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Abstract: Methylene blue (MB) is a disinfectant used in aquaculture to prevent and treat fish diseases.
However, the release of MB can pose a risk to the receiving water bodies. Zooplankton are the
most sensitive organisms among aquatic life. Hence, this study examined the acute and chronic
toxic effects of MB on zooplankton using Daphnia magna (D. magna) as a test organism to provide
basic data for risk assessment. The results show that 48 h-EC50 and 24 h-LC50 were 61.5 ± 2.3 and
149.0 ± 2.2 µg/L, respectively. Chronic exposure to MB affected the heart rate, beat frequency of
the thoracic limbs, and reproductive ability of D. magna at environmental concentrations higher
than 4.7 µg/L. The cumulative molts, time to production of the first brood, and total number of
living offspring were affected at different MB concentrations, while “abortions” were observed
in high-exposure groups. The activity of superoxide dismutase was increased, while glutathione
S-transferase activity was stimulated at low concentrations and inhibited at high concentrations. In
addition, the malondialdehyde content increased with increasing concentrations of MB. Our findings
demonstrate the impact of MB on the reproduction and growth of freshwater species, as well as their
physiological responses. These results have implications for establishing guidelines on the use of MB
in aquaculture and setting discharge standards.

Keywords: antimicrobial dyes; zooplankton; life table parameters; oxidative damage

1. Introduction

Methylene blue (MB) is an aromatic dye with the molecular formula C16H18CIN3S
and a benzene ring with redox characteristics. It is commonly used in various industries,
including the textile, pharmaceutical, paper, dyeing, printing, paint, pharmaceutical, and
food industries, as well as in medical research and aquaculture [1–3].

In aquaculture, MB is a popular environmental disinfectant. Disinfectants frequently
used in aquaculture can be broadly categorized into three groups: halogens, dyes, and
surfactants. Among the dyes, trityl methane dyes such as malachite green and crystal
violet are prohibited substances due to their long residual time and toxic side effects, so MB
has emerged as one of the best alternatives. It is commonly used to disinfect aquaculture
environments because the ionic compound generated in the aqueous solution can compete
with microbial enzyme systems for hydrogen ions and inactivate the enzymes, which
results in the loss of viability of microorganisms. Furthermore, MB, as an antifungal drug,
is used to prevent and control fish diseases such as saprolegniasis, ichthyophthiriasis,
chilodonelliosis, and gill disease to reduce mortality in fish during transportation [4].

The environment of aquaculture water directly affects whether aquatic animals can
grow quickly and healthily, and the quality of the water is closely related to the occurrence
of diseases. As the water quality deteriorates, it encourages the production of different types
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of pathogens, endangering the growth and development of farmed animals. Disinfectants
play a crucial role in aquaculture, from cleansing water bodies to bathing fish before
transferring them to ponds, disease management, and even water quality regulation.
Disinfectants should be used rationally and scientifically to eradicate or destroy pathogenic
microorganisms in the aquaculture environment and stop the spread of disease.

Malachite green is listed as a banned drug in some countries [5] due to its potential
toxicity to the water environment and human health. It belongs to the same group of
tritylene-based dyes as methylene blue and has a long residual time, as well as teratogenic,
carcinogenic, and mutagenic risks [6]. The widespread use of methylene blue can result
in residues in water bodies that persist in the environment [7], and the associated water
contamination problems cannot be ignored. Additionally, the color of malachite green
can prevent sunlight from passing through the water body, resulting in reduced dissolved
oxygen and inhibited photosynthesis [8]. This can lead to reduced diversity in biological
communities [9–12] and interfere with the normal functioning of aquatic ecosystems.

Recent studies have reported varying toxic effects of MB on different aquatic organisms
(Supplementary Materials, Table S1). Perlberg et al. [13] found that MB was teratogenic
to Pterophyllum scalare, reporting that exposure to a 5 ppm concentration resulted in a
higher incidence of non-inflatable swim bladders. In contrast, Soltanian et al. [14] found
that goldfish (Carassius auratus) exposed to a 2 mg/L solution of methylene blue for
21 days had significantly reduced lethality caused by Aeromonas hydrophila. However, the
fish also exhibited significantly lower levels of neutrophils and aspartate aminotransferase,
indicating some immunosuppressive effects and potential harm to their health. Comparing
the toxicity of MB in various aquatic animals, it is evident that although it is a valuable tool
in aquaculture, it still has some negative consequences. Currently, the U.S. Food and Drug
Administration (FDA), EU Directive 96/23/EC, and Japan’s “positive list” have established
guidelines for detecting MB residues in aquatic products [15]. Despite being repeatedly
banned, MB continues to be used due to its low cost and high efficiency [16,17]. In addition,
many countries, such as China, have yet to establish limits on the use of methylene blue in
animal-derived food products.

