test sets of noncarcinogenic binary mixtures
were created by considering all possible binary combinations.

The combined training set for the binary classification model consisted of 10,086
carcinogenic mixtures (3486 from MEG and 6600 randomly selected from the 83,028 in
CPDB) and 10,003 noncarcinogenic mixtures (three from MEG and 10,000 randomly selected
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from the 107,416 in CPDB). The combined test set included 5181 carcinogenic mixtures (231
from MEG and 4950 from CPDB) and 6670 noncarcinogenic mixtures (from CPDB).

2.1.4. Generating Virtual Mixtures for Multiclass Classification Models: Assumptions
and Methods
Assumptions

1. We focused on intraclass mixtures by combining two chemicals of the same class,
resulting in a mixture representing that class. Interclass mixtures are not reported in
this study.

2. Mixture formation requires concentration information of each component chemical
that makes the mixture to calculate the mixture descriptor. Here, for multiclass
classification, the mixtures were formed with equal concentrations of each component
chemical to calculate the mixture descriptors.

The multiclass models included three classes: Class 0 for noncarcinogens, Class 1
for possibly carcinogenic and not classifiable chemicals, and Class 2 for carcinogens and
probably carcinogens.

More details about the description of the classifications of Class 0, Class 1, and Class 2
are provided in the Supplementary Materials.

The dataset comprised 459 chemicals in Class 0, 604 chemicals in Class 1, and 555 chem-
icals in Class 2, obtained from five different data sources. Mixtures for each class were
created by combining two chemicals from the same class in equal concentrations.

(i) Data 1 (MEG): Chemicals classified into Groups A and B were considered Class 2.
Chemicals in Groups C and D were classified as Class 1. Chemicals in Group E were
classified as Class 0.

(ii) Data 2 (NTP): Chemicals classified as “reasonably anticipated to be a human carcino-
gen” or “known to be human carcinogens” were classified as Class 2.

(iii) Data 3 (IARC): Chemicals classified into Groups 1 and 2A were categorized as Class 2
carcinogens, while those in Groups 2B and 3 were classified as Class 1 carcinogens.

(iv) Data 4 (JSOH): Chemicals classified into Groups 1 and 2A were considered Class 2
carcinogens, and those in Group 2B were classified as Class 1 carcinogens.

(v) A total of 882 carcinogenic chemicals were collected from the four data sources
mentioned above. The combined dataset consisted of two instances in Class 0, 604 in-
stances in Class 1, and 278 instances in Class 2.

(vi) Data 5 (CPDB): From CPDB chemicals in data source 5, after removing duplicates and
repetitive conflicting chemicals, an additional set of 277 carcinogenic chemicals and
457 noncarcinogenic chemicals were obtained. The 277 carcinogenic chemicals were
categorized as Class 2, and the 457 noncarcinogenic chemicals were categorized as
Class 0.

Using the individual chemical datasets mentioned above, we generated the following
binary mixtures:

• Class 0: 459 individual Class 0 chemicals resulted in 105,111 binary mixtures.
• Class 1: 604 individual Class 1 chemicals resulted in 182,106 binary mixtures.
• Class 2: 555 individual Class 2 chemicals resulted in 153,735 binary mixtures.

For the multiclass classification model, we selected the following carcinogenic mixtures:

• 5000 randomly chosen mixtures (out of 105,111) from Class 0.
• 8000 randomly chosen mixtures (out of 182,106) from Class 1.
• 7000 randomly chosen mixtures (out of 153,735) from Class 2.

Preparation of Distinct Test Dataset: Separating Compounds into Training and Test Set

Multiclassification models were also developed by splitting compounds into training
and test sets, ensuring that the compounds in the test set were not present in the training set.
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(i) Class 0: The 459 compounds in Class 0 were divided into 367 for training and 92 for
testing. All possible combinations resulted in 67,161 carcinogenic binary mixtures in
the training set and 4186 mixtures in the test set.

(ii) Class 1: The 604 compounds in Class 1 were divided into 482 compounds for train-
ing and 122 compounds for testing. All possible combinations resulted in 115,921
carcinogenic binary mixtures in the training set and 7381 mixtures in the test set.

(iii) Class 2: The 555 compounds in Class 2 were divided into 443 for training and 112 for
testing. All possible combinations resulted in 97,903 carcinogenic binary mixtures in
the training set and 6216 in the test set.

The combined training set for the multiclass classification model consisted of 20,000
randomly selected binary mixtures, with 5000 from Class 0, 8000 from Class 1, and 7000
from Class 2. The test set consisted of 17,783 binary mixtures, with 4186 from Class 0, 7381
from Class 1, and 6216 from Class 2.

2.1.5. Carcinogenicity Assessment of Virtual Mixtures Using Concentration Addition (CA)
Regression Models: Assumptions and Methods
Assumption

We assumed that a mixture’s TD50 (median toxic dose) is the average of the TD50
values of its two component chemicals. This assumption is based on the concentration
addition (CA) model, which assumes simple addition and a sum of toxic units (TUs) equal
to 1 (see Section 2.2).

CPDB Data: A total of 157,080 carcinogenic binary mixtures were generated by con-
sidering all possible combinations of 561 single carcinogenic chemicals. The TD50 value
of each individual chemical was utilized to calculate the concentration fraction, and the
descriptors for the resulting mixtures were computed.

Final Dataset: For our regression model, we selected 20,000 carcinogenic mixtures
randomly from the pool of 157,080 combinations.

Preparation of distinct test dataset: separating compounds into training and test set.
Regression models were developed by splitting the compounds into training and

test sets and ensuring that the compounds in the test set were distinct from those in the
training set.

CPDB Data: The 561 carcinogenic chemicals were divided into 449 for training and
112 for testing. All possible binary combinations resulted in 100,576 carcinogenic binary
mixtures in the training set and 6216 mixtures in the test set.

