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Abstract: Chemical warfare agents (CWAs) are one of the most toxic compounds. Degradation of
CWAs using decontamination agents is one of the few ways to protect human health against the
harmful effects of CWAs. A ferrate (VI)-based potential chemical warfare agent decontaminant
was studied for the degradation of persistent nitrogen mustard (tris(2-chloroethyl)amine, HN3). By
optimizing the reaction conditions, the complete degradation of HN3 was achieved in 4 min. The
degradation products contained mostly reduced Fe species, which confirmed the environmental
friendliness of the proposed decontamination solution.
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1. Introduction

Chemical warfare agents (CWAs) are extremely toxic chemicals that are relatively
easy to produce and that can be used against military personnel as a part of asymmetric
warfare or against civilians by terrorist groups or non-state actors. An attempted murder
using a Soviet-era Novichok class of chemical warfare nerve agent is one of the latest
examples. Chemical warfare agents have been classified based on different properties [1].
Generally, the CW comprise six categories: lung insurance (choking agents), blood agents
(cyanogens), vesicants (blister agents), nerve agents (anticholinesterase), incapacitants, and
riot control agents (lacrimators) [2–4]. CWAs cause adverse health effects upon contact or
by inhalation. Vesicants cause severe blistering of tissue, nerve agents inhibit the enzyme
acetylcholinesterase, and blood agents cause tissue hypoxia [5–7].

Decontamination, contamination avoidance, and protection can reduce or remove
the adverse health effects of CWAs if applied in time. Some chemical warfare agents
and their decontamination methods can lead to toxic degradation by-products or have
long degradation half-times [8]. Developing decontamination methods that completely
and rapidly neutralise all chemical warfare agents without generating toxic residues is
a complex challenge. To minimise toxic degradation processes and reduce degradation
half-times, an ideal decontamination agent for chemical warfare agents should possess
the following properties: broad-spectrum efficacy—it should be effective against a wide
range of chemical warfare agents; rapid action—it should provide rapid decontamination
to minimise exposure time and prevent further contamination; high efficiency—it should
require minimal quantities to achieve effective decontamination, ensuring cost-effectiveness
and practicality in real-world scenarios; non-damaging to surfaces—it should not soften or
damage paints, coatings, polymeric seals, gaskets, or transparencies such as windscreens.
In addition, the decontamination agent should have low toxicity and non-flammability,
and it should have a minimal environmental impact, including biodegradability and low
persistence in the environment [9].
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Numerous decontamination methods have been reported so far, and the environ-
mental degradation process of CWAs based on hydrolysis, oxidation, photolysis, and
microbial degradation has been studied and reviewed [8–13]. Most of the work in the past
has focused on hydrolysis and the oxidation-based degradation of CWAs [10–15]; addi-
tional decontamination strategies such as the use of non-photochemical or photochemical
advanced oxidation process [16–18]; and heterogenous processes such as metal-organic
frameworks [19–22], metal oxides [23–26], and polymers [27,28]. Direct energy applica-
tion [29] or biotechnological [30] degradation may also be a viable option. In recent years,
alternative decontamination strategies have been explored, such as non-photochemical
or photochemical advanced oxidation processes and heterogeneous processes, including
metal-organic frameworks, metal oxides, and polymers, as well as direct energy application
or biotechnological degradation. Ferrate(VI) and nanoscale zero-valent iron are effective
and environmentally friendly decontamination reagents for the destruction of CWAs [31].
Because of the relatively short half-times of degradation of the CWAs, as well as their good
efficiency and low environmental impact, the use of ferrate(VI) can be promising method
for the neutralization of CWA. In addition, its effectiveness against biological agents [32]
could prove dual purpose of the ferrate(VI)-based decontamination methods.

The ferrate(VI) in our work was tested for the degradation of the chemical warfare
agent HN3 (tris(2-chloroethyl)amine) under different conditions to optimize the effective-
ness of the decontamination system. This research contributes to the development of more
efficient and environmentally friendly decontamination strategies for CWAs. The persistent
nitrogen mustard (tris(2-chloroethyl)amine, HN3) was selected as a model agent for its low
solubility in water and relatively slow hydrolysis [8].

