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Abstract: Human cell-based test methods can be used to evaluate potential hazards of mixtures and
products of petroleum refining (“unknown or variable composition, complex reaction products, or
biological materials” substances, UVCBs). Analyses of bioactivity and detailed chemical characteri-
zation of petroleum UVCBs were used separately for grouping these substances; a combination of
the approaches has not been undertaken. Therefore, we used a case example of representative high
production volume categories of petroleum UVCBs, 25 lower olefin substances from low benzene
naphtha and resin oils categories, to determine whether existing manufacturing-based category
grouping can be supported. We collected two types of data: nontarget ion mobility spectrometry-
mass spectrometry of both neat substances and their organic extracts and in vitro bioactivity of the
organic extracts in five human cell types: umbilical vein endothelial cells and induced pluripotent
stem cell-derived hepatocytes, endothelial cells, neurons, and cardiomyocytes. We found that while
similarity in composition and bioactivity can be observed for some substances, existing categories are
largely heterogeneous. Strong relationships between composition and bioactivity were observed, and
individual constituents that determine these associations were identified. Overall, this study showed
a promising approach that combines chemical composition and bioactivity data to better characterize
the variability within manufacturing categories of petroleum UVCBs.

Keywords: UVCB; petroleum; regulatory risk assessment; read-across; ion mobility spectrometry

1. Introduction

Regulatory agencies commonly categorize chemicals by the amount that is produced
and/or imported into a particular jurisdiction; for example, substances whose aggregate
quantities exceed some predefined amount per year are considered “high production
volumes.” In the European Union, this would entail >1000 tons, and in the United States,
the typical cutoff is >1 million pounds (~500 tons). Such substances receive heightened
attention in terms of their hazard and risk evaluations and are typically subject to the most
extensive testing requirements [1,2]. While most high-production-volume substances are
mono-constituent chemicals, a large proportion are derivatives of petroleum refining that
belong to a broad class of “unknown or variable composition, complex reaction products,
or biological materials” substances (UVCBs). UVCBs from petroleum refining streams
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pose unique challenges to regulators, both for registration and for human/ecological safety
assessments [3–5]. These UVCBs are produced from crude oil, which is itself a highly
complex and variable material; further, these substances are manufactured not to have an
exact composition, but to meet technical specifications related to their use [6].

For regulatory registration and safety evaluation, petroleum UVCBs are grouped into
categories of similar materials based on rather broad considerations about their compo-
sition and manufacturing methods [7]. It is assumed that substances manufactured to
similar performance characteristics will have similar toxicological properties. These as-
sumptions were the basis for the industry’s voluntary data submissions on the mammalian
toxicological hazards of petroleum UVCBs under the US EPA High Production Volume
(HPV) Challenge Program in the early 2000s [8]. This program established broad categories
of petroleum UVCBs based on physio-chemical properties and refining parameters, such
as similar boiling ranges, process histories, or end-use types. However, regulators have
been less than satisfied with this approach, especially in Europe, and have invited more
informed justifications, such as detailed information on constituents, the extent of composi-
tional variability, and assurances that the material that has been (or will be) used for any
additional experiments is representative [9–14].

To overcome the challenges of grouping and read-across of petroleum UVCBs, two
approaches have been recently proposed and tested. In the first approach, human cell-
based in vitro studies have been conducted on a large number of substances and categories.
These studies tested the hypothesis that in vitro biological activity signatures, both pheno-
typic and gene expression, can be used to support the grouping of UVCBs [15]. As many
as 141 petroleum substances from 16 manufacturing categories [6] were tested in a com-
pendium of 15 human cell types representing a variety of tissues [16]; of these, 6 cell types
were also profiled for gene expression [17]. Petroleum substances were assayed in dilution
series to derive point of departure (POD) estimates for bioactivity in each phenotype. While
it was found that bioactivity was strongly correlated with the content of polycyclic aromatic
compounds (PAC), the analysis also revealed substantial variability in bioactivity within
each category. Some of these data were used in regulatory submissions to request waivers
of animal testing requirements. However, the European Chemicals Agency (ECHA) did not
accept the data as presented, in part because of the lack of detailed chemical compositional
information [10].

Indeed, efforts to provide more detailed compositional characterization constitute
a second approach to refining the current read-across of petroleum UVCBs. While there
are many analytical methods that have been used to characterize the composition of these
substances [7], they are largely insufficient for meeting regulatory requirements [14]. A
number of novel ultra-high resolution and multi-dimensional mass spectrometry-based
methods have been applied for the analysis of petroleum samples; however, most of these
are yet to be adopted by industry or used in regulatory submissions [5]. Further, ultrahigh-
resolution instruments and computational methods enabled the confident determination of
molecular formulae for a large portion of these constituents in petroleum UVCBs [18,19].
The advantages of these novel techniques, such as ion mobility spectrometry-mass spec-
trometry (IMS-MS), as complements to traditional gas chromatography-mass spectrometry
(GC-MS) have been demonstrated in a number of regulatory contexts—for grouping of
crude oils [20] and petroleum UVCBs [21,22], for chemical speciation of oil weathering
by-products [23,24], and for characterization of compositional variability of petroleum
UVCBs [25].

While both bioactivity and detailed chemical analyses have been used separately
to evaluate similarity in petroleum UVCBs, a combination of the approaches has not
been undertaken. Inclusion of PAC and other physio-chemical properties together with
cell-based bioactivity did show advantages to data interpretation [15–17]; therefore, an
investigation of the utility of high-resolution analytical data is also warranted. Herein, a
case example of representative high production volume categories of petroleum UVCBs,
two lower olefin manufacturing streams, was used to determine whether the existing
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grouping of the individual substances into these categories and further into “human health
hazard” subcategories as defined under the US EPA HPV Challenge Program can be
supported by the data from the new approach methodologies that included probing of both
bioactivity and chemical composition. We tested 25 lower olefin substances belonging to
the low benzene naphthas (LBN) and Resin Oils and Cyclodiene Dimer Concentrates (RO)
categories. We collected two types of data: nontarget high-resolution IMS-MS analyses
of each neat substance and their respective dimethyl sulfoxide (DMSO) extract, along
with in vitro bioactivity of the DMSO extracts in five different cell types: human umbilical
vein endothelial cells (HUVEC), as well as induced pluripotent stem cell (iPSC)-derived
hepatocytes, endothelial cells, neurons, and cardiomyocytes. Using these data, we grouped
substances and compared the groupings to those in the classes/sub-classes established by
the HPV Challenge Program.

2. Experimental Section
2.1. Substances Used in This Study

All lower olefin substances used in this study (assigned number identifiers) and
their respective streams are detailed in Table 1. In total, 25 neat substances (identified
as 13 resin oils and 12 low benzene naphthas) were included in the analyses and were
donated by member companies of the American Chemistry Council’s (ACC) Olefins Panel.
Both the identity and origin of the individual substances were de-identified beyond each
substance’s Chemical Abstract Service (CAS) number and manufacturing stream name.
Select samples were categorized into different human health subcategories than originally
proposed under the HPV Challenge Program based on the expert judgement of the authors
and the information provided by the manufacturers. Table S1 details our reasoning for
group assignments.

Table 1. Petroleum UVCBs from lower olefin categories that were tested in this study.