Freshwater zooplankton are a critical component of aquatic environments, playing
a vital role in the material cycle and energy flow. Despite their importance, there are still
unanswered questions regarding the ecotoxicity of MB in this group of organisms. Daphnia
magna is a typical representative of zooplankton [18], with a transparent body. It feeds on
algae, which helps improve water quality, and is a natural bait for filter-feeding fish [19,20].
D. magna lays eggs in its brood chamber, where they develop until the eye point appears,
forming an embryo. The embryo then develops into a neonate and is released from the
parent’s body (Supplementary Materials, Figure S1).

Daphnia magna has been extensively used for toxicity testing, identifying water pollu-
tion, and creating water quality standards due to its sensitivity to chemical exposure [21,22].
To assess the toxicity of chemicals to D. magna, a range of parameters were determined,
including reproduction, physiology, swimming behavior, and biochemistry. Growth and
reproductive capacity are sensitive indicators of chronic toxicity for D. magna [23] and are
also important factors in assessing population growth capacity [24], including parameters
such as lifespan, total number of living offspring, time to first brood, cumulative molts,
reproductive rate, and number of aborted eggs. Swimming behavior parameters consist of
swimming activity, swimming time, swimming speed, and so on. Among the physiological
parameters are feeding rate, heart rate, thoracic limb activity, post-abdominal claw move-
ment, and compound eye activity. Biochemical parameters can be categorized as enzymatic
or non-enzymatic. Quantitative studies on enzyme activity variations in D. magna have
been conducted to determine the ecological risk of chemicals [25–27].

The safety of the aquatic environment is a pressing issue in the 21st century, with
significant ramifications for society and the global economy. Yee et al. [28] highlighted the
persistent issue of the negative effects of man-made surface biological contamination. To
address this issue, we used D. magna as a test organism to investigate the acute and chronic
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toxic effects of MB and calculated the median effect concentration (EC50), median lethal
concentration (LC50), and no observed effective concentration (NOEC) to provide basic
data for aquatic ecological risk assessment. Additionally, our findings provide a reference
for the safe and rational use of MB and ecological diversity conservation.

2. Materials and Methods
2.1. Chemicals

The MB solution used in this study was purchased from Sangon Biotech Company
(Shanghai, China), with a blue color and purity ≥ 98%. The basic physical and chemi-
cal properties of MB are presented in Table 1. A stock solution with a concentration of
100 mg/L was prepared with ultrapure water and stored at 4 ◦C in a refrigerator protected
from light.

Table 1. Physical and chemical properties of methylene blue (MB).

Chemical Name Molecular
Formula

Molecular
Weight

CAS Registry
Number

Solubility
(g/L)

Chemical
Structure

Chloro-3,7-
bis(dimethylamino)

phenothiazine-5-buzz-
trishydrate

C16H18CIN3S·3
(H2O) 373.9 7220-79-3 50 (20 ◦C)
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2.2. Preparation of Daphnia magna

D. magna were cultured in the laboratory for over 3 generations, all derived from a sin-
gle parent. They were cultured in a 500 mL glass beaker placed in an incubator at 20 ± 1 ◦C,
with a 16:8 light/dark photoperiod and a light intensity of 3000 Lux. EPA medium was
used as the culture medium, and it was renewed 2–3 times a week. The animals were fed
daily on Chlorella vulgaris (at a concentration of 2.5 × 106 cells/mL), and dead D. magna and
impurities at the bottom were cleaned daily. Larger, more active females with more eggs
were selected 24 h before the experiment and incubated in a separate beaker. The newly
produced juveniles (6~24 h) were used as test organisms.