2. Materials and Methods
2.1. Preparation of Ferrate(VI)

Ferrate(VI) was prepared electrochemically in molten hydroxide according to the
process described in detail elsewhere [33].

2.2. Preparation of Nitrogen Mustard HN3

“Caution! The nitrogen mustard is toxic chemical warfare agent. Because of its high
toxicity, it was handled only by well-trained personnel using appropriate safety procedures
in the accredited laboratory in compliance with Chemical Weapons Convention”.

The nitrogen mustard HN3 was prepared in the Reference Chemical Laboratory of
the Training and Testing Centre in Zemianske Kostolany. The laboratory is certified for the
analysis of CWAs, and the production of CWA complies with the CWC. It was prepared
by the reaction of triethanolamine with thionyl chloride in chloroform. The prepared
by-product HN3 hydrochloride was treated with a solution of sodium carbonate in water.
The resulting brownish oily product was separated by a separatory funnel and distilled.
The product was then confirmed by GC-MS analysis, as shown in Figure 1, and its purity
(99.8%) was verified by GC-FID.
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Figure 1. GC-MS analysis of the prepared HN3.
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2.3. Reaction of Ferrate Fe(VI) with Nitrogen Mustard HN3

To study the degradation rate of chemical warfare agent HN3 (tris(2-chloroethyl)amine),
0.7 mL of phosphate buffer solutions (sodium dihydrogen phosphate) with pH 3, 4, 5, and
6 were prepared in 4 mL glass vials. Then, 0.1 mL of a solution of HN3 in n-Hexane
(200 ppm, 1.09 µM) mL was added to the buffer containing vials. Immediately, the addition
of 0.2 mL freshly prepared ferrate(VI) solution in distilled water (1.09 mM) followed. After
a selected time (2, 4, 8, 16 min), 250 µL of the reaction solution was transferred to 1 mL vials
containing 500 µL of n-Hexane. The vials were shaken at 1000 RPM for 1 min [31]. After
the organic layer separation, 200 µL of n-Hexane layer was collected, dried with sodium
sulphate, and analysed using GC-FID to determine the concentration of remaining HN3.

3. Results and Discussion
Degradation of Nitrogen Mustard

Since HN3 undergoes spontaneous hydrolysis in water [34] (Figure 2), at the beginning
of our experiments, the hydrolysis the hydrolysis rate of the prepared HN3 was studied.
The GC-FID analysis confirmed that hydrolysis of HN3 fulfilled the first-order kinetics
equation [31]. Therefore, for analysing the kinetics data of HN3 hydrolysis, Equation (1)
was used:

ct = c0e−k1t (1)

where ct denotes the residual concentration of HN3 in time t, and c0 stands for the initial
concentration of HN3. The rate constant of the spontaneous hydrolysis of HN3 was deter-
mined to be 0.029 ± 0.008 min−1 at pH 6, which is in line with previously reported results.
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Figure 2. Hydrolysis mechanism of HN3 in water.

After these initial experiments, the oxidation power of ferrate(VI) toward HN3 was
tested. The degradation of the nitrogen mustard HN3 was studied as a function of the
concentration of remaining nitrogen mustard HN3 in a solution and time at various pH
levels (Figure 3).
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Figure 3. GC-FID chromatogram showing the remaining HN3 after 2 min of reactions with
ferrate(VI) at different pH levels: 3-SB-2_FID (yellow)—hydrolysis of HN3 at pH 6, 3–2_FID
(green)—reaction at pH 3, 4–2_FID (amber)—reaction at pH 4, 5–2_FID (purple)—reaction at pH 5,
6–2_FID (blue)—reaction at pH 6.