The final training set for the regression model comprised 20,000 randomly selected
carcinogenic mixtures from the pool of 100,576 combinations. The test set consisted of 6216
binary mixtures.

2.2. Regression Model

The concentration addition (CA) model [64,65] describes mixture toxicity as follows:

EC50mix =
CM

CA
EC50A

+ CB
EC50B

=
CM

TUA + TUB
, (1)

where EC50mix represents the median effective concentration of the mixture, CA, CB, and
CM denote the concentrations of components A, B, and the mixture, respectively, that are
required to produce a median effect (50% effect) by the mixture, and EC50A and EC50B refer
to the median effective concentration of components A and B when acting individually as
single compounds. If the sum of toxic units (TU) at the median inhibition is equal to 1, it
indicates a simple addition.
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This study employed the concentration addition (CA) model with a simple addition
approach to determine the mixture TD50 in the CPDB data. The TD50 of the mixture given
by the CA model is as follows (from Equation (1)):

TD50mix =
CM

CA
TD50A

+ CB
TD50B

=
CM
TU

. (2)

The sum of toxic units (TUs) of each component gives the joint TU of the mixture.
For simple addition,

TU =
CA

TD50A
+

CB
TD50B

= 1. (3)

Considering the equitoxic ratio of the components A and B, the toxic unit of the two
chemicals should be TUA:TUB = 0.5:0.5. Thus,

TU = 0.5 + 0.5,

CA= 0.5 × TD50A, CB= 0.5 × TD50B,

CM= CA +CB= 0.5 × TD50A+0.5 × TD50B. (4)

Hence, the TD50 of the mixture is the average of the TD50 of the component chemicals.

TD50mix= CA+CB= 0.5 × TD50A+0.5 × TD50B. (5)

With TD50mix available, the concentration of the component chemicals A and B can be
calculated using the concentration fraction pA = CA

CM
and pB = CB

CM
as the scaling factor:

CA = pA×CM =pA × TD50mix, (6)

CB = pB × CM = pB × TD50mix. (7)

2.3. Descriptor Calculation
Descriptor Calculation for Component Chemicals

SMILES is the chemical structure representation using ASCII strings. Descriptors were
calculated using Mordred descriptor calculator [74] which calculates 1613 2D molecular
descriptors from SMILES. We kept a final set of 653 descriptors with no missing values in
any of the calculated descriptors.

2.4. Descriptor Calculation and Integration of Dose-Dependent Relationship for the Chemical
Mixture: Mathematical Method and Process
2.4.1. The Dose-Dependent Ratio of Different Chemical Components in a Mixture

All the collected data were converted to mol/L before calculating the log (1/EC50 or
LC50, or ED50). Mole fractions of the component chemicals in a mixture were calculated
from their median effective concentration when acting alone and their corresponding
carcinogenicity or toxicity ratio in the mixture. Dose-dependent chemical mixture descriptor
‘D′ was calculated using three different mathematical formulas (sum, difference, and norm)
as the basis as described previously [75].

Sum: The mixture descriptor ‘D′ was calculated as the sum of the molecular descriptors
or fingerprints d1, d2 . . . dn of the two or more components weighted by their respective
mole fractions (dose-dependent) x1, x2 . . . xn in the mixture:

D = x1d1 + x2d2 + · · · ..xndn (8)
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Difference: The mixture descriptor D was calculated as the absolute difference between
the molecular descriptors:

D = |x1d1 − x2d2 − · · · ..xndn| (9)

Norm: The mixture descriptor D was calculated as follows for the molecular descriptors:

D =

√
(x1d1)

2 + (x2d2)
2 + · · · .(xndn)

n (10)

In this study, we use and report only the sum method results. Mixture descriptors ‘D′

for the 653 descriptors were calculated using the sum method [73]. The mixture descriptor
‘D′ was calculated as the sum of the molecular descriptors d1 and d2 of the two component
chemicals of the mixture, each scaled by their respective concentration fractions x1 and x2
in mg/L:

D = x1d1 + x2d2 (11)

2.4.2. Structural Representation Descriptor Using SMILES of the Chemicals

The SMILES S for the mixture was generated by simple concatenation of the two
SMILES strings S1 and S2 with a period (.) as the separator.

S = S1.S2. (12)

2.4.3. SMILES Preprocessing

In our deep learning model, we utilized the ASCII strings of the SMILES representation
of chemicals as an input feature. Python’s Tokenizer class was employed to encode the
SMILES string into numerical form. We considered the 94 characters in the ASCII table,
represented by decimal numbers 33 to 126, to ensure that no character in the SMILES string,
regardless of its format, is missed. These 94 characters made the vocabulary of the possible
characters in the SMILES. A dictionary, D = {‘!’:1, ‘”’:2, ‘#’:3, ‘$’:4, . . . , ‘C’:35, . . . , ‘~’:94},
was created that maps every character in the list of 94 ASCII characters to a unique index.
A vector was created for the SMILES of each compound by converting each character in
the SMILES string to its corresponding index in the dictionary. The resulting vector for
the SMILES was padded with zeros or truncated so that it was of uniform length, L. We
previously described in detail the SMILES preprocessing of chemicals [76–78].