2.3. Acute Experiments

In 48 h immobilization toxicity tests, referring to the Test No. 221 guidance docu-
ment [29], 6 concentration groups (30, 39.6, 52.3, 69, 91.1, and 120 µg/L) and a control group
were set up according to the pilot experiment. The test system consisted of 50 mL beakers
containing 30 mL of MB solution. Ten healthy neonates (<24 h) were randomly placed in
each beaker without feeding, and three replicates were set up for each group. After 48 h,
the morphology of D. magna was observed under a microscope, and the inhibition rate
was calculated (inhibited being defined as having a heartbeat but not swimming). The
48 h-EC50 value was obtained through curve fitting.

In 24 h lethality toxicity tests, after pilot experiments, 6 treatment groups (110, 124, 140,
157, 177, and 200 µg/L) and a control group were established. The test system consisted
of 50 mL beakers containing 30 mL of MB solution. Ten healthy neonates (<24 h) were
randomly placed in each beaker without feeding, and three replicates were set up for each
group. After 24 h, the morphology of D. magna was observed under a microscope, and the
mortality rate was calculated (with the criterion of no heartbeat as death). The 24 h-LC50
value was obtained by curve fitting.

2.4. Chronic Experiments

According to the value of 24 h-LC50, 6 treatment groups (1.5, 2.7, 4.7, 8.4, 15, and
26.7 µg/L) and one blank control group were set up using the equal logarithmic spacing
method. The experimental system consisted of 50 mL beakers containing 30 mL of MB
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solution, with one healthy neonate (<24 h) randomly placed in each beaker, and 10 replicates
were set up for each concentration group, for a total of 70 neonates (7 × 10) used in
the experiment, which lasted 21 days. Chlorella vulgaris were fed daily at a density of
2.5 × 106 cells/mL. During the experiment, a semi-static exposure test was used, and the
exposure solution was replaced every 2 days. The growth and reproductive status were
observed and recorded daily, including cumulative molts, time of the first brood, number
of offspring in the first brood, total number of broods, and number of living offspring per
brood, to calculate the intrinsic growth rate (rm) of the population. The newborns were
promptly removed after birth.

At the end of the experiment, each D. magna was placed in the groove of a single
concave glass slide, and an appropriate amount of MB exposure solution was dropped
in. The body length (from the helmet to the front end of the tail spine, excluding the tail
spine), the heart rate, and the frequency of thoracic limb movement were measured using a
stereomicroscope and VistarImage software. Each D. magna was measured 3 times.

2.5. Measurement of Physiological Parameters

Antioxidant damage tests were conducted on D. magna in the 8.4, 15, and 26.7 µg/L
exposure concentrations and the blank control group based on the results of the chronic
test. For these tests, 100 healthy neonates (age 6~24 h) were randomly placed in a 250 mL
beaker containing 200 mL of MB solution, without feeding, and there were 3 replicates
for each group. After 24 h, the D. magna were collected, washed 3 times, and transferred
to a 1.5 mL tube containing 0.81 mL of physiological saline. The tube was then placed at
−40 ◦C for 12 h and then at 4 ◦C for 1 h to thaw. An ultrasonic cell disrupter was used
to crush the tissue. The prepared 10% tissue homogenate was centrifuged at 2500 rpm
for 15 min in a high-speed frozen centrifuge at 4 ◦C. The supernatant obtained was the
crude enzyme solution for measurement. Superoxide dismutase (SOD) activity, glutathione
S-transferase (GST) activity, and malondialdehyde (MDA) content were measured using
test kits purchased from Nanjing Jiancheng Bioengineering Institute, Nanjing, China.

2.6. Statistical Analysis

The experimental data were analyzed and statistically processed using SPSS 23.0
and Excel software. The experimental results were subjected to linear or nonlinear fitting
analysis using OriginPro 9.1 software. The most suitably fitted model was selected based
on the R2 value of the fitting curve being closer to 1 and the p value being smaller. The
trend of inhibition and mortality of D. magna under exposure to different concentrations of
methylene blue was fitted using the Hill function (Equation (1)) to obtain the 48 h-EC50 and
24 h-LC50 values:

f (x) =
1

1 + ( EC50
x )

m (1)

where f (x) refers to the mortality (or immobilization rate) of D. magna, x refers to the
concentration of MB solution (µg/L), and m refers to the curve shape parameter.