Sample ID * Sponsored Stream * CAS RN # Human Health Hazard
Subcategory #

Low Benzene Naphthas

83757
83806

Pyrolysis C7
68527-23-1
68478-10-1 Group I:

High Toluene Streams
83946 Pyrolysis C7-C8

68527-23-1
68919-15-3

84070
84003

Hydrotreated C7-C8

Group II:
Mixed Aromatics Streams

84075 Hydrotreated C7+ 64742-48-9

84068 Hydrotreated C8-C10
68512-78-7
64742-48-9

83979
84024

Hydrotreated C7-C12
64742-48-9
68516-20-1

83931 Solvent Naphtha 68512-78-7

83984
83683

Pyrolysis C7-C12
68516-20-1
64742-83-2
68746-45-9

Group III:
Pyrolysis C7-C12

83758 C9+ from o-xylene
68333-88-0
68553-14-0

Group V:
C9+ from o-xylene unit

84082 Solvent Naphtha 68512-78-7 Not Defined Properly
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Table 1. Cont.

Sample ID * Sponsored Stream * CAS RN # Human Health Hazard
Subcategory #

Resin Oils and Cyclodiene Dimer Concentrates

83981 DCPD, High Purity 77-73-6

Group I:
DCPD High Purity & Related

Streams

84023 High DCPD Resin Oil
68477-54-3
68477-40-7

83955 Distillates (petroleum), steam cracked. C8-C12; High DCPD Resin Oil 68477-54-3

83956 Resins Distillates (petroleum), cracked stripped steam cracked. C10-C12 68477-40-7

84543
HYDROCARBONS, C5-RICH, DICYCLOPENTADINE Resin; DCPD

Concentrate Distillates (Petroleum) steam cracked C5-C12 fraction
68527-24-2

83949 Low DCPD Resin Oil
68477-54-3
68516-20-1 Group II:

Low DCPD Resin Oil & Resin
Former

83980
84012
84074

Low DCPD Resin Oil
68477-54-3
68516-20-1

83618
Dicyclopentadiene Resin Grade

(3a,4,7,7a-tetrahydo-4,7-methano-1H-indene/Alkenes, C9-11, C10-rich)
2647-00-4

Group III:
MCPD Dimer

83985
Resin Feed (Distillates (petroleum), steam-cracked, C8-12 fraction/C9
mixture rich in indene and vinyltoluene/Complex mixture of (mainly

aromatic) C9–C10 hydrocarbons); Dicyclopentadiene Resin
68477-54-3

Not Defined Properly
83879

Resin Distillates, steam cracked. C8-C12 (Extract residue (coal), light oil,
alk, acid ext, indene fraction

68477-54-3

83998 Resin—Distillate cracked, ethylene manufacturing by-product, C9-C10

* Sample IDs and sponsored stream information as provided by the ACC Olefins Panel. # CAS RN and human
health hazard subcategory assignments were made by the authors by matching the stream names, as provided
by the sponsor, to the information in the US EPA Screening-Level Hazard Characterization documents for Low
Benzene Naphthas, Resin Oils, and Cyclodiene Dimer Concentrates categories [26,27].

Samples were stored at −80 ◦C until analyzed or otherwise processed. From each
substance, an organic extract was prepared using DMSO and cyclohexane, a method that
preferentially extracts PAC from petroleum-containing samples, according to the standard
American Society for Testing and Materials (ASTM) IP 346 method [28]. Briefly, 4 g of
each substance was dissolved in 10 mL cyclohexane. The cyclohexane fraction was then
extracted twice with 10 mL pre-equilibrated 10:1 DMSO/cyclohexane. The two subsequent
DMSO fractions were collected in a 20 mL glass vial and stored at −80 ◦C until used in the
experiments. It is important to note that throughout this study, the substances are referred
to by a five-digit ID (e.g., 84070) prefixed by either “N” representing a “neat” substance, or
“E” representing its DMSO extract.

2.2. IMS-MS Analysis of Neat Substances and DMSO Extracts

All substances were analyzed using an ion mobility spectrometry (IMS) instrument
coupled to a quadrupole time-of-flight (QTOF) mass spectrometer (MS) (model G6560A,
Agilent Technologies, Santa Clara, CA, USA). Neat and extracted samples were prepared for
IMS-MS analysis as follows. A glass syringe was first used to add 100 µL of each sample to a
glass vial. Substances were then diluted 3× by adding 200 µL of 50:50 acetonitrile/toluene
buffer and vortexing. The glass syringe was rinsed in triplicate with acetone, hexane, and
methanol between the preparation of each sample. All samples were analyzed using an
atmospheric pressure photoionization (APPI) source in positive ion mode and were injected
at a flow rate of 50 µL/min. The appropriate tune mix was used to calibrate the instrument
prior to sample runs, and samples were collected for 1.5 min each. Washes with acetone
and methanol were conducted at least three times between samples. Other instrument
parameters were consistent with prior studies examining similar substances using an APPI
ion source in positive mode [29].
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Upon acquisition, IMS-MS raw data files for neat substances and corresponding ex-
tracts were first calibrated in IMS-MS Browser B.08.00 software (Agilent Technologies,
Santa Clara, CA, USA) using the tune mix file obtained prior to the sample run. The
tune mix file was verified to have mass accuracies within ±5 ppm m/z for each cali-
brant peak. Calibrated files for neat substances and extracts were then processed using
Agilent Mass Profiler software to obtain two separate sets of detected compounds, or
“features”, and their abundances in each sample. A library of compounds was then
used to match identities to detected features based on m/z and collisional cross section
(DTCCSN2) values for each compound [30]. DTCCSN2 values are a quantitative representa-
tion of the size and shape of individual features, derived from the drift time (DT) of each
feature [31–33]. DTCCSN2 is unique to each detected species and can be used to identify
targeted species within a nontarget dataset [18,32]. Datasets for neat substances and ex-
tracts, including library-matched anchor features, were then exported from MassProfiler
for chemical characterization. Raw IMS-MS data files for neat samples and extracts can be
found in Tables S2 and S3, respectively.

Chemical characterization was conducted following a modified workflow detailed
previously [18]. In brief, datasets were first processed to only include features at an
abundance ≥ 5000 in at least one sample to minimize unnecessary amplification of noise.
Filtered data matrices can be found in Tables S4 and S5 for neat samples and extracts,
respectively. Anchor features were then manually verified using the DTCCSN2 library to
ensure m/z fell within a range of ±5 ppm and ±mDa and DTCCSN2 values fell within
a range of ±1%. Kendrick mass defect (KMD) was then calculated in the context of
CH2 functional units to enable feature organization in homologous series and molecular
formula identification of hydrocarbon species. The series were then validated using KMD-
H homologous series and DTCCSN2 values [18]. Once a maximum number of features were
characterized with confidence, double bond equivalence (DBE) for individual features was
determined based on assigned molecular formulas as follows [34,35]:

DBE = #C + 1 − (#H/2) + (#N/2) (1)

Feature abundances that appear in terms of % Total Abundance throughout this
publication were calculated by normalization to the sum of abundances of all filtered
features (Abundance > 5000). Data matrices with molecular formulas and DBE assignments
can be found in Tables S6 and S7 for neat samples and extracts.

2.3. In Vitro Bioactivity Experiments

In total, five organotypic human cell types were used to conduct bioactivity experi-
ments. Organotypic cell types derived from induced pluripotent stem cells (iPSC) were
acquired from FUJIFILM-Cellular Dynamics (Madison, WI, USA) and included cardiomy-
ocytes (Cat #R1007, Lot 1299716), endothelial cells (Cat #R1022, Lot 1833921), hepato-
cytes (Cat #R1027, Lot 7000716), and neurons (Cat #R1013, Lot 1227535). In addition,
primary human umbilical vein endothelial cells (HUVEC; Cat #C2519A, Lots 0000433795
and 0000460587, Lonza, Basel, Switzerland). These cell types were selected based on
previous studies with petroleum UVCBs that showed them to be most informative for
grouping [15–17]. All cells were cultured and prepared for treatment based on modified
manufacturer protocols (Cellular Dynamics and Lonza) as detailed elsewhere [15,36–42].