As expected, after the addition of purple ferrate Fe(VI) solution to a reaction mixture,
the colour changed, and a brown precipitate containing iron(III)/iron(II) products as the
final species was formed [26]. It can be supposed that oxidation of HN3 by ferrate(VI) is
the 2e− transfer step (FeVI→FeIV→FeII) rather than the 1e− transfer step, as suggested by
previous reports concerning reactions of iron(VI) with amines [35,36].

The obtained data were studied using several kinetics models. Based on our measured
kinetic data of the decomposition of HN3 using Fe(VI), it follows that the best fit was a
pseudo-second order kinetics model. This observation is consistent with previous results,
where the kinetics of amine oxidation by ferrate(VI) were monitored [35,36]. Therefore,
the following equation was applied to calculate the second-order rate constant k2 for all
degradation processes at all pH levels used:

ct =
c2

e k2t
1 + ctk2t

(2)

where ce is an equilibrium concentration of HN3. The rate of HN3 degradation is repre-
sented by kinetic curves in Figure 4.
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As can be seen from Figure 3 the complete degradation of HN3 by ferrate(VI) was
reached after approximately 4 min in all solutions of different pH levels. All curves
that were calculated according to Equation (2) fit the experimental points well, while the
individual statistical parameters are summarized in Table 1. This confirms the correctness
of our reasoning that it is a reaction with pseudo-second order kinetics.

Table 1. The rate constants of oxidation of the HN3 by Fe(VI) at different pH levels.

pH k2 (min−1) χ2 Adjusted R-Squared

3 2.961 ± 0.942 6.48 × 10−4 0.997
4 18.596 ± 3.750 1.16 × 10−5 0.999
5 2.658 ± 0.808 6.87 × 10−4 0.996
6 1.054 ± 0.498 4.59 × 10−3 0.975

The rate of the HN3 oxidation using ferrate(VI) is much faster as the rate of HN3
hydrolysis (25 h) [14], and faster than decontamination of other persistent vesicant sulphur
mustard using TiO2 (24 h) [37], sulphur-doped TiO2 (2 h) [38], or MgAl2O4 (4 h) [39], as an
example. Individual rate constants obtained in our experiments are shown in Figure 5.
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In Figure 5, the bar diagrams of calculated rate constants k2 according to Equations (1) and (2)
at different pH levels are plotted.

From Figure 5, it is easily visible that the decomposition rate of HN3 by ferrate(VI)
strongly depends on the pH of the solution. The highest rate was observed for pH = 4,
followed by pH = 5 and pH = 3. The lowest rate was observed for the pH = 6. The
lower decomposition rate of nitrogen mustard at pH = 3 compared to pH = 4 was prob-
ably caused by the strong self-decomposition reaction of ferrate(VI) to Fe(III)/Fe(II) by
water via the intermediary of Fe(IV) and Fe(V) species, which could have reduced the
efficiency of the degradation process itself. At pH = 3, H2FeO4 was mainly present due
to the pKa = 3.5 ± 0.2 [40,41]. At this acidic pH, the formation of a diferrate(VI) with fast
intramolecular oxo-coupling producing O2 and diferryl(IV) species was proposed. The au-
thors of this study point out that in the acidic solutions, the kinetics of ferrate(VI)-mediated
water oxidation (ferrate decomposition) becomes a complex problem. Similarly to our study,
a second-order decay process can be resolved with HN3. However, the self-decomposition
of ferrate(VI) is faster than the oxidation of nitrogen mustard with condensation and dimer-
ization of monomeric ferrate as the rate-determining step [40]. It is evident that degradation
by ferrate(VI) is significantly faster at all pH levels than hydrolysis alone, which is one of
the most important parameters under combat conditions.

In Table 1, the calculated values of all rate constants are summarised.
It can be easily seen that the rate of the decomposition of HN3 by ferrate(VI) was at the

same pH levels approximately two orders of magnitude higher than that of spontaneous
hydrolysis of HN3. This means that the impact of hydrolysis on the decomposition of HN3
is very low compare to ferrate(VI) and can be neglected during calculations. In addition, this
means that Fe(VI) is a strong enough oxidizing agent against nitrogen mustard even at an
almost neutral pH, which, in field conditions, means the simplification of handling during
the eventual decontamination of surfaces, people, vehicles, etc. using ferrate(VI) solution.