The Log3P1 model (Equation (2)) was used to fit the trend of heart rate and thoracic
limb activity in the chronic treatment:

y = a − b ln(x + c) (2)

where y refers to the heart rate or beat frequency of the thoracic limb (times/min), x refers
to the concentration of MB solution (µg/L), and a, b and c are constants.

The intrinsic rate of population increase (rm) was initially calculated by Equation (3),
and then the precise value was obtained through the stepwise approximation method in
Equation (4) [30,31]:

rm =
ln R0

T
, R0 =

∞

∑
0

mxlx, T =
∑∞

0 xlxmx

R0
(3)
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n

∑
x=0

e−rmx lxmx = 1 (4)

where x is the age of D. magna (d), lx is the survival rate at age x, mx is the fecundity at age
x, R0 is the net reproduction rate, and T is the generation time (d).

The normality of the parameters was tested using the Shapiro–Wilks test. A one-way
ANOVA followed by an LSD post hoc test was used to analyze the differences between
the blank control and various MB concentration groups, and the experimental results were
presented as mean ± standard error.

3. Results
3.1. Acute Immobilization Toxicity Tests

The immobilization rate of D. magna increased with increasing MB concentration
(Figure 1). The 48 h-EC50 of MB for D. magna was determined to be 61.5 ± 2.3 µg/L.
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3.2. Acute Lethality Toxicity Tests

The mortality of D. magna increased with the increased MB concentration (Figure 2).
The 24 h-LC50 of MB for D. magna was determined to be 149.0 ± 2.2 µg/L.
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3.3. Damage Caused by MB to D. magna Bodies in Acute Toxicity Tests

In the acute exposure test, the tested D. magna suffered from various degrees of damage.
Some individuals had holes in their carapace and lost their thoracic limbs, while others
had a swollen carapace and blue residue on their antennae, appendages, intestines, and
carapace. The bodies of D. magna that had stopped beating were white and sank to the
bottom of the exposure solution (Figure 3).
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Figure 3. Damage to D. magna caused by MB in acute toxicity tests: (A) swollen and whitish carapace;
(B) blue intestines; (C) swollen carapace and blue intestines; (D) carapace stuck with blue substance;
(E) swollen carapace and partial loss of thoracic limb; (F) blue substance sticking to second antenna;
(G) body turned blue throughout, with swollen carapace and holes; (H) swollen carapace and blue
substance sticking to thoracic limb; (I) blue deposits in intestines and thoracic limbs.

3.4. Chronic Toxicity of Methylene Blue in D. magna
3.4.1. Heart Rate and Thoracic Limb Activity

The heart rate of D. magna decreased as the MB concentration increased (Figure 4).
At 4.7 µg/L, the heart rate of the exposed group (269 ± 2.35 times/min) was significantly
different (p < 0.05) from that of the control group (298 ± 10.15 times/min). The lowest
heart rate was observed in the 26.7 µg/L MB treated group (256 ± 5.57 times/min), which
was significantly different (p < 0.05) from the control group, as well as the 1.5, 2.7, 4.7, and
8.4 µg/L MB treated groups. Similarly, as the MB concentration increased, the thoracic
limb beat frequency decreased. At 4.7 µg/L, the beat frequency of the exposed group
(289 ± 10.75 times/min) was significantly different (p < 0.05) from that of the control group
(301 ± 4.95 times/min). The lowest beat frequency was observed in the 26.7 µg/L exposed
group (280.2 ± 1.92 times/min), which was significantly different (p < 0.05) from that of
the control group as well as the 1.5, 2.7, 4.7, and 8.4 µg/L treatment groups.
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The inhibitory effect of MB on heart rate and thoracic limb beat frequency was dose-
dependent (Figure 5).
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3.4.2. Body Length

After exposure to methylene blue for 21 days, the body length of D. magna in the
15 µg/L group increased (3.472 ± 0.078 mm) compared to the control group
(3.462 ± 0.094 mm), but there was no significant difference (p > 0.05). The body length of D.
magna in all other groups was shorter than that of the control group, and the body length
in the highest concentration group (26.7 µg/L) was significantly shorter (3.206 ± 0.211 mm,
p < 0.05; Figure 6).
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3.4.3. Reproduction

The total number of molts of D. magna showed a trend of increasing and then de-
creasing with increasing MB concentration. When the MB concentration was 8.4 µg/L, the
number of molts reached a peak at 9.1 ± 1.52 times, but there was no significant difference
(p > 0.05) compared with the control group (8.2 ± 1.14 times) (Figure 7a). When the concen-
tration was higher than 8.4 µg/L, the number of molts began to decrease. The total number
of molts in the group exposed to the highest concentration of 26.7 µg/L (6.6 ± 1.43 times)
was significantly less than that of the control group (p < 0.05).