All in vitro experiments were conducted by first preparing a chemical stock plate
containing extracts of each substance and all controls (except assay-specific positive con-
trols) in 100% DMSO in a 384-well plate. The compounds in the chemical stock plate
were then serially diluted in appropriate cell-specific culture media into working plates
at 5× or 2× the desired extract concentration for testing in each cell-specific assay plate.
Working plates contained extracts with 2% or 1% DMSO for further dilution to 0.5% or
0.25% (for neurons) DMSO in all assay plates. Thus, in the assay plates, each cell type was
exposed to the extracts across five final concentrations: 500 µg/mL, 50 µg/mL, 5 µg/mL,
0.5 µg/mL, and 0.05 µg/mL for neurons (in 0.25% DMSO), or 1000 µg/mL, 100 µg/mL,
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10 µg/mL, 1 µg/mL, and 0.1 µg/mL for all other cell types (in 0.5% DMSO). Cell-specific
exposure times, controls, phenotypes, and endpoints measured are detailed in Tables
S8 and S9. The “method blank” vehicle control [16] was DMSO that was carried through
the IP 346 extraction procedure without the inclusion of a petroleum substance.

The experimental design consisted of running a singleton of all the test substance
extracts on a single 384-well plate (using only the inner 308 wells) with full concentration
response. The inter- and intra-plate controls were included to ensure that the concentration
responses observed were not artefacts of the experimental design. Inter-plate controls
consisted of running each plate twice; this allowed for a duplicate to be obtained of all
substance extracts but also ensured reproducibility between plates. Intra-plate controls
were added to ensure that the single values were consistent within a plate. Two olefin
substance extracts were selected at random to be present a second time on each plate in a
full concentration response representation.

Raw data generated during the in vitro assays was normalized to method blank vehicle
control values. The normalized values represent a percent response to the method blank.
The normalization was performed for all raw values, including positive/negative controls,
using the formula:

Normalized Value =
(

Raw Value
Average o f Method Blank Wells

)
× 100 (2)

To ensure the integrity of the data, several aspects were assessed for each endpoint
(data not shown). First, vehicle effects were determined by comparing method blank
vehicle, DMSO, and media wells to ensure no effect of the vehicle. The positive cytotoxic
control, tetraoctyl ammonium bromide, was also evaluated on all cells. Second, cell type
and assay specific positive controls were examined for concentration response with a
nonlinear line fit (Hill function) to ensure that the cells were performing as expected
from previous publications elsewhere [15,37–42]. Third, inter-plate replicate controls were
plotted as a scatterplot, with one replicated as the x-value and the other replicated as the
y-value. Pearson’s r and Spearman’s ρ correlations were calculated, along with p-values of
significance, and experiments were deemed reproducible if correlations were significant
and >0.8. Lastly, intra-plate replicates were plotted as concentration responses with a
nonlinear fit (Hill function) to determine if outliers were present.

Upon quality control evaluation, concentration-response data for each endpoint were
analyzed to obtain corresponding PODs. Concentration-response data were first nor-
malized to the average of all vehicle treatments (100%). For most of the cell types and
phenotypes, a POD was defined as the point where a logistically fitted line departed 10%
from the mean of the vehicle control values (EC10). Previous investigations have used this
POD [39]. Cell- and phenotype-specific PODs are shown in Table S8.

Biological PODs were then analyzed using the Toxicological Prioritization Index
(ToxPi) software to generate ToxPi scores [43,44]. First, individual ToxPis were generated
for each cell type, with each slice representing a phenotype and equally weighted depending
on the number of phenotypes tested per cell type (Table S8). The contribution of each POD
element to the ToxPi scores was scaled from lowest bioactivity (ToxPi element = 0) to
highest bioactivity (ToxPi element = 1) using the formula:

ToxPi Value = 1 −
log10(POD)− log10(PODmin)

log10(PODmax)− log10(PODmin)
(3)

Total ToxPi scores for each cell type were then represented in a separate analysis as
individual slices to generate an overall ToxPi depicting all cell types. All substances were
included as “available chemicals” in the software settings, and each cell type tested was
displayed as an individual pie slice. The distribution for each slice was log-scaled and
equally weighted in its contribution to the overall ToxPi.
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2.4. Clustering of Substances Using IMS-MS and Bioactivity Data

Grouping of LBN and RO categories as well as human health subcategories for both
biological and chemical data was conducted using unsupervised hierarchical clustering via
hclustfunc in heatmaply and gplots packages in RStudio.

2.5. Predicting Bioactivity Based on IMS-MS Chemical Profiles

For prediction of the bioactivity from the individual chemical features in neat or
extracted samples, an extension of the penalized ridge regression approach as developed
in [45] was used. Briefly, the approach performs multivariate ridge regression for the
multivariate linear model Y = XB + error, where Y (nXm) and X (nXp) are scaled bioactivity
and feature matrices with dimensions shown, and B (pXn) is a coefficient matrix. Here, n
is the sample size of substances, m is the number of bioactivity measurements, and p is
the number of features used in the predictions. Briefly, one can envision the bioactivity
data as a multi-dimensional readout Y with n rows, where each row included data for one
endpoint, cell-specific overall ToxPi scores, or an overall ToxPi score incorporating all cell
types together. The matrix had 25 columns for each chemical, classified by their category. A
chemical predictor matrix for neat substances X had 225 rows (features comprising >1%
of at least one sample) and 25 columns (one per sample). Similarly, a separate chemical
predictor matrix for DMSO extracts had 212 rows (features > 1%) and 25 columns. Prior to
fitting, all data columns were centered and scaled to unit variance for comparability and to
ensure no predictor dominated simply due to scale differences.

The fitted model is truly multivariate because a single tuning penalty λ is applied, with
B̂ =

(
XTX + λI

)−1(XTY
)

(which is the ridge regression approach) and final prediction
Ŷ = XB̂. λ was evaluated on a grid such that log10(λ) varied uniformly from −1.0 to 6.0 in
increments of 0.1. Evaluations were performed using leave-one-out cross validation, i.e.,
prediction for elements of Y from the ith sample used coefficients obtained after removing
the ith sample, to avoid overfitting. The selection of the tuning parameter was performed
to give the minimum mean squared prediction error. Final predictions were returned to
the original Y scale by multiplying each column by the original standard deviation and
adding the original mean. The entire procedure was then run again to predict features by
reversing the assignment of X and Y matrices.

As a measure of model fit for each bioactivity feature, the Pearson correlation r
between the observed bioactivity values and the values predicted in cross-validation was
used. Standard cross-validation principles [46] rely on the fact that the test sample (which
is singular under leave-one-out cross-validation) is held out for model training, and thus
each test set prediction is often treated as independent of the training set. However, a
subtle internal dependency can arise due to the scaling of X and Y, which is performed
once. In addition, our final prediction tuning parameter was selected once, outside of the
cross-validation loop. Thus, as a conservative measure without requiring complicated
double cross-validation loops, p-values for the predicted-observed r using a permutation
procedure were computed. A total of 1000 permutations of the sample indices in Y and
X were performed, with the mean and standard deviations of the (null) r values used
to compute a statistic z = (r − E(r))/SD(r), which was compared to a standard normal
distribution in a two-sided test. The resulting p-values for each bioactivity feature were then
corrected for multiple comparisons by computing the Benjamini–Hochberg q-value [47]
using the R v4.1 p.adjust package.