4. Conclusions

This study aimed to test a potentially fast-acting, highly efficient and environmentally
friendly decontamination agent based on ferrate Fe(VI) for its ability to degrade the persis-
tent chemical warfare agent HN3. The potential of the Ferrate(VI)-based decontamination
agents also lies with its relative ease of use, potential effectiveness against biological agents,
and non-damaging and non-flammable properties. Our research focused on identifying the
optimal conditions for degradation, with particular attention paid to reaction rates under
different pH levels to achieve the fastest and most effective degradation.

Our experiments revealed that the reaction rate was fastest at a lower pH of 3. How-
ever, the degradation of the nitrogen mustard HN3 was nearly 100% within just four
minutes across the full range of pH levels tested. This remarkable result demonstrates the
efficiency and effectiveness of ferrate Fe(VI) as a promising candidate for the decontamina-
tion of persistent chemical warfare agents.

Furthermore, the formation of Fe(III) and Fe(II) species as ferrate reduction products is
acceptable from an environmental perspective, as these products pose no significant harm
to the environment.

Our future work will focus on the degradation of other persistent chemical warfare
agents and optimising the degradation conditions for practical applications of Fe(VI)-
based decontamination agents. These efforts hold great promise for the development of
safer, more efficient, and environmentally friendly solutions for the decontamination of
hazardous materials.
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oxides of Fe, Al and Zn for destruction of warfare agents. Mater. Charact. 2010, 61, 1080–1088. [CrossRef]

25. Prasad, G.K.; Mahato, T.H.; Singh, B.; Ganesan, K.; Pandey, P.; Sekhar, K. Detoxification reactions of sulphur mustard on the
surface of zinc oxide nanosized rods. J. Hazard. Mater. 2007, 149, 460–464. [CrossRef] [PubMed]

26. Wagner, G.W.; Koper, O.B.; Lucas, E.; Decker, S.; Klabunde, K.J. Reactions of VX, GD, and HD with Nanosize CaO: Autocatalytic
Dehydrohalogenation of HD. J. Phys. Chem. B 2000, 104, 5118–5123. [CrossRef]

27. Chen, W.; Wang, H.; Guo, X.; Zhong, J. A flexible self-detoxifying Zr(OH)4-carbon fiber composite for decontamination of
chemical warfare agent. J. Sol-Gel Sci. Technol. 2021, 97, 1–4. [CrossRef]

28. Wen, X.; Ye, L.; Chen, L.; Kong, L.; Yuan, L.; Xi, H.; Zhong, J. Decontamination of Chemical Warfare Agents by Novel Oximated
Acrylate Copolymer. Chem. Res. Chin. Univ. 2019, 35, 1095–1104. [CrossRef]

29. Iwai, T.; Inoue, H.; Kakegawa, K.; Ohrui, Y.; Nagoya, T.; Nagashima, H.; Miyahara, H.; Chiba, K.; Seto, Y.; Okino, A. Development
of a High Efficiency Decomposition Technology for Volatile Chemical Warfare Agent Sarin Using Dielectric Barrier Discharge.
Plasma Chem. Plasma Process. 2020, 40, 907–920. [CrossRef]

30. Ohmori, T.; Kawahara, K.; Nakayama, K.; Shioda, A.; Ishikawa, S.; Kanamori-Kataoka, M.; Kishi, S.; Komano, A.; Seto, Y.
Decontamination of nerve agents by immobilized organophosphorus hydrolase. Forensic Toxicol. 2013, 31, 37–43. [CrossRef]

31. Zboril, R.; Andrle, M.; Oplustil, F.; Machala, L.; Tucek, J.; Filip, J.; Marusak, Z.; Sharma, V.K. Treatment of chemical warfare agents
by zero-valent iron nanoparticles and ferrate(VI)/(III) composite. J. Hazard. Mater. 2012, 211–212, 126–130. [CrossRef]
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