Except for the 8.4 µg/L exposure group, which had a slightly earlier first brood time
than the control group (7.1 ± 0.316 days versus 7.2 ± 0.422 days), the first brood time in all
other groups was delayed compared to the control group. In particular, the first brood time
of D. magna in the 15 and 26.7 µg/L exposure groups (8.4 ± 2.297 and 8.75 ± 1.389 days,
respectively) was significantly later than that of the control group (p < 0.05) (Figure 7b).

The number of first brood neonates and total offspring produced by D. magna showed
an initial increase followed by a decrease with increasing MB concentration. The highest
number of first brood neonates (19.3 ± 3.302) and total offspring produced
(65.3 ± 9.21) were observed in the 8.4 µg/L concentration group, which was significantly
higher than the control group (p < 0.05). In contrast, the lowest number of first brood
neonates (8.875 ± 4.051) and total offspring produced (43.5 ± 4.75) was observed in the
highest concentration group (26.7 µg/L), which was significantly lower than the control
group and other exposure groups (p < 0.05; Figure 7c,d). The number of broods produced
in all exposure groups was higher compared to the control group, and the number was
significantly higher in the 8.4 and 26.7 µg/L groups than the control group (p < 0.05), with
4.1 ± 0.57 and 4.1 ± 0.35 broods, respectively (Figure 7e). The average number of neonates
produced per brood decreased with increasing MB concentration, and all exposure groups
had fewer neonates per brood than the control group. The lowest average number of
neonates produced per brood was observed in the highest concentration group (26.7 µg/L),
with 10.58 ± 1.23, which was significantly lower compared to the control group (p < 0.05;
Figure 7f). The cumulative number of living offspring in each group over 21 days is shown
in Figure 8.

In addition, “abortion” was observed during the experiment (Figure 9). One D. magna
in the 15 µg/L exposure group aborted seven eggs on the seventh day. The undeveloped
eggs fell off the brood chamber and adhered to the molted carapace. Another individual in
the 26.7 µg/L exposure group aborted four eggs on the fifth day, and the eggs sank to the
bottom of the beaker.
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Figure 7. Influences of MB on (a) number of molts, (b) time to production of first brood, (c) number
of first brood, (d) total number of living offspring, (e) total number of broods, and (f) total number of
living offspring per brood (mean ± SE; n = 10). Significant differences (p < 0.05) among groups are
indicated by different letters.
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Figure 9. (a) Control group of D. magna and aborted eggs in groups exposed to (b) 15 and
(c) 26.7 µg/L observed under a stereomicroscope (3×).

As the concentration of MB increased, the intrinsic growth rate showed a trend of first
increasing and then decreasing (Figure 10). The intrinsic growth rate was higher in the
groups exposed to 1.5, 2.7, 4.7, 8.4, and 15 µg/L of methylparaben than the control group,
while the rate was lower in the 26.7 µg/L group than the control group, but the difference
was not significant (p > 0.05).
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3.5. Antioxidant Enzymes, Detoxification Enzymes, and Oxidative Damage Markers

The changes in superoxide dismutase (SOD) activity in D. magna tissues after exposure
to MB are shown in Figure 11a. The SOD activity of the control group was the lowest,
at 2.973 ± 0.479 U/mgprot. With increasing MB concentration, the SOD activity gradu-
ally increased. The SOD activity in D. magna exposed to 8.4 µg/L MB was significantly
higher than that in the control group (p < 0.05). The SOD activity in D. magna exposed to
15 µg/L MB was 7.996 ± 0.878 U/mgprot, significantly higher than that in the control group
(p < 0.01). When the MB concentration was 26.7 µg/L, the SOD activity of D. magna was
the highest (15.497 ± 1.83 U/mgprot), which was 5.21 times that of the control group, and
there was a significant difference (p < 0.01).
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(mean ± SE; n = 3; * p < 0.05 between the different treatment groups and the control group; ** p < 0.01
between the different treatment groups and the control group).