3. Results and Discussion

The overall experimental workflow is shown in Figure 1. Both neat substances (two
manufacturing categories, 25 substances in total, Table 1) and their respective DMSO
extracts were analyzed using nontarget IMS-MS. DMSO extracts of each test substance
were used for in vitro assays across four induced pluripotent stem cell-derived cell types
(cardiomyocytes, endothelial cells, hepatocytes, and neurons) and human umbilical vein
endothelial cells (HUVEC).
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tivity profiling of neat substances and their respective DMSO extracts (n = 25).

3.1. Compositional Characterization and Similarity between Test Substances

Regulatory guidelines require compositional characterization and assessment of the
variability between substances to (1) determine the applicability domain of a category,
(2) confirm membership in that category, and (3) establish a basis for read-across of toxico-
logical properties [14]. To fulfil these criteria for the substances tested herein, the chemical
profiles obtained with IMS-MS nontarget analysis were first analyzed separately within the
LBN and RO categories (Figures 2 and 3). Figure 2A shows the profiles of the substances
originally identified as belonging to the LBN category, both in terms of the raw abundance
of various constituents and as a percentage of the total abundance within each sample.
A complete list of sponsored streams is available in the US EPA Screening-Level Hazard
Characterization for LBN (see access links to the documents in Table S10) [26]. According
to US EPA [26], the LBN category comprises 12 unique chemical identifiers and 9 produc-
tion streams; in this study, substances were available for experiments that represented
10 identifiers and 8 production streams.

First, raw abundance profiles showed the complexity of the substances and the vari-
ability in their composition within and across human health subcategories (Table 1). The
substances belonging to subcategory I, high toluene streams, were the least complex of
the LBN substances tested in terms of the overall raw abundance of the constituents. This
was expected, because substances belonging to this subcategory should be composed of
C7–C8 range constituents, while the LBN category as a whole consists “primarily of C7 to
C12 aromatic and cycloaliphatic hydrocarbons” [26]. Similar observations were made when
the data were expressed in percent abundance, although abundance normalization demon-
strates a more homogeneous LBN category than raw abundances (Figure 2A, bottom). The
composition of DMSO extracts had little overlap with the corresponding neat products,
both in terms of raw and normalized abundance. Figure 2B shows hierarchical clustering of
the samples using analytical data. It is evident that while some substances from the same
human health subcategory cluster together, others are not sufficiently similar using the
chemical compositional profiles from IMS-MS analyses.
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Figure 2. (A) Feature abundances for Low Benzene Naphthas category. The top row depicts the raw
abundances of features detected for neat products, product extracts, and the abundance of features
characterized by the same molecular formula in neat and corresponding extract substances. The
bottom row depicts the same features normalized to the total abundance of features per substance.
Dark blue bars denote features present at >1%, light blue bars denote features present at 0.1–1%,
and white bars denote features present at <0.1% abundance. Dotted red lines refer to ECHA’s 80%
minimum threshold [14] for UVCB characterization. The third plot in each row shows features
present in both the neat samples and DMSO extracts (black bars) and features unique to each (grey
bars). (B) Hierarchical clustering portraying the chemical similarity of LBN neat substances based on
IMS-MS profiles. Substances closer together have the most similar chemical profiles. Colors indicate
pre-assigned health hazard groups.

Similar observations were made for RO substances (Figure 3A). A complete list of
sponsored streams is available in the US EPA Screening-Level Hazard Characterization
for RO (see access links to the documents in Table S10) [27]. The US EPA specified that
this category includes 11 unique chemical identifiers in 9 production streams; herein,
we tested substances from 6 identifiers and 5 production streams. Three RO substances
that were available for this study could not be defined into one of the existing subcate-
gories. Raw abundance profiles again demonstrated the variation in chemical composition
among substances. Subcategory I exhibited the most variation, while subcategory II ex-
hibited the most similar substance profiles. This was supported by hierarchical clustering
(Figure 3B). Corresponding DMSO extracts showed the variation between substances and,
although to a greater extent than for LBN samples, still captured a very small fraction of
the corresponding neat substances (Figure 3A).

Second, the most recent regulatory guidance on substance chemical characteriza-
tion [14] details the extent of information needed for UVCBs, including constituent identi-
ties and concentrations. Compounds present at ≥1% abundance must comprise at least
80% of the sample to warrant more extensive characterization of molecular structures for
hazard evaluation. For cases where the 80% threshold is not met, it is “not technically possible
or impractical” to identify the individual constituents, and “structural similarity must be
demonstrated by other means.” “Other means” may include pre-existing information on start-
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ing materials and manufacturing processes or fingerprinting analysis; however, analytical
methods must enable “the provision of information on a sufficient proportion of constituents . . .
[to cover] >95% of the constituents of a substance” [14]. Thus, for analyses in Figures 2 and 3,
constituents were classified as comprising ≥1%, 0.1–1%, and <0.1% of a sample for all LBN
and RO neat products and extracts. For both categories, features of ≥1% abundance in the
neat substances did not meet the ECHA’s 80% threshold, meaning that the use of “other
means” to characterize the composition of the neat substances may be justified. However,
for toxicity testing, it is equally important to characterize the DMSO extracts used to expose
the substances. Features of ≥1% abundance in the extracts constituted >80% of each sub-
stance, meaning that constituents of concern at concentrations below 0.1% may also need
to be identified using additional analytical techniques. Without analytical reference stan-
dards to confirm the structural identities of these low-concentration constituents, analyses
herein were restricted to putative molecular formulae. Ultra-high-resolution techniques
or structure-based modeling approaches may be better suited to confirm the identities of
these constituents. Still, the number of species present in each sample <0.1% is vast, and
structural identification of all constituents of concern would be a daunting task.
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Figure 3. (A) Feature abundances for the Resin Oils category. The top row depicts the raw abundances
of features detected for neat products, product extracts, and the abundance of features characterized
by the same molecular formula in neat and corresponding extract substances. The bottom row depicts
the same features normalized to the total abundance of features per substance. Dark blue bars denote
features present at >1%, light blue bars denote features present at 0.1–1%, and white bars denote
features present at <0.1% abundance. Dotted red lines refer to ECHA’s 80% minimum threshold [14]
for UVCB characterization. The third plot in each row shows features present in both the neat samples
and DMSO extracts (black bars) and features unique to each (grey bars). (B) Hierarchical clustering
portraying the chemical similarity of RO neat substances based on IMS-MS profiles. Substances closer
together have the most similar chemical profiles. Colors indicate pre-assigned health hazard groups.

Third, the composition of the constituents obtained using nontarget IMS-MS was
compared to the typical constituents reported in REACH Category Identity Profiles [48,49],
information that is derived using traditional analytical methods (Tables 2 and 3). These data
are typically reported for a limited number of the most abundant constituents, which are
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known to vary among registered substances. The reported LBN constituent list [48] includes
45 compounds with CAS numbers mapping to 18 unique molecular formulas (Table 2).
Figure 4 shows the raw and relative abundances for IMS-MS-observed constituents that
matched these formulas. As expected, their abundance varied among substances within
each category. We compared the reported typical ranges with those from IMS-MS analyses
(Table 2). Even though the data was obtained using different analytical methods and on
different samples, we reason that by normalizing abundances as a percent of the total
sample, it is possible to perform meaningful comparisons. Overall, IMS-MS data were well
within the typical range for all constituents, with the maximum observed concentration for
any single constituent being toluene at 6.7%. Still, because the IMS-MS approach provides
higher resolution and more individual constituents are detected, the relative abundances
were lower than those typically reported using other techniques. Seven molecular formulae
spanning 10 CAS numbers were below the limit of detection.

Table 2. Typical (as defined in [48]) versus observed (this study) constituents for substances in the
Low Benzene Naphthas category.