2.5. Machine Learning Method
Hybrid Neural Network Method

We utilized the hybrid neural network (HNN) framework [76–78], which we devel-
oped for single chemical toxicity and carcinogen prediction. In contrast to the original
model’s one-hot encoding of SMILES, here, we vectorized the SMILES using the method
described in the SMILES preprocessing section. The HNN method, implemented using
the Keras API in Python, comprises a convolutional neural network (CNN) for learning
structural attributes (SMILES) and a feedforward neural network (FFNN) for learning from
chemical descriptors. A CNN framework processes the complex matrix generated from the
SMILES strings, while a multilayer perceptron (MLP) FFNN is employed to process and
learn from the chemical descriptors and fingerprints. In this approach, the Keras embed-
ding layer is utilized to convert each character’s index in the SMILES string into a dense
vector of size 100. Consequently, the input 2D array of size K × L, where ‘K’ represents
the number of SMILES and ‘L’ denotes the maximum length of SMILES, is transformed
into a 3D array of size K × L × 100. The 3D array, consisting of one-hot encoded SMILES
strings and image bytes, serves as the input for the CNN, while the chemical descriptors
and fingerprints are provided as input to the FFNN. The output from the pooling layer
of the CNN is merged with the final fully connected layer of the FFNN to perform the
ultimate classification. For binary classification, the sigmoid activation function is applied.
At the same time, for multiclassification, the fully connected layer utilizes the softmax
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activation function, generating ‘N’ probabilities, each corresponding to a specific class.
For all methods, 30 simulations/iterations are executed, and the average is calculated for
statistical metrics such as AUC, accuracy, selectivity, sensitivity, and precision.

2.6. Developing Binary and Multiclass Classification Models Using Alternative Machine
Learning Methods

To compare and evaluate the predictions of the HNN method, we developed binary
and multiclass classification models utilizing various machine learning techniques, in-
cluding random forest (RF), bagged decision tree (bootstrap aggregating or bagging), and
adaptive boosting (AdaBoost).

2.7. Developing Regression Models Using Alternative Machine Learning Methods

To compare and evaluate the predictions of the HNN method, we developed re-
gression models using various machine learning methods, including random forest (RF),
support vector regression (SVR), gradient boosting (GB), kernel ridge (KR), decision tree
with AdaBoost (DT), and KNeighbors (KN). These models were implemented using the
sklearn package in Python to generate the final consensus prediction of the mixture car-
cinogenicity. All these different machine learning methods were used for the comparative
performances with our hybrid HNN method and to obtain consensus method predictions.
The consensus predicted value was determined by calculating the average of the predicted
values generated by the seven methods.

2.8. Model Evaluation
2.8.1. Binary and Multiclass Classification Model

We employed a robust evaluation process to evaluate the mixture classification models’
performance. First, approximately 20% of the available data were randomly (until otherwise
specified) allocated as the test set for each iteration to ensure an unbiased assessment. The
evaluation process was repeated for 30 iterations, and the average results were used to
gauge the model’s performance.

Several metrics were employed to assess the classification models. Accuracy, which
measures the proportion of correctly classified instances, was utilized as a primary eval-
uation metric. Additionally, the area under the receiver operating characteristic curve
(AUC) was calculated to assess the model’s ability to discriminate between different classes.
Sensitivity, representing the true positive rate, and specificity, representing the true negative
rate, were also considered to evaluate the model’s performance. These metrics provide
insights into the model’s ability to identify positive and negative instances within the
dataset correctly. Supplementary Equation (S1) provides further details on how these
metrics were computed.

We utilized micro-averaging for multiclass classification to calculate the average value
across all classes. This technique involved converting the data into binary classes and
assigning equal weight to each observation, enabling a fair evaluation of the model’s
performance across multiple classes. By considering the average performance across all
classes, we obtained a comprehensive understanding of the model’s overall classification
accuracy and performance.

2.8.2. Regression Model

In the regression analysis, a similar evaluation process was conducted. In each of
the 30 iterations, approximately 20% of the data were randomly set aside (until otherwise
specified) as the test set to evaluate the model’s predictive performance. This random
allocation ensured that the test set was representative of the entire dataset and reduced the
potential for bias.

To assess the regression models, several metrics were employed. The mean square
error (MSE), which quantifies the average squared difference between the predicted and
actual values, provided a measure of the model’s overall prediction accuracy. The mean
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absolute error (MAE) was also utilized to evaluate the average magnitude of the errors
made by the model. Additionally, the coefficient of determination (R2), a measure of the
proportion of variance in the dependent variable explained by the model, was calculated to
assess the goodness of fit. Supplementary Equation (S2) provides further details on how
these metrics were computed.

By considering these metrics, we could comprehensively evaluate the regression mod-
els’ performance. The MSE and MAE metrics provided insights into the accuracy and
precision of the predictions. In contrast, the R2 metric allowed us to assess the overall
goodness of fit of the model to the data. Through this rigorous evaluation process, we ob-
tained a thorough understanding of the classification and regression models’ performance
in predicting the carcinogenic potential of chemical mixtures. These evaluation metrics
enable us to assess the models’ accuracy, discrimination ability, and predictive capabilities,
thereby ensuring the reliability and robustness of our findings.

All the results presented for the model evaluation are the average of 30 repeats.
Approximately 20% of the data were separated randomly in each iteration as test sets, and
the remaining data were taken as training sets subjected to fivefold cross-validation, except
that the test sets were randomly selected in each iteration. For the fivefold cross-validation,
we used 80:20 training to test set ratios, which are good numbers for the significant data size
used in this study. Furthermore, the data were shuffled in each iteration before separating
the training and the test set to ensure that the process did not end up with a dataset
containing bias in both the training and the test set. Furthermore, the average performance
metrics were calculated from the outcome of 30 simulations for the classification models.
Training 80% of the data gave more room for better performance (compared to 10-fold
cross-validation with 90% data in the training set) while predicting for external datasets
using a model trained on 100% of the data.

Furthermore, to avoid bias and overfitting problems, after conducting initial tests on
the predictive capability with randomly chosen training and test datasets, we evaluated
HNN performance alongside various machine learning methods for the distinct training
and test datasets. To achieve this, we simulated training and test datasets comprising
distinct sets of chemicals. Here, our approach was to segregate compounds into the training
and test sets, ensuring that each set consisted of unique compounds and combinations
without any bias. This rigorous methodology was employed to avoid any potential biases
or overlapping data between the training and test sets.