As the concentration of MB increased, GST activity in D. magna tissues was first
induced and then inhibited. When the MB concentration was 8.4 µg/L, the GST activity
was the highest (5.338 ± 0.505 U/mgprot), which was 1.86 times that in the control group
(2.868 ± 0.835 U/mgprot), and the induced GST activity was significant (p < 0.01). However,
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when the MB concentration exceeded 8.4 µg/L, the GST activity significantly decreased
compared to the control group (p < 0.05). This was evidenced by the GST activity in
the D. magna tissues exposed to 15 and 26.7 µg/L MB, which was 2.119 ± 0.403 and
0.808 ± 0.319 c U/mgprot, respectively (Figure 11b).

As the concentration of MB increased, the MDA content in D. magna tissues also
increased. However, there was no significant difference in MDA content between the
8.4 and 15 µg/L exposure groups and the blank control group (p > 0.05), with values of
0.292 ± 0.033 and 0.389 ± 0.055 nmol/mgprot, respectively. In contrast, the MDA content
in D. magna exposed to the highest concentration of 26.7 µg/L (0.538 ± 0.038 nmol/mgprot)
was 1.92 times higher than that in the control group (0.28 ± 0.062 nmol/mgprot)
(Figure 11c).

4. Discussion

EC50 and LC50 are commonly used to assess the toxicity of pollutants to aquatic
organisms. Previous studies reported 24 h-LC50 values of MB of 5.769 mg/L for Litopenaeus
vannamei [32] and 31.60 mg/L for Limnodrilus [33], suggesting that the sensitivity to MB
is highest in D. magna and that MB is a potent toxin for zooplankton. Furthermore, the
EC50 and LC50 values vary depending on the type of pollutant. Abe et al. [30] reported
EC50 values of two azo dyes, basic red 51 (BR51), a synthetic dye, and erythromycin (Ery),
a natural dye, on D. magna of 0.10 mg/L (0.09–0.11) and 19.7 mg/L (15.7–24.9), respectively.
Similarly, Verma [34] found that the 48 h-EC50 values of the azo dyes Remazol Parrot Green
and Remazol Golden Yellow for D. magna were 55.32 and 46.84 mg/L, respectively, while
Kanhere [35] reported that the 48 h-EC50 of malachite green was 0.77 mg/L. Compared with
these results, D. magna was found to be more sensitive to the toxicity of methylene blue, a
thiazide dye. Based on the United Nations Globally Harmonized System of Classification
and Labelling of Chemicals (GHS Rev. 9, 2021) for acute aquatic toxicity (class I: 48 h-
EC50 ≤ 1 mg/L; class II: 1 mg/L < 48 h-EC50 ≤ 10 mg/L; class III: 10 mg/L < 48 h-EC50),
the toxicity of MB to D. magna falls into class I.

The heart rate and beat frequency of the thoracic limbs of D. magna are important indi-
cators of their overall health, reflecting the status of their feeding, respiration, metabolism,
and endocrine system [36]. Several chemicals have been found to affect D. magna’s heart
rate and beat frequency [37,38]. In this experiment, higher MB concentrations were found
to decrease the heart rate and beat frequency of the thoracic limbs in D. magna. This may
be due to the accumulation of MB with prolonged exposure, resulting in high toxicity
and difficulty degrading it [39]. Long-term accumulation of MB in D. magna may lead to
physiological abnormalities, decreased heart rate, and diminished eating capacity. Similar
findings were reported by Eghan et al. [40], who observed time- and dose-dependent sup-
pression of heart rate and thoracic limb beat frequency in D. magna exposed to acrylamide.
Bownik et al. [41] also reported a time- and dose-dependent decrease in heart rate and
thoracic limb beat frequency in response to ketoprofen, while procaine penicillin caused a
concentration-dependent depression of heart rate and beat frequency [42]. D. magna has
a myogenic heart, which means the myocardial contractions are not influenced by brain
activity [43–46]. Pirtle et al. [45] suggested that the autonomic beating of D. magna’s heart
relies on hyperpolarization activating T-type calcium channels and cyclic nucleotide-gated
ion channels. MB alters the activity of these ion channels, leading to changes in heart
rate, which could explain the observed decrease in heart rate in D. magna. A decreased
heart rate implies reduced O2 and nutrient supply to cells [47], which impacts lymphatic
blood circulation and immune response [48], thereby affecting the beat frequency of the
thoracic limbs.