Constituent CAS RN Formula
Typical

Concentration (%)
Typical

Concentration Range (%)
Observed (IMS-MS)

Range (%)

Toluene 108-88-3 C7H8 ~30 0–≤50 0–0.08

Ethylbenzene 100-41-4 C8H10 ~20 0–≤45 0–0.2

Xylenes 1330-20-7 C8H10 ~15 0–≤30 0–0.2

m-Xylene 108-38-3 C8H10 ~7 0–≤15 0–0.2

p-Xylene 106-42-3 C8H10 ~5 0–≤10 0–0.2

o-Xylene 95-47-6 C8H10 ~2.5 0–≤5 0–0.2

Ethyltoluene 25550-14-5 C9H12 ~20 0–≤45 0.01–0.21

1,2,4-Trimethylbenzene 95-63-6 C9H12 ~12 0–≤21 0.01–0.21

Propylbenzene 103-65-1 C9H12 ~8 0–≤15 0.01–0.21

1,2,3-Trimethylbenzene 526-73-8 C9H12 ~6 0–≤12 0.01–0.21

Isopropylbenzene 98-82-8 C9H12 ~1.5 0–≤9 0.01–0.21

3-Ethyltoluene 620-14-4 C9H12 ~3 0–≤5 0.01–0.21

4-Ethyltoluene 622-96-8 C9H12 ~1 0–≤2 0.01–0.21

1,3,5-Trimethylbenzene 108-67-8 C9H12 ~1 0–≤2 0.01–0.21

Indene 95-13-6 C9H8 ~15 0–≤40 0.22–2.6

Methylstyrene 1319-73-9 C9H10 ~5 0–≤36 0.05–1.3

Indane 496-11-7 C9H10 ~7 0–≤13 0.05–1.3

2,3,3a,4,7,7a-Hexahydro-4,7-
methano-1H-indene

19398-83-5 C10H14 ~22 0–≤30 0–0.49

Dihydrodicyclopentadiene 4488-57-7 C10H14 ~15 0–≤25 0–0.5

1,2,3,5-Tetramethylbenzene 527-53-7 C10H14 ~8 0–≤16 0–0.5

1,2,4,5-Tetramethylbenzene 95-93-2 C10H14 ~6 0–≤11 0–0.5

1,2-Dimethyl-4-ethylbenzene 934-80-5 C10H14 ~5 0–≤11 0–0.5

1,3-Dimethyl-4-ethylbenzene 874-41-9 C10H14 ~2 0–≤4 0–0.5

1,4-Dimethyl-2-ethylbenzene 1758-88-9 C10H14 ~2 0–≤3 0–0.5

2-Methyl-2-butene 513-35-9 C5H10 ~7 0–≤14 0–1.32

Cyclopentane 287-92-3 C5H10 ~6 0–≤11 0–1.32

Trans-2-pentene 646-04-8 C5H10 ~5 0–≤10 0–1.32

Cis-2-pentene 627-20-3 C5H10 ~2 0–≤3 0–1.32
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Table 2. Cont.

Constituent CAS RN Formula
Typical

Concentration (%)
Typical

Concentration Range (%)
Observed (IMS-MS)

Range (%)

Naphthalene 91-20-3 C10H8 ~6 0–≤12 0.41–6.7

Tetralin 119-64-2 C10H12 ~3 0–≤6 0.05–1.4

Dicyclopentadiene 77-73-6 C10H12 ~15 0–≤2 0.05–1.4

Styrene 100-42-5 C8H8 ~2 0–≤5 0.01–0.26

1-Methylnaphthalene 90-12-0 C11H10 ~1 0–≤2 0.7–2.7

Isomer of Methylindene N/A N/A ~13 0–≤36 n.d.

C-10 Aromatic N/A N/A ~13 0–≤36 n.d.

N-pentane 109-66-0 C5H12 ~16 0–≤31 n.d.

Isopentane 78-78-4 C5H12 ~9 0–≤17 n.d.

Methylcyclohexane 108-87-2 C7H14 ~14 0–≤27 n.d.

Ethylcyclopentane 1640-89-7 C7H14 ~12 0–≤23 n.d.

Cis-1,2-dimethylcyclopentane 1192-18-3 C7H14 ~2 0–≤3 n.d.

Cyclopentene 142-29-0 C5H8 ~7 0–≤14 n.d.

N-heptane 142-82-5 C7H16 ~7 0–≤14 n.d.

Tetrahydrodicyclopentadiene 6004-38-2 C10H16 ~5 0–≤10 n.d.

N-octane 111-65-9 C8H18 ~4 0–≤7 n.d.

Benzene 71-43-2 C6H6 ~0 <0.1 n.d.

Table 3. Typical (as defined in [49]) versus observed (this study) constituents for substances in the
Resin Oils category.

Constituent CAS RN Formula
Typical

Concentration (%)
Typical

Concentration Range (%)
Observed (IMS-MS)

Range (%)

DCPD 77-73-6 C10H12 ~40 0–≤80 0.02–0.55

Vinyltoluene 25013-15-4 C9H10 ~30 0–≤60 0.03–0.37

4-Methylstyrene 622-97-9 C9H10 ~20 0–≤40 0.03–0.37

Indan 496-11-7 C9H10 ~7.5 0–≤25 0.03–0.37

2-Phenylpropene 98-83-9 C9H10 ~5 0–≤20 0.03–0.37

3-Methylstyrene 100-80-1 C9H10 ~10 0–≤20 0.03–0.37

2-Methylstyrene 611-15-4 C9H10 ~7.5 0–≤15 0.03–0.37

Cyclopentane 287-92-3 C5H10 ~25 0–≤50 0–0

2-Methylbut-2-ene 513-35-9 C5H10 ~5 0–≤10 0–0

Ethyltoluene 25550-14-5 C9H12 ~20 0–≤40 0–0.19

Trimethylbenzenes (TMB) 25551-13-7 C9H12 ~20 0–≤40 0–0.19

Isopropylbenzene 98-82-8 C9H12 ~15 0–≤30 0–0.19

1,2,4-Trimethylbenzene 95-63-6 C9H12 ~7.5 0–≤15 0–0.19

m-Ethyltoluene 620-14-4 C9H12 ~5 0–≤13 0–0.19

1,3,5-Trimethylbenzene 108-67-8 C9H12 ~5 0–≤10 0–0.19

Propylbenzene 103-65-1 C9H12 ~5 0–≤10 0–0.19

4,7-Methano-1H-indene,
2,3,3a,4,7,7a-hexahydro-

19398-83-5 C10H14 ~10 0–≤20 0–0.2

Dihydrodicyclopentadiene 4488-57-7 C10H14 ~5 0–≤12 0–0.2

1,2,4,5-Tetramethylbenzene 95-93-2 C10H14 ~5 0–≤10 0–0.2
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Table 3. Cont.

Constituent CAS RN Formula
Typical

Concentration (%)
Typical

Concentration Range (%)
Observed (IMS-MS)

Range (%)

Xylenes 1330-20-7 C8H10 ~10 0–≤20 0–0.11

Ethylbenzene 100-41-4 C8H10 ~5 0–≤15 0–0.11

Naphthalene 91-20-3 C10H8 ~20 0–≤40 0.13–3.14

Methylnaphthalene 90-12-0 C11H10 ~5 0–≤15 0.08–2.04

Methyldicyclopentadiene 25321-13-5 C11H14 ~10 0–≤21 0.02–0.44

Toluene 108-88-3 C7H8 ~10 0–≤20 0–0.03

Styrene 100-42-5 C8H8 ~12.5 0–≤25 0–0.04

Indene 95-13-6 C9H8 ~35 0–≤80 0.16–1.67

4-Ethyl-3-octene 53966-51-1 C10H20 ~40 0–<80 n.d.