3. Results and Discussion

Here, we developed the hybrid neural network framework called HNN-MixCancer
(referred to as HNN) to predict the carcinogenic potential of chemical mixtures in terms of
carcinogenic or noncarcinogenic, categorical carcinogenicity, and carcinogenic potency. To
simulate the chemical mixtures, a mathematical framework was combined with the HNN
framework. To assess the prediction performance of the HNN models, we constructed
different classification models such as binary model (carcinogenic or noncarcinogenic), mul-
ticlass classification model (categorical carcinogenicity) and regression model (carcinogenic
potency). To build these models, we utilized a combination of experimental data from the
literature that provided information on chemical mixtures. However, given the limited
availability of experimental mixture data, we also generated assumption-based virtual
chemical mixtures to enrich the training dataset. This approach allowed us to compensate
for the lack of empirical data and improve the robustness of our models. To compare and
improve the prediction performance of the HNN method, we also developed classification
models based on several other methods, including random forest (RF), Bootstrap aggre-
gating (bagging), adaptive boosting (AdaBoost), support vector regressor (SVR), gradient
boosting (GB), kernel ridge (KR), decision tree with AdaBoost (DT), and KNeighbors (KN).
These alternative methods were employed to develop binary, multiclass, and regression
models, ensuring a comprehensive evaluation of the prediction performance. We also
utilized these methods to generate an ensemble model for consensus prediction.
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The binary classification models were designed to determine whether a chemical
mixture is carcinogenic or noncarcinogenic, providing a clear classification of its potential
risk. On the other hand, the multiclass classification models aimed to categorize chemical
mixtures into different classes on the basis of their degree of carcinogenicity. These models
facilitated a more nuanced understanding of the mixture’s potential effects, allowing for
a finer classification of their carcinogenic potential. When dose information was absent,
both the binary and the multiclass models relied on equal concentrations of the component
chemicals to calculate the concentration fraction and derive a weighted mixture descriptor.

Regression models, on the other hand, were employed to predict the effective concen-
tration at which a chemical mixture becomes carcinogenic. These models assumed a simple
addition of the concentration addition (CA) model, incorporating an equitoxic ratio of the
component chemicals to calculate the mixture’s carcinogenicity. The regression models
leveraged this information to estimate the specific concentration at which the mixture
exhibits carcinogenic effects. To obtain the mixture descriptor, the weight was calculated
using the TD50 (median toxic dose) of the single carcinogens, and the mixture TD50 was
determined by averaging the TD50 values of the component chemicals. This approach
allowed for the quantification and characterization of the carcinogenic potential of the
chemical mixtures.

By employing these diverse models within the HNN framework, we aimed to provide
accurate predictions of the dose-dependent carcinogenic potential of chemical mixtures.
Through the binary and multiclass models, we obtained valuable insights into the classifi-
cation of mixtures based on their carcinogenicity. In contrast, the regression models offered
quantitative estimations of the effective concentrations at which carcinogenic effects occur.
This comprehensive modeling approach allowed us to capture the complex relationships
between mixture components, concentrations, and their carcinogenic potential, ultimately
enhancing our understanding of the risks associated with chemical mixtures. The detailed
results and their discussions are presented below.

3.1. Carcinogenicity Prediction through Binary Classification Using Literature and DCDB Data

Binary classification models were developed using the HNN, RF, bagging, and Ad-
aBoost methods to predict carcinogenicity. The models were trained on a dataset consisting
of 54 carcinogenic and 25 noncarcinogenic combinations from the literature, along with
30 drug combinations from the DCDB database classified as noncarcinogens. Among the
models, the HNN demonstrated the highest accuracy of 92.72%, sensitivity of 90.85%, and
specificity of 94.82% (Figure 1A,C,D). Additionally, the HNN and AdaBoost achieved the
highest AUC of approximately 0.96 compared to other methods (Figure 1B). In summary,
the HNN outperformed other machine learning methods in terms of accuracy and achieved
the highest AUC for carcinogenicity prediction.

3.2. Predicting Carcinogenicity through Binary Classification Using Assumption-Based Virtual
Binary Mixtures

During our comprehensive survey of various data sources, it became apparent that
there was a lack of experimental data in the literature that could be used to train the binary
mixture models required for our research on carcinogenicity prediction. In light of this
limitation, we developed a strategy to address the issue by creating a virtual library of
binary mixtures. This involved incorporating several assumptions, which were thoroughly
explained in Section 2. By employing this approach, we successfully expanded the training
dataset by including both carcinogenic and noncarcinogenic mixtures. Subsequently, we
utilized this augmented dataset to construct accurate and reliable machine learning models.
A noteworthy advantage of utilizing assumption-based binary mixtures is the ability to
encompass a diverse range of structural variations within our dataset. This inclusion
significantly improves the representativeness and robustness of our models, enabling them
to capture a broader spectrum of real-world scenarios.
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3.2.1. Carcinogenicity Prediction of Chemical Mixtures Using Randomly Selected Training
and Test Sets

To assess the predictive capabilities of the HNN (hybrid neural network) alongside
other machine learning methods, we commenced the evaluation process by simulating ran-
domly selected mixtures for both the training and the test datasets. This approach allowed
us to assess the performance and generalization ability of the models when challenged with
new and unknown or unfamiliar carcinogenic data. By employing this rigorous testing
methodology, we aimed to obtain reliable and unbiased predictions of carcinogenicity for
chemical mixtures.