The thoracic limbs, which are the feeding organs of D. magna, are covered with bristles
that filter food from the water and deliver it to the mouth. A decrease in the beat frequency
of the thoracic limbs can affect the water filtration rate of D. magna, reducing their feeding
capacity. Food intake is crucial for energy replenishment, and feeding capacity is closely
related to individual growth and reproduction ability [49]. Moreover, decreased beat
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frequency of the thoracic limbs may be associated with the intestinal contents. On the
one hand, it can be caused by an increase in particulate matter, including food [50,51].
Lari et al. [50] studied the effect of oil sands process-affected water (OPSW), a by-product
of bitumen extraction, on D. magna and found that the exposed group exhibited a change
in the color of the intestine from green to brown, a significantly higher density of algal
cells compared to the control group, and a simultaneous decrease in the beat frequency
of the thoracic limbs. On the other hand, exposure to dissolved toxicants can lead to
decreased Na+/K+-ATPase activity in D. magna, resulting in reduced transmission between
thoracic limb neurons and muscles and, in turn, decreased beat frequency of the thoracic
limbs [36]. Additionally, blue residue was observed in the intestines of exposed D. magna,
partially obstructing the flow of intestinal contents and potentially contributing to reduced
feeding capacity.

Chronic exposure to MB significantly impacted the growth and reproductive capacity
of D. magna. Specifically, the 26.7 µg/L exposure group exhibited significantly shorter
body length and fewer molts than the control group, indicating that MB had some develop-
mentally toxic effects, strongly inhibiting the growth and development of D. magna, as it
normally develops through molting.

Regarding reproduction, exposure to high concentrations of MB caused a significant
delay in the production of the first brood. At medium MB concentrations, the number
of the first brood and total number of living offspring significantly increased, while at
higher concentrations they decreased, indicating hormesis, a stimulative effect at low
concentrations, and an inhibitory effect at high concentrations [52]. The total number of
broods was higher in all exposure groups than in the control group, but the number of
living offspring per brood was lower in the exposure groups. When considering the 21-day
reproduction results, the increase in the number of the first brood and total number of
living offspring in the 8.4 µg/L group was due to the earlier sexual maturation time, while
the decrease in the 26.7 µg/L group was due to a significant delay in sexual maturation
and a decrease in the number of living offspring per brood. This adaptive response to the
environment aligns with previous studies, suggesting that D. magna deliberately increase
the number of reproductions and reduce the number of single reproductions to stabilize
the population in adverse environments [53].

Many studies have demonstrated the occurrence of hormesis in the growth, repro-
duction, and swimming behavior of D. magna when exposed to various contaminants. For
instance, low concentrations of bioplastics promoted the reproductive rate, while higher
concentrations inhibited it [54]. Similarly, low concentrations of ciprofloxacin and ofloxacin
were found to stimulate a shortening of the first oogenesis time and an increase in brood
size in D. magna [55]. In studies investigating the effects of fluoxetine and propranolol
on D. magna swimming activity [56], intermediate drug doses (1~10 µg/L) significantly
promoted swimming activity, while high doses (>100 µg/L) had the opposite effect, causing
a significant decrease in swimming activity.

The decreased reproductive capacity of D. magna in the high-concentration groups
may be attributed to the allocation of energy, primarily used for growth, reproduction, and
basal metabolism. The stress response triggered by MB elevated the basal metabolic energy
consumption of D. magna, thereby reducing the available energy reserves for growth and
reproduction [57]. Consequently, there was a decline in reproductive ability and, in certain
instances, even the occurrence of “abortion”. These findings are consistent with those of a
previous study [57].

The intrinsic rate of population increase is a measure of the population’s ability to ex-
pand under ideal conditions. In this study, the intrinsic rate of population increase initially
showed an increasing trend with increasing MB concentration, followed by a decreasing
trend. However, these trends were not significantly different from those observed in the
control group. The concentration of energy allocated to basal metabolism in D. magna
under the stress of MB may influence its growth and reproduction, contributing to the
observed pattern. The sensitivity of reproduction parameters to MB varied, and the order
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of sensitivity for these indicators was as follows: number of first brood = total number of
broods = total number of living offspring > time to production of first brood > cumulative
molts = number of living offspring per brood.