Methylindenes 29036-25-7 C10H10 ~10 0–≤70 n.d.

1,2-Dihydronaphthalene 447-53-0 C10H10 ~12.5 0–≤25 n.d.

2,3,6-Trimethyl-4-octene 63830-65-9 C11H22 ~20 0–≤50 n.d.

1,3-Pentadiene 504-60-9 C5H8 ~16 0–≤51 n.d.

Cyclopentene 142-29-0 C5H8 ~15 0–≤25 n.d.

(3Z)-Penta-1,3-diene 1574-41-0 C5H8 ~10 0–≤20 n.d.

(E)-3-Dodecene 7239-23-8 C12H24 ~5 0–≤10 n.d.

Benzene 71-43-2 C6H6 ~1.0 0–≤3 n.d.

Phenol 108-95-2 C6H6O ~0 0–≤7 n.d.

n-Hexane 110-54-3 C6H14 ~0 0–≤0.2 n.d.

Based on IMS-MS data, LBN substances exhibited similar relative abundances of the
reported constituents, and little variation was observed between human health subcate-
gories [26]. Subcategory I substances are typically distinguished by high toluene content,
although other, higher m/z compounds at a higher abundance than toluene (C7H8) for
substances 83757, 83806, and 83946 were detected in this study. Subcategory II substances
are expected to contain toluene, ethylbenzene (C8H10), and xylenes (C8H10, all isomers
included); these were all detected by IMS-MS in relatively high amounts (though not as
high as C9-C10 compounds), although ethylbenzene and xylene isomers could not be dis-
tinguished without analytical reference standards. Typical components for subcategory III
include toluene, xylene isomers, styrene (C8H8), and naphthalene (C10H8). Naphthalene
was the constituent detected by IMS-MS in the highest abundance for both samples belong-
ing to subcategory III (2.4–2.7%), while the other component chemicals were detected at
a lesser abundance (~0.05%). Subcategory V has no reported specific constituents apart
from being described as “C9+ from o-xylene unit”; sample 83758 fit this description, and
C9H8, C9H10, C10H8, C10H10, C10H12, and C18H20 were all listed constituents of highest
abundance [26].

The reported RO constituent list [49] included constituents with 38 CAS numbers that
mapped to 20 unique molecular formulae (Table 3); these are expected to comprise between
0% and 80% of any RO substance. Constituents matching twelve of these unique molecular
formulae were detected by IMS-MS in RO substances tested herein, ranging in abundance
from 0% to 3.14% (naphthalene; Figure 4, Table 3). Eight molecular formulae representing
11 CAS numbers were not detected by IMS-MS. Unlike human health subcategories for
LBN, RO subcategories are distinguished mostly by varying levels of dicyclopentadiene
(DCPD, C10H12). As expected, DCPD was one of the highest detected constituents using
IMS-MS across RO substances, both in subcategories I (high DCPD) and II (low DCPD).
Samples for substances representing subcategory III, for which methylcyclopentadiene
dimer (MCPD; C12H16) is an additional supporting chemical [27], were not available for
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this study. More detailed analyses for Figure 4 can be found in Tables S11 and S12 for LBN
and RO, respectively.
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representing typical constituents for LBN (A) and RO (B) categories, see color legend. Constituents
were selected based on the substance profiles [48,49]. More detailed analysis can be found in
Tables S11 and S12.

3.2. Bioactivity Profiling

Characterizing the composition of UVCBs is critical to establishing structural similarity
and the applicability domain of a category [14]. Still, the inherent variability between sub-
stances presents uncertainty that may be addressed through the evaluation of the bioactivity
of the individual substances. Herein, bioactivity profiling, i.e., testing of the concentration-
response effects of the DMSO extracts of the petroleum UVCBs on various human cells
and endpoints, was conducted. This analysis aimed to determine whether (i) similarity
in bioactivity would be observed within each category and (ii) similar bioactivity profiles
would be concordant with chemical similarity from IMS-MS data. The ToxPi approach
for integrating bioactivity data across different phenotypes and cell types [15,16,50] is a
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common method for visualization and ranking of substances. Here, the data from 20 phe-
notypes across 5 cell types (Table S8) were integrated by constructing substance-specific
ToxPi to represent bioactivity, where one pie slice equates to the overall ToxPi score derived
for each cell type. ToxPi profiles were assembled within each tested category, LBN and
RO, whereby the bioactivity is relative within that category. Greater bioactivity (i.e., lower
POD) is represented by a larger ToxPi score and a bigger pie slice. Unsupervised hierar-
chical clustering was then used to assess the similarity between the bioactivity profiles of
different substances within each category (Figure 5). Overall, RO substances (Figure 5B)
exhibited greater bioactivity than LBN substances (Figure 5A). This finding corroborates
previous reports, which showed greater bioactivity of higher carbon-range vacuum and
hydrotreated gas oils as compared to lower carbon-range straight-run gas oils [15]. Similar
to the observations with chemical composition (Figures 2 and 3), there was some, albeit not
complete, similarity in bioactivity profiles within each human health subcategory.
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Figure 5. (A) Hierarchical clustering based on bioactivity profiles for LBN DMSO extracts. The name
of each substance is colored by the prescribed health hazard group. Corresponding ToxPi diagrams
depict overall substance toxicity; each slice represents one cell type, including all assessed phenotypes.
Cell types tested include iPSC-derived hepatocytes (purple), endothelial cells (green), cardiomyocytes
(pink), neurons (yellow), and HUVEC (blue). Larger pie slices indicate greater toxicity for that
substance and cell type. (B) Hierarchical clustering based on bioactivity profiles for RO DMSO
extracts. Substance names are again colored by prescribed health hazard groups, and respective ToxPi
charts show an overall greater toxicity of RO substances as compared to LBN substances.
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In the LBN category, subcategory II exhibited the greatest bioactivity similarity. Some
of the substances had lower bioactivity (E84024, E84003, and E84070) as compared to
others (E84075, E83979, and E83931). This result is concordant with the data on chemical
composition; samples 84003 and 84070 are two of the least complex LBN substances tested,
and they also exhibited few effects in vitro. Similarly, samples 84075 and 83979 were of
comparable chemical complexity and elicited similar bioactivity profiles. iPSC-derived
neurons and hepatocytes were the most affected cell types across the LBN substances.

In the RO category, subcategory I exhibited the most similarity in bioactivity profiles;
five out of the six samples assigned to subcategory I demonstrated bioactivity in all cell
types tested. The sixth sample (E83955) was bioactive in four out of five cell types, albeit to
a lesser extent. These results were also generally concordant with the chemical composition
data in Figures 2 and 3; subcategory I substances 83956 and 84023 were closely related,
while 84543 and 83981 also exhibited compositional concordance. Bioactivity was observed
more consistently across all cell types for RO substances; still, iPSC-derived endothelial
cells, neurons, and hepatocytes were the cell types for which bioactivity was observed
most often.