Carcinogenicity Prediction Using Binary Classification

To assess the carcinogenic potential of virtual binary mixtures using a binary classifica-
tion model, we formed carcinogenic mixtures by pairing carcinogens with other carcinogens.
Conversely, noncarcinogenic mixtures were created by pairing noncarcinogens with other
noncarcinogens. To compile our dataset of binary mixtures, we leveraged data from two
reliable sources: the MEG and CPDB. Subsequently, binary classification models were
developed using the HNN, RF, bagging, and AdaBoost methods, considering 20,568 binary
mixtures. In each simulation, a randomly selected 20% of the mixtures were reserved as a
test set. The AdaBoost and HNN methods exhibited exceptional predictive performance
among the binary classification models. Their statistical metrics, including accuracy, AUC,
sensitivity, and specificity, surpassed 99% (Figure 2). These findings highlight the superior
capabilities of the AdaBoost and HNN in accurately predicting carcinogenicity within the
context of binary mixtures.
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Validation of the Binary Classification Models

Validation of the binary classification models was the next step in our study. The pur-
pose was to conduct external validation to assess the prediction capability, reproducibility,
and generalizability of the HNN to new and diverse datasets. The evaluation of the predic-
tive ability of the binary classification models was performed using an external validation
set as the test set. The external dataset used consisted of 79 mixture data obtained from the
literature and 30 drug combinations sourced from the DCDB. We utilized a training set com-
prising 20,568 virtual binary mixtures to train the models. These mixtures were developed
on the basis of binary mixture data from MEG and CPDB. The use of such a large training
set enabled comprehensive coverage of various chemical combinations, contributing to the
robustness of the models. Among the methods tested, the HNN demonstrated the highest
accuracy of 80.55% during the external validation (Figure 3A). This accuracy represents
the HNN’s ability to classify carcinogenic and noncarcinogenic mixtures correctly. The
HNN-generated model also achieved an AUC of 0.86, indicating a robust discriminatory
power in distinguishing between the two classes (Figure 3B). Moreover, the sensitivity of the
HNN model was determined to be 66.29%, indicating its capacity to identify carcinogenic
mixtures (Figure 3C) accurately. In contrast, the RF (random forest) model exhibited the
best average specificity of 99.5% during the external validation (Figure 3D). This signifies
the RF model’s ability to correctly classify noncarcinogenic mixtures with high precision,
minimizing false-positive predictions.
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The exceptional predictive performance observed during the external validation
demonstrates the HNN method’s ability to predict the carcinogenicity of chemical mixtures.
The high accuracy, AUC, and sensitivity obtained by the HNN provide strong evidence of
its efficacy in identifying potential carcinogens accurately. Furthermore, the RF model’s
excellent specificity further highlights its capability to distinguish noncarcinogenic mixtures
reliably. In summary, the external validation process confirmed the binary classification
models’ predictive capability, reproducibility, and generalizability. The HNN model exhib-
ited excellent accuracy, AUC, and sensitivity in predicting the carcinogenicity of chemical
mixtures, while the RF model excelled in specificity. These findings instill confidence in
the HNN method’s flexibility to predict the carcinogenic potential of various unknown
chemical mixtures.

Carcinogenicity Prediction Using Multiclass Classification

To enable the prediction of categorical carcinogenicity of chemical mixtures, we next
proceeded to develop multiclass classification models. For this purpose, categorical data
were collected from multiple sources, including MEG, NTP, IARC, and JSOH. Detailed
information regarding the data sources, collection, training, and test set preparation can
be found in Section 2. The chemicals included in the multiclass models were initially
categorized into three classes: Class 0, representing noncarcinogens; Class 1, indicating
possibly carcinogens and not classifiable chemicals; Class 2, representing carcinogens and
probably carcinogens. This classification scheme allowed for a comprehensive assessment
of the carcinogenic potential of chemical mixtures.

To construct the training sets, compounds within each class were paired together,
creating mixtures belonging to the same class. The training set comprised 20,000 binary
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mixtures, which served as a foundation for training the multiclass classification models.
Additionally, 20% of the mixtures were randomly selected for each simulation to form
the test set, ensuring an unbiased evaluation of the models’ performance. The multiclass
classification models were developed using various methods, including HNN, RF, bagging,
and AdaBoost. These methods encompassed a range of algorithms and techniques, each
with its own strengths and characteristics.

The HNN method exhibited the best predictive performance among the multiclass clas-
sification models. It achieved an overall accuracy of 96.03%, indicating its ability to correctly
classify chemical mixtures into their respective classes (Figure 4A). The micro-accuracy was
97.35%, further highlighting the HNN method’s capability to predict individual classes
(Figure 4B) accurately. Additionally, the HNN model achieved a micro-AUC of 0.99, in-
dicating a robust discriminatory power in distinguishing between the different classes
(Figure 4C). The micro-sensitivity and micro-specificity of the HNN model were found to
be 96.03% and 98.01%, respectively (Figure 4D,E), demonstrating its ability to identify both
positive and negative cases correctly. In contrast, the AdaBoost method showed the lowest
predictability among the multiclass classification models (Figure 4). While the specific
performance metrics for AdaBoost are not mentioned, it was observed that its predictive
performance fell behind the other methods in terms of overall accuracy, AUC, sensitivity,
and specificity. In summary, the development of multiclass classification models enabled
the prediction of the categorical carcinogenicity of chemical mixtures. The HNN method
exhibited superior predictive performance, achieving high accuracy, AUC, sensitivity, and
specificity. This indicates its efficacy in accurately classifying chemical mixtures into their
respective classes. On the other hand, AdaBoost showed the lowest predictability among
the methods for multiclassification.

Carcinogenicity Prediction Using Regression

Next, we aimed to predict carcinogenic potency by utilizing various regression models.
To accomplish this, we employed the carcinogenic potency TD50 data sourced from the
CPDB, as outlined in Section 2. The regression models were developed using different
methods, including HNN, RF, SVR, GB, KR, DT, and KN. To evaluate the performance
of these regression models, we utilized three metrics: coefficient of determination (r2),
mean-square error (MSE), and mean absolute error (MAE). The results of our analysis are
presented in Figure 5. We randomly selected 20% of the 20,000 binary mixtures for each
simulation as the test set, while the remaining 80% comprised the training set. Figure 5A
demonstrates that, except for the SVM method, all other methods achieved an r2 value
greater than 0.94. Notably, the HNN and NN methods exhibited the highest r2, exceeding
0.96. Additionally, these methods yielded the lowest MSE of 0.03 (Figure 5B) and MAE
of 0.05 (Figure 5C), respectively, showcasing their superior performance. In summary, by
comparing various methods, we found that the HNN and NN approaches yielded the
most accurate predictions, as indicated by their high r2 values and low MSE and MAE
scores. These findings highlight the potential of the HNN method in accurately estimating
carcinogenic potency.