SOD plays a vital role in D. magna’s antioxidant defense system by eliminating reac-
tive oxygen species (ROS) through the catalysis of superoxide anion radicals (O2

−) into
hydrogen peroxide (H2O2) and oxygen (O2) [58]. This enzyme exerts a protective effect on
the cells of the organism. Assessing SOD activity in D. magna can provide insights into its
ability to adapt to MB exposure. In our study, SOD activity exhibited a continuous increase
with escalating MB concentration. SOD activity in the highest concentration group was
5.21 times higher than that in the control group. These findings indicate that under the
stress of MB, D. magna consistently enhanced its antioxidant capacity in response to the
increasing assault of ROS and the unfavorable environment.

Excess reactive oxygen radicals in D. magna tissues that cannot be scavenged by SOD
can lead to lipid peroxidation of cell membranes, causing cellular damage. This damage
can be assessed by measuring the MDA content. In our study, the MDA content in D. magna
exhibited a positive correlation with increasing MB concentration and was significantly
higher compared to the control group, indicating oxidative damage. Despite the increased
SOD activity, the MDA content also increased, suggesting that SOD was unable to fully
eliminate all ROS. It is noteworthy that the highest MB concentration tested did not inhibit
SOD activity, as reported in previous studies by Shen et al. [59] and Duan et al. [60] using
different compounds but demonstrating similar effects. The elevated MDA levels in our
study imply that MB exposure stimulated the generation of intracellular ROS in D. magna,
leading to oxidative alterations of cellular components.

GST is an essential detoxifying enzyme that plays a crucial role in scavenging free
radicals and facilitating detoxification processes. It catalyzes the conjugation of harmful
endogenous or exogenous substances with reduced glutathione (GSH), forming more
soluble and nontoxic derivatives that can be efficiently excreted or broken down by en-
zymes [61]. GST also possesses the ability to scavenge excess ROS, limit lipid peroxidation,
and mitigate oxidative stress-induced damage [62]. In this study, GST activity exhibited
hormetic effects, with induction observed in the low-concentration group and inhibition
in the high-concentration group. At low concentrations of MB, GST activity increased
to 1.86 times that of the control group, effectively scavenging free radicals and serving a
detoxification function. However, at high MB concentrations, GST activity declined rapidly,
possibly due to the depletion of intracellular GSH content. Consequently, toxins accumu-
lated, disrupting the balance between free radical production and elimination and leading
to the inactivation of GST, impairing its normal participation in the detoxification reaction.
This finding is consistent with previous research [59], which demonstrated that after 24 h of
dibutyl phthalate exposure, GST activity in D. magna neonates was dramatically elevated
at 0.5 mg/L and reduced at 2 mg/L.

The influence of MB on D. magna involves complex physiological and biochemical pro-
cesses, and our study examined only its effects on growth and reproduction. Consequently,
there remains a knowledge gap concerning the toxicological mechanism of MB. Future
investigations could bridge this gap by integrating conventional toxicological analysis with
ecotoxicological genomics data, including transcriptomics, proteomics, metabolomics, and
epigenomics. This comprehensive approach would enable a thorough exploration of the
effects of MB on D. magna and other zooplankton species [63].

5. Conclusions

Methylene blue exhibited pronounced toxicity toward D. magna, with increasing toxic
effects correlating with increasing concentration. Chronic exposure to MB significantly
affected the growth and reproduction of D. magna, with heart rate and thoracic limb beat
frequency proving to be more sensitive indicators than body length. Furthermore, MB
could induce antioxidant stress in D. magna. The maximal concentration of MB at which no
adverse effects were observed (NOEC) was determined to be 4.7 µg/L. Establishing water
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quality criteria for MB primarily relies on zooplankton, particularly D. magna, which is the
most sensitive species to MB contamination (Supplementary Materials, Figure S2).

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/toxics11070594/s1, Table S1. Acute toxicity of methylene
blue to aquatic animals. Figure S1. Developmental stages of Daphnia magna under the stereomi-
croscope. Figure S2. Logistic fitting curve of species mean acute values (SMAV) of methylene blue.
References [32,33,64–68] are cited in the supplementary materials.
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