3.3. Comparison of Bioactivity and Chemical Composition

Human health evaluations for petroleum UVCBs are typically based on substance
grouping using physio-chemical properties and manufacturing processes, followed by an
assessment of possible hazards by several constituents. The bioactivity profiling described
above (Figure 5) grouped substances based on similarity in bioactivity, but the grouping
was not fully concordant with existing HPV categories; therefore, “substance similarity”
was examined using both chemical profiles and bioactivity. Specifically, the objective
of this study was to assess chemical and in vitro data together to determine whether
chemical composition may align with trends in bioactivity (Figures 6 and 7). First, the
overall chemical composition clustering of samples in the LBN category (Figure 2) was
split into four sub-groups based on clustering (Figure 6A). To visualize the hydrocarbon
composition of each substance, the carbon number range was plotted versus double bond
equivalence (DBE) and abundance (Figure 6B). This typical data presentation for petroleum
UVCBs allows a visual assessment of the complexity of each sample, as well as the range of
hydrocarbon types that are present. Aromaticity, measured by DBE, varied from a minimum
of 1 (low aromaticity, likely olefin or alkane species) to a maximum of 30+ (highly aromatic
species). Overall, the chemical profiles of most LBN samples were within the expected
C7–C12 range; however, many samples contained an appreciable number of constituents in
the C40 range that are aromatic. Generally, samples with a higher carbon number range
exhibited greater bioactivity across all cell types tested. The first subgroup (N84070, N84003,
and N83946) included the least bioactive substances of all tested samples; based on their
compositional signatures, these samples were clustered based on the high abundance of
C40+ constituents. The second subgroup (N83683 and N83979) exhibited a high abundance
of <C20 constituents, as well as some that were >C40 (although these were not as highly
abundant as in the first subgroup). Between the two substances in this subgroup, the most
bioactivity was contributed by iPSC-derived cardiomyocytes and hepatocytes. The third
subgroup (N83984, N84075, and N84024) displayed the most chemical similarity between
N84075 and N84024, although these substances only had hepatocyte bioactivity in common.
N83984 had a chemical abundance distributed over a wider carbon range (up to C40) and
exhibited greater bioactivity in all cell types. Finally, the last subgroup (N83806, N83931,
N83757, and N83758) presented the greatest chemical variability and carbon number range
when compared to the other LBN samples. The three substances (N83931, N83757, and
N83758) with the largest carbon number range and high levels of aromatic species exhibited
some of the highest bioactivity, which was especially notable in iPSC-derived neurons,
endothelial cells, and hepatocytes.
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Figure 6. (A) Hierarchical clustering based on chemical profiles of neat LBN substances. Substance
names are colored by prescribed health hazard groups. (B) IMS-MS chemical profiles depicted
as carbon number versus double bond equivalence. Larger bubble sizes and a darker grey color
depict more abundant features. Adjacent ToxPi charts show overall bioactivity across iPSC-derived
hepatocytes (purple), endothelial cells (green), cardiomyocytes (pink), and neurons (yellow), as well
as HUVEC (blue).

The same analyses were conducted for RO substances (Figure 7). Three subcate-
gories were examined (Figure 7A). Most of the samples had the greatest number of con-
stituents (Figure 7B) in the C7–C20 range; however, all substances had constituents in the
C20–C40 range, and one substance (N83956) extended to C50+. Like LBN substances,
greater bioactivity across all cell types tested was generally associated with a larger car-
bon number range. All RO substances exhibited a larger carbon number range than LBN
substances (except for N83757 and N83758). Substances in the first RO subgroup (N84543,
N83998, N83981, N83618, and N84012) exhibited bioactivity in all cell types tested except
sample N83998, which was not bioactive in iPSC-derived neurons. Three of these sub-
stances belong to human health subcategory I (N84543, N83981, and N83618). Of the four
substances belonging to the second subgroup (N83879, N84074, N83949, and N83980), three
were in human health subcategory II and had generally comparable chemical profiles; still,
N83980 exhibited bioactivity only in iPSC-derived cardiomyocytes and HUVEC, whereas
N84074 and N83949 exhibited bioactivity in all cell types tested. Similar conclusions could
be drawn for the third subgroup (N84023, N83985, N83955, and N83956); these substances
are members of RO human health subcategory I and showed considerable overlap in
chemical composition. Despite the difference in carbon number ranges between N84023
and N83956, their bioactivity profiles shared a closer resemblance to each other.
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Figure 7. (A) Hierarchical clustering based on chemical profiles of neat RO substances. Substance
names are colored by prescribed health hazard groups. (B) IMS-MS chemical profiles depicted
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depict more abundant features. Adjacent ToxPi charts show overall bioactivity across iPSC-derived
hepatocytes (purple), endothelial cells (green), cardiomyocytes (pink), and neurons (yellow), as well
as HUVEC (blue).

3.4. Determining What Chemical Constituents May Be Associated with Bioactivity

Data on PAC content with 3+ aromatic rings is conventional analytical chemistry-based
information that is used to judge the potential health hazards of petroleum UVCBs; higher
PAC content is assumed to have higher bioactivity [51,52]. However, regulatory bodies such
as ECHA are typically hesitant to rely on these data alone in hazard evaluation, reasoning
that PAC content may not necessarily represent the entire bioactive fraction [10]. It was also
argued by ECHA that such a broad characterization does not provide enough information
to justify the application of read-across [10]. Indeed, considerable heterogeneity in both
chemical composition [25] and bioactivity [15–17] of substances within current petroleum
UVCB categories, based on the physio-chemical properties and manufacturing process,
has been previously observed; therefore, the findings presented in Figures 2–7 for LBN
and RO categories are not unexpected. While such heterogeneity in both overall chemical
composition and bioactivity cannot be used directly to justify similarity between substances
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in each category, determination of whether there may be statistically significant associations
among specific chemical constituents and bioactivity phenotypes has not been previously
attempted for petroleum UVCBs.

Therefore, machine learning was used to predict overall and cell type-specific bioactiv-
ity from the IMS-MS chemical profiles for the tested substances (Figure 8). This approach
has previously been used to provide a refined analysis of bioactive components in case
studies of other complex substances [45] and mixtures [53]. Even though neither chemical
composition, nor bioactivity data separately replicated existing categories/sub-categories
of the tested substances, the overall bioactivity of each sample was found to be strongly as-
sociated (multiple testing-corrected q-value <0.1) with the chemical profiles of both neat and
DMSO-extracted samples (Figure 8A and B, top). Interestingly, the data from iPSC-derived
neurons and endothelial cells was also strongly associated with the chemical profiles of the
neat substances (Figure 8A, middle and bottom), but not of the DMSO extracts (Figure 8B,
middle and bottom). Next, it was determined what constituents in the neat samples were
most influential in this multivariate prediction analysis (Figure 8C). Of the seven con-
stituents that were significantly associated with bioactivity, all were high-molecular-weight
PAC belonging to homologous series with pyrene, fluorene, or naphthalene. Only one
constituent could not be identified with high confidence using a workflow for IMS-MS data
analysis of petroleum substances [18]. Table S13 shows a list of potential names that could
be assigned to the seven hydrocarbon features driving bioactivity and their corresponding
hazard classifications. Further, the relative abundance of these constituents in each tested
sample (Figure 8D) was compared. It was found that there was an overall higher abundance
of these constituents in RO substances as compared to LBN substances, supporting the
previous observation that RO substances were generally more bioactive.
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profiles of neat (A) and corresponding extracts (B). Observed bioactivity is shown on the x-axis.
Bioactivity prediction was conducted using the penalized regression approach described in Methods.
The predicted values were obtained by leave-one-out cross validation, where the prediction model
was developed with each sample left out of analysis, and the model applied to the features of
the held-out sample. The most informative validations were chosen with the highest prediction r
(Pearson coefficient) and the lowest q (false discovery rate value). (C) Correlation plot depicting the
hydrocarbon compounds from neat samples that were most significantly predictive of the overall
ToxPi score based on cross-validation analyses. Bubble size represents the Pearson correlation between
feature abundance and ToxPi score overall as well as for individual cell types. Positive correlations
are shown in blue, whereas negative correlations are shown in red. (D) Heatmap depicting the
relative abundance of each feature in each sample tested. A darker color indicates higher abundance.