3.2.2. Predicting Carcinogenicity of Chemical Mixtures with Distinct Training and Test
Set Data

Next, after conducting initial tests on the predictive capability of the hybrid neural
network (HNN), we evaluated its performance alongside various machine learning meth-
ods for the distinct training and test datasets. To achieve this, we simulated training and
test datasets comprising distinct chemical compounds. Our approach involved developing
classification models by segregating compounds into the training and test sets, ensuring
that each set consisted of unique compounds and combinations. By doing so, we ensured
that none of the compounds present in the test set were included in the training set. This
rigorous methodology was employed to avoid any potential biases or overlapping data
between the training and test sets. It is important to note that we meticulously avoided
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selecting randomly chosen chemicals from the training set for each simulation to form
the test set. This deliberate selection process ensured that the test set remained entirely
independent, enabling a robust evaluation of the model’s predictive capabilities. By adopt-
ing this comprehensive strategy, we aimed to provide a fair and unbiased assessment of
the HNN’s performance compared to other machine learning techniques in the context of
chemical compound classification.
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Carcinogenicity Prediction Using Binary Classification

The single carcinogens obtained from the MEG and CPDB datasets were divided
into training and test sets to predict the carcinogenicity of chemical mixtures. The binary
mixtures were then formed by pairing one carcinogen with another carcinogen, while the
binary noncarcinogen mixtures were created by pairing noncarcinogens. We employed the
HNN, RF, bagging, and AdaBoost methods to develop binary classification models using
the training set, which consisted of 20,089 binary mixtures. Subsequently, we evaluated
the performance of these models on the test set, which comprised 11,851 binary mixtures.
Among the different methods, the AdaBoost models demonstrated the highest predictive
performance. They achieved an accuracy of 98.16%, an area under the receiver operating
characteristic curve (AUC) of 0.996, a sensitivity of 97.07%, and a specificity of 99%. These
results, as shown in Figure 6, highlight the effectiveness of the AdaBoost approach in
accurately classifying the carcinogenic potential of binary mixtures for the case of distinct
datasets. Conversely, the performance of the HNN model was less accurate in this context,
which needs improvement in the distinct case, as discussed in Section 4. It is worth noting
that separating the training and test sets yielded improved predictive accuracy compared
to the models developed without separating these sets (as shown in Figures 2 and 6,
Supplementary Table S3). This suggests that the separation of datasets can contribute to
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better model performance, particularly in the case of binary classification for carcinogenicity
prediction. In summary, we successfully predicted the carcinogenic potential of chemical
mixtures by utilizing binary classification models. Moreover, separating the training and
test sets further enhanced the accuracy of the models.
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Figure 5. The statistical metrics of various regression models, namely HNN, RF, SVR, GB, KR, DT-
Boost, NN, and consensus, in relation to assumption-based mixtures: (A) coefficient of determination
(R2), (B) mean squared error (MSE), and (C) mean absolute error (MAE). The HNN, RF, SVR, GB,
KR, DTBoost, and NN methods were utilized to generate a consensus prediction. Green diamond
represents outliers.

Carcinogenicity Prediction Using Multiclass Classification

Carcinogenicity prediction using multiclass classification involved the classification of
single carcinogens obtained from MEG, NTP, IARC, and JSOH into different class categories:
Class 0, Class 1, Class 2, and Class 3. This classification process was described in detail
in Section 2. The single carcinogens were then divided into training and test sets before
creating mixtures. The training set comprised 20,000 binary mixtures, while the test set
consisted of 17,783 binary mixtures. Different multiclass classification models, namely,
HNN, RF, bagging, and AdaBoost, were developed using the training set. These models
were then evaluated for their predictive performance using the test set. Among the models,
the RF models demonstrated the highest accuracy, micro-accuracy, micro-AUC, micro-
sensitivity, and micro-specificity. Specifically, the RF models achieved an overall accuracy
of 62.22%, a micro-accuracy of 74.81%, a micro-AUC of 0.79, a micro-sensitivity of 62.22%,
and a micro-specificity of 81.11% (Figure 7). The HNN method performance was close
to optimal. On the other hand, the AdaBoost method yielded the lowest performance
metrics in this case of multiclassification, as shown in Figure 7. However, it is noteworthy
that, when the training and test sets were separated, the highest overall accuracy obtained
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significantly decreased compared to the models built without separating these sets. This
information is illustrated in Figures 4 and 7, as well as in Supplementary Table S4).
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Figure 6. Statistical metrics of binary classification models for assumption-based virtual binary
mixtures, including HNN, RF, bagging, and AdaBoost: (A) accuracy, (B) AUC, (C) sensitivity, and
(D) specificity. Datasets were generated from MEG and CPDB databases of carcinogens and noncar-
cinogens. Green diamond represents outliers.

Carcinogenicity Prediction Using Regression Model

The single carcinogens from the CPDB dataset were separated into training and test
sets before forming their mixtures. The mixtures were formed with 20,000 binary mixtures
in the training set, and the predictive performance of the models was tested for the 6216
binary mixtures in the test set. The HNN, RF, SVR, GB, KR, DT, and KN-based regression
models were developed for the 20,000 binary mixtures in the training set, and the predictive
performance was tested on the 6216 binary mixtures in the test set. The HNN method gave
the highest r2 of 0.38, along with the lowest MSE of 0.97 and lowest MAE of 0.76 (Figure 8).
In the regression model, the predictive performance of the models reduced drastically when
the single chemicals were separated into training and test sets as compared to the regression
models built without separating the training and sets (Figures 5 and 8, Supplementary
Table S5).

In summary, several trends emerge when comparing the performance of machine
learning models between distinct training and test datasets (where the training and test
data were completely separated) and nonseparated datasets (where the test data were
randomly selected from within the training set). The predictive performance of the models
showed the following patterns: a slight decrease for binary classification, a significant
decrease for multiclass classification, and a drastic decrease for regression models.

We investigate these trends below and explore the reasons behind them. In binary clas-
sification, the machine learning task involves predicting the carcinogenicity of a chemical,
which means there are only two possible outcomes: carcinogen or noncarcinogen. When
the training and test data are separated, the models tend to exhibit a slight decrease in
performance. This can be attributed to the fact that the models are trained on a specific
distribution of data and may struggle to generalize well to new instances in the test set.

Moving on to multiclass classification, the scenario becomes more complex as there
are three possible outcomes: Class 0, Class 1, and Class 2. In this case, when the training



Toxics 2023, 11, 605 21 of 28

and test data are separated, the models experience a significant decrease in performance.
The increasing number of classes to be represented poses a challenge for the models, as
they need to learn more intricate decision boundaries and capture the distinctions among
different classes. With the separation of training and test data, the models may have
encountered only some classes during training, leading to reduced accuracy in predicting
them during testing.
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Figure 7. Statistical metrics of multiclass classification models (HNN, RF, bagging, and AdaBoost) for
assumption-based virtual mixtures with separated training and test datasets: (A) overall accuracy,
(B) micro-accuracy, (C) micro-AUC, (D) micro-sensitivity, and (E) micro-specificity. Green diamond
represents outliers.

Regression models, which deal with continuous values and can yield an indefinite
number of outcomes, exhibit a drastic decrease in performance when the training and
test data are separated. Regression tasks involve predicting numerical values, such as
predicting the toxicity level of a chemical. When a chemical present in the test set also
appears in the training set, the models can make predictions with a higher degree of
certainty, as they have learned patterns and correlations specific to that chemical. However,
the uncertainty increases when a chemical in the test set is distinct from the training set
(meaning it does not appear in the training set). The growing number of potential outcomes,
combined with the lack of familiarity with the distinct chemical, makes it challenging for
the models to predict its toxicity level accurately.

Taken together, when training and test data are separated, machine learning models
experience varying degrees of decreased predictive performance. Binary classification
models show a slight decrease, multiclass classification models experience a significant
decrease, and regression models exhibit a drastic decrease. These trends can be attributed



Toxics 2023, 11, 605 22 of 28

to factors such as the increasing number of classes or outcomes to be represented and the
uncertainty that arises when encountering distinct instances in the test set that were not
encountered during training. Understanding these trends can help guide designing and
evaluating machine learning models in different scenarios, ensuring more accurate and
reliable predictions.
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regression models: (A) coefficient of determination (R2), (B) mean square error (MSE), and (C) mean
absolute error (MAE) for the assumption-based mixtures with a separated dataset. Green diamond
represents outliers.

4. Limitations

The performance of the hybrid neural network (HNN) model in predicting the carcino-
genicity of binary mixtures was found to be reduced when using different virtual mixtures
in the training and testing datasets, i.e., distinct datasets. This highlights the need for
enhancements in several aspects of the model, including its architecture, hyperparameters,
training process, and data representation. By addressing these limitations, the HNN model
can be better tailored to the specific task of classifying the carcinogenic potential of binary
mixtures. Despite outperforming other regression models and demonstrating optimal
performance in multiclassification tasks, the HNN method still needs to achieve statistically
superior results. The moderate accuracy observed in the binary classification of virtual
mixtures, along with the limited explanatory power exhibited by the regression model on
the distinct virtual mixture test dataset, can be attributed to the inherent complexity and
variability involved in accurately predicting carcinogenicity. Carcinogenicity is influenced
by various factors, such as molecular properties, chemical interactions, and biological mech-
anisms, all of which contribute to the challenges faced by regression-based approaches in
capturing the underlying relationships accurately.

Furthermore, when individual chemicals are separated into distinct training and test
sets, it can potentially undermine the HNN model’s effectiveness in learning and generaliz-
ing from the data. This separation can lead to the loss of crucial information and disrupt
the underlying patterns within the neural network. Moreover, it may overlook important
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contextual information related to the combined behavior of chemicals within mixtures,
impeding the model’s recognition of these chemicals’ interconnectedness and collective
influence on carcinogenic potential. Consequently, the model’s capacity to capture the
complex interplay of molecular properties, chemical interactions, and biological mecha-
nisms contributing to carcinogenicity might be compromised. To overcome these challenges,
strategies must be developed to acknowledge the holistic nature of binary mixtures. Instead
of isolating individual chemicals, an approach that integrates the chemical components
within the training and test sets can provide a more comprehensive representation of the
underlying patterns. By preserving the combined behavior of mixtures, the model can
more accurately capture the intricate relationships and interactions among the chemicals.
This comprehensive approach enhances the model’s predictive performance by effectively
learning the complex interdependencies and synergistic effects within binary mixtures.
Significant improvements can be achieved in the model’s predictive performance by ad-
dressing the limitations posed by the separation of individual chemicals and implementing
methodologies that preserve the holistic nature of binary mixtures. This comprehensive
approach strengthens the model’s ability to accurately predict the carcinogenicity of binary
mixtures by capturing the intricate relationships and interactions among the chemicals.
Additionally, including additional cases beyond the studied Case 1 and Case 2 in the
binary classification models is expected to enhance the predictive capabilities of the HNN
model. These additional cases, coupled with a comprehensive approach of separating the
training and test datasets, will be incorporated into the next version of the model as part of
ongoing improvements.