4. Discussion

This study is novel because it used new analytical and toxicological approaches to
examine both the chemical composition and biological effects of complex petroleum UVCBs.
Samples were from two HPV categories, and this study aimed to determine the extent of
chemical and bioactivity similarity among substances that have been previously assigned to
these categories using physio-chemical properties and manufacturing process information.
The main questions of this study were four-fold: (1) To what extent can petroleum UVCBs
be characterized using novel analytical methods such as IMS-MS to meet the most recent
ECHA advice on substance characterization for read-across [14]? (2) How much chemical
variability is to be expected within and between existing LBN and RO manufacturing
categories? (3) How much biological variability is to be expected within and between
existing LBN and RO manufacturing categories? Additionally, (4) What constituents are
potential drivers of bioactivity in complex petroleum UVCBs?

First, it was found that in the DMSO extracts (but not in the neat substances) in the RO
and LBN manufacturing categories, the sum of constituents present in amounts ≥1% of
the overall substance was above the 80% ECHA threshold [14]. This means that additional
analyses need to be performed to further identify the constituents of concern below 1%;
for this, higher resolution analytical instruments such as Orbitrap and Fourier transform
ion cyclotron resonance (FT-ICR) mass spectrometry (MS) may be more suitable [5,19]. In
addition, subsequent application of targeted chromatographic approaches would also be
needed to confirm the structural identities of identified constituents of interest [5,54–56].

Second, broad chemical concordance was observed for substances belonging to the
same category; however, considerable variability was observed between substances in
the same category and even subcategory. This was likely a result of inherent substance
variability or reaction byproduct impurities from manufacturing processes. While composi-
tional variability is to be expected, recent advice from ECHA calls for the characterization
of such variability. Not only is there a need to provide compositional characterization
of the substances identified by different CAS RN but grouped into a category, but also
characterization of the variability of the same product across manufacturing batches and
refineries [14]. The analysis of at least five independent (i.e., production batch) samples
from all registrants of a substance is the most recent threshold proposed by ECHA [14]. To
establish this, novel analytical techniques such as IMS-MS, Orbitrap-MS, and FT-ICR-MS
are most appropriate [5]. A recent study showed that detailed chemical compositional
data on petroleum UVCBs obtained from IMS-MS can provide the information necessary
for hazard and risk characterization in terms of quantifying the variability of the prod-
ucts in a manufacturing category, as well as in subsequent production cycles of the same
product [25].

Third, similarity in bioactivity was observed within the overall LBN and RO categories;
however, less concordance was evident within previously proposed HPV human health
subcategories. This observation is similar to that from a larger study of other petroleum
UVCBs, where 141 substances spanning 6 product categories were tested in 15 human
organotypic cell types to investigate substance similarity using both bioactivity signa-
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tures [16] and transcriptomic profiles [17]. These studies showed that the bioactivity and
transcriptomic data correlate strongly with the PAC content of each substance and can
be used to rank overall categories in a way similar to that using other hazard data (typi-
cally from animal and genotoxicity studies); however, they cannot be used to substantiate
existing groupings. These data are still highly informative, as a combination of bioactiv-
ity and transcriptomic data could be integrated to make decisions as to the selection of
class-representative worst-case petroleum UVCBs for subsequent evaluation in vivo [57].

Fourth, this study is also informative in terms of the hazard evaluation of petroleum
UVCBs. Due to the chemical complexity of petroleum UVCBs, there is no harmonized
methodology for their risk assessment; both whole mixture and constituent-based ap-
proaches can be used [58–60]. The constituent-based approach is most commonly used for
petroleum UVCBs [61,62]; however, the approaches to the selection of the chemical con-
stituents of interest are yet to be standardized [4,63,64]. Furthermore, petroleum UVCBs are
typically tested as the whole substance (in vivo) or as a DMSO extract (in vitro), rather than
as individual constituents or groups of constituents [65]. The results presented herein are
consistent with the historical observations that the potential hazards of petroleum UVCBs
are largely determined by their PAC 3–7 ring content [66–68] and previous observations
that PAC content is the strongest “driver” of in vitro bioactivity [16,17,69]. In addition, this
study also provides specific details on what constituents, rather than PAC 3–7 overall, are
most strongly associated with in vitro bioactivity. Such an approach, assessing relationships
between high-dimensional chemical profiles and multi-dimensional bioactivity phenotypes,
is informative for defining constituents of interest for component-based risk assessment of
petroleum UVCBs. This is especially beneficial in scenarios such as environmental disasters,
where exposure assessment and hazard evaluation are time sensitive [50,53].

This study is not without limitations. The availability of samples, a common challenge
in studies of large-volume produced substances, limited our ability to characterize the
intra-category and sub-category variability. Even though we tested 25 samples that were
representative of two manufacturing categories and multiple sub-categories within them,
the desired replication was lacking. Prior studies showed that a single sample per category
may not provide adequate information to capture the individual category characteris-
tics [70]. Updated ECHA advice also addressed this limitation, specifying that constituent
concentrations in “at least five independent samples of the substance . . . from different production
batches . . . as produced by all the registrants” must be included to characterize the variabil-
ity [14]. However, obtaining samples for the analysis of petroleum UVCBs is a well-known
challenge that cannot be easily addressed because samples need to be provided by the
individual manufacturers and cannot be commercially procured from standard chemical
suppliers. Some studies have begun to address compositional variability within production
batches [25]; still, additional investigation is warranted to examine variability in bioactivity
within production batches as well.

Our study used one analytical approach to characterize the chemical composition
of tested substances; however, products of petroleum refining are highly complex, and
both separation, ionization, and detection methods may affect the molecules that are
identifiable using each technique [5,19,71]. Therefore, the analytical results presented
herein should be interpreted with caution. For example, we reason that while they may
be used for the purpose of relative comparisons among substances and categories, they
should not be used to infer the exact chemical composition or absolute concentrations of
the individual constituents.

In addition, DMSO extraction, a widely used method to enable testing complex
petroleum substances [51,72], captures only a fraction of the neat substance. This is a
concern for regulators, who maintain that solvent extraction may restrict the bioactive
fraction to only constituents that are soluble in biocompatible solvents such as DMSO [10].
Recent developments in the field have therefore adapted alternative dosing techniques
as potential solutions to enable more high-throughput in vitro testing [73–78], and future
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studies of petroleum UVCBs may utilize these alternative approaches for delivering the
substances in small-volume in vitro methods.

Another well-recognized challenge of using in vitro bioactivity for hazard-based eval-
uations of chemicals is the translation of in vitro results to apical in vivo phenotypes. The
complex composition of UVCBs makes it difficult to conduct traditional in vitro-to-in vivo
extrapolation from bioactive concentrations to human exposures [79]. It is still debated as to
whether bioactivity should be used only for screening and prioritization [80], for grouping
and read-across [81], or to establish health-protective points of departure for screening-
level assessments [82]. The use of in vitro bioactivity data in regulatory decision-making
is rapidly evolving, and regulators currently indicate that the results of cell-based studies
should be confirmed with additional assays, including studies in animals [83].

5. Conclusions

Overall, this study demonstrates the benefits of simultaneous assessment of both
chemical composition and bioactivity when evaluating the potential hazard properties
of petroleum UVCBs. We found that based on the samples analyzed herein, existing
categories, based largely on the manufacturing considerations and intended future uses
of these products, may be considered heterogeneous in terms of their composition and
bioactivity. While additional work is needed to evaluate a larger compendium of substances,
including different manufacturing batches of the same substance and testing alternative
in vitro delivery methods for these “difficult to test” substances, we conclude that an
approach that combines chemical composition and bioactivity data is sensible. These
complementary data streams provide information that will enable a more comprehensive
and confident characterization of similarities, differences, and variability between and
within manufacturing categories of petroleum UVCBs.
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