Additionally, to further enhance the overall predictive performance of the HNN, an
extensive array of optimization techniques will be applied. This will involve fine-tuning
the model’s architecture and hyperparameters tailored explicitly to this dataset to achieve
optimal performance. Potential improvements can be achieved by exploring adjustments to
the number of hidden layers, neurons per layer, activation functions, and other architectural
choices. Furthermore, refining the training process by optimizing the learning rate or
incorporating regularization techniques may also lead to enhanced performance. To ensure
the quality and representativeness of the training data, it is crucial to construct a diverse and
well-balanced training set that adequately captures the essential characteristics of binary
mixtures. To further improve the accuracy of the HNN, data augmentation techniques
can be employed to introduce additional variations and increase the diversity of the
training samples. Additionally, including additional relevant features holds the potential
to enhance the accuracy of the HNN. For instance, incorporating molecular descriptors or
biological data as additional features can provide comprehensive insights into the task of
carcinogenicity prediction and significantly improve the model’s performance.

In this study, we considered equal doses or different concentrations of the component
chemicals on the basis of the available literature. It has been well documented that chronic
exposure to mixtures of chemicals, which are individually noncarcinogenic at very low
doses, can lead to carcinogenesis through synergistic interactions involving cancer-related
mechanisms [79]. Thus, it would be advantageous to consider the individual doses of
chemicals when predicting the carcinogenicity of binary mixtures and estimating the me-
dian effective dose of the component chemicals in regression models. This approach allows
for a more accurate and realistic evaluation of mixture carcinogenicity. To achieve a more
comprehensive understanding of mixture carcinogenesis, it is essential to model synergistic
interactions that are specific to human cells [80]. Animal models may not accurately reflect
human responses; therefore, incorporating information specific to human cells in future
predictions will contribute to a more reliable assessment of mixture carcinogenicity. Further-
more, this study serves as a proof of concept in developing classification-focused mixture
models that combine elements of both whole mixture- and component-based approaches.
The ongoing development of the HNN, the updated version of the model, will incorporate
all the aforementioned enhancements. Future iterations of the model will include complete
dose–response data, mode of action, combined action (independent, synergistic, or addi-
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tive), and biological response data. These additions will enable a more robust evaluation
of carcinogenicity in mixtures, providing a more comprehensive understanding of the
complex interactions involved.

5. Conclusions

Safeguarding human health and safety from hazardous chemical exposure remains
the primary objective of public health management. The mounting body of evidence
supports the association between hazardous chemical exposure and cancer incidence.
Therefore, it is imperative for environmental protection and health agencies worldwide to
focus on characterizing the carcinogenicity of chemical mixtures. This study introduces
HNNMixCancer, a new machine-learning framework that employs a hybrid neural network
(HNN) to estimate the potential carcinogenicity of chemical mixtures at varying doses. Our
framework combines cutting-edge machine-learning techniques with a mathematical model
to simulate the behavior of mixtures. The results obtained demonstrate the exceptional
predictive power of HNNMixCancer in prioritizing carcinogenic chemical mixtures, even
in cases where experimental data on mixtures are limited. In binary classification, the
HNN outperforms other prominent machine learning methods such as random forest,
bootstrap aggregating, adaptive boosting, support vector regressor, gradient boosting,
kernel ridge, decision tree with AdaBoost, and KNeighbors, achieving an impressive
accuracy of 93% and an AUC of 0.96. External validation on a known mixture test set
further confirms its effectiveness with an accuracy of 81%. In multiclass classification, the
HNN attains an overall accuracy of 96%, surpassing methods such as RF, bagging, and
AdaBoost. The regression models based on HNN, RF, SVR, GB, KR, DT with AdaBoost, and
KN exhibit high R2 values (ranging from 0.90 to 0.97), indicating their efficacy in predicting
the concentration at which a chemical mixture becomes carcinogenic.

Furthermore, we employed assumption-based mixtures to enrich the carcinogenicity
dataset, and HNN demonstrated a high level of reliability in predicting the carcinogenic
potential of virtual binary mixtures with an accuracy of 81%. In multiclass classification, the
HNN achieved the highest overall accuracy of 96% and micro-accuracy of 97%, outperform-
ing other methods. However, it should be noted that when single chemicals were separated
into training and test sets, predictive performance decreased for all methods in binary,
multiclass, and regression classifications due to the increased number of possible outcomes.

Overall, our HNN method retained the highest predictive power for prioritizing
carcinogenic chemical mixtures and performed exceptionally well in external validation.
The promising validation results obtained from in vitro and in vivo PDX models further
validate the predictive capability of HNN, and such additional findings will be detailed
in our forthcoming manuscripts. To the best of our knowledge, this study is the first to
present a method for predicting the carcinogenic potential of chemical mixtures using
various classification models and machine learning techniques. It encompasses binary
classification, categorical carcinogenicity classification, and the estimation of carcinogenic
potency. Ongoing optimization and refinement of HNNMixCancer will aim to address the
limitations discussed. The method can be readily applied to evaluate the carcinogenic
potential of diverse chemical mixtures including chemical type such as PFAS mixtures and
co-occurring chemicals while considering the doses of component chemicals. Moreover,
an enhanced version of our HNN method holds significant value for regulatory purposes.
Although the mixture models are currently in the proof-of-concept stage, we intend to make
future versions and predictions of chemical mixture carcinogenicity publicly accessible
through a user-friendly online web server.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxics11070605/s1, Table S1: Carcinogenic binary chemical com-
binations collected from publications; Table S2: non-carcinogenic binary drug and chemical combi-
nations collected from publications; Table S3: Change in % accuracy for distinct training and test
sets of virtual mixtures for the binary classification; Table S4: Change in % accuracy for distinct
training and test sets of virtual mixtures for the multiclass classification; Table S5: Change in coeffi-
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cient of determination (R2) for distinct training and test sets of virtual mixtures for the regression
classification. Equation (S1): Equations to calculate the evaluation metrics for binary & multiclass clas-
sification; Equation (S2): Equations to calculate the evaluation metrics for regression models; Other
Supplementary Materials: Different cases assumption scenarios for creating a virtual binary mixture.
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