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Abstract: Thyroid cancer is the most common endocrine cancer, and its prevalence has been increasing
for decades. Approx. 95% of differentiated thyroid carcinomas are treated using 131iodine (131I),
a radionuclide with a half-life of 8 days, to achieve optimal thyroid residual ablation following
thyroidectomy. However, while 131I is highly enriched in eliminating thyroid tissue, it can also retain
and damage other body parts (salivary glands, liver, etc.) without selectivity, and even trigger salivary
gland dysfunction, secondary cancer, and other side effects. A significant amount of data suggests
that the primary mechanism for these side effects is the excessive production of reactive oxygen
species, causing a severe imbalance of oxidant/antioxidant in the cellular components, resulting
in secondary DNA damage and abnormal vascular permeability. Antioxidants are substances that
are capable of binding free radicals and reducing or preventing the oxidation of the substrate in a
significant way. These compounds can help prevent damage caused by free radicals, which can attack
lipids, protein amino acids, polyunsaturated fatty acids, and double bonds of DNA bases. Based
on this, the rational utilization of the free radical scavenging function of antioxidants to maximize a
reduction in 131I side effects is a promising medical strategy. This review provides an overview of
the side effects of 131I, the mechanisms by which 131I causes oxidative stress-mediated damage, and
the potential of natural and synthetic antioxidants in ameliorating the side effects of 131I. Finally, the
disadvantages of the clinical application of antioxidants and their improving strategies are prospected.
Clinicians and nursing staff can use this information to alleviate 131I side effects in the future, both
effectively and reasonably.
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1. Introduction

Thyroid cancer is a malignant tumor of the endocrine gland that arises from the
follicular or parafollicular epithelium of the thyroid gland. As a result of an increased use
of diagnostic imaging and surveillance, the incidence of thyroid cancer has been steadily
increasing worldwide, with more than 62,000 new cases diagnosed each year [1–3]. The
most frequent kind of thyroid cancer is differentiated thyroid carcinoma (DTC), which
accounts for more than 95% of cases [4,5]. Thyroidectomy, lymph node dissection, and
131I therapy are the primary therapeutic options [6]. In clinical practice, 131iodine (131I),
a γ/β radiation radionuclide with a half-life of 8 days, can accumulate in thyroid tissue.
As shown in Figure 1, it is commonly used to ablate residual thyroid tissue after surgery
(known as thyroid remnant ablation) to reduce the likelihood of local recurrence, treat
metastatic disease, and clear hidden thyroid cancer cells [7–9]. Iodine-131 is also used as a
means of addressing persistent disease as reflected by the thyroid globulin levels [10], with
a typical dosage range of 1110 MBq (30 mCi) to 3700 MBq (100 mCi) [11].
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Figure 1. The main role of 131I in the treatment of thyroid cancer. (A) Thyroid remnant ablation for 
reducing the likelihood of local recurrence; (B) Treating metastatic disease and clearing hidden thy-
roid cancer cells; (C) As a means of addressing persistent disease as reflected by thyroid globulin 
levels. 

However, there is evidence that 131I γ/β radiation interferes with the REDOX cell sig-
naling pathways, causing an imbalance between cellular oxidants and antioxidants, re-
sulting in systemic oxidative stress, cell and tissue damage, and an increase in the risk of 
genetic DNA damage and secondary cancer [12–15]. Furthermore, it can cause side effects, 
including salivary gland dysfunction, gastrointestinal reactions, dry eye, pulmonary fi-
brosis, gonad damage, nasolacrimal duct obstruction, secondary cancer, permanent mye-
losuppression, and genetic effects [16,17]. To achieve optimal effectiveness and minimize 
discomfort in thyroid cancer patients, adjuvant medication combinations that reduce the 
adverse effects of 131I are required. 

Antioxidants are chemicals that bind free radicals and drastically decrease or prevent 
substrate oxidation [18,19]. They limit free radical damage by blocking free radicals from 
damaging lipids, protein amino acids, polyunsaturated fatty acids, and the double bonds 
of DNA bases [20–22]. Notably, substances such as β-carotene and vitamin E have been 
proven to dramatically minimize the negative effects of 131I [23,24]. This review introduces 
the mechanisms of 131I side effects in the treatment of thyroid cancer, focuses on the re-
search progress of antioxidants for reducing the side effects of 131I treatment, and proposes 
the limitations and future trends of antioxidants in the treatment of 131I side effects. This 
information aims to serve as a reference for clinicians, nursing staffs, caregivers, and acad-
emies to address the unwanted effects of 131I both effectively and reasonably. 

2. Side Effects of 131I 
Thyroid surgery followed by risk-adapted 131I therapy represents the treatment of 

choice for most DTC patients. In the past, 131I therapy was routinely performed to destroy 
thyroid remnant tissue in low-risk DTC patients with the aim of simplifying the follow-
up of such patients by increasing the specificity and accuracy of the basal and/or stimu-
lated Tg measurements. The 2015 American Thyroid Association (ATA) guidelines under-
scored the role of 131I therapy. For low-risk DTC patients, residual ablation is preferred 
over adjuvant therapy, and a 131I dose is recommended at 1110 MBq (30 mCi). However, 
its use was not indicated or discouraged in low-risk DTC patients (especially those with-
out aggressive features and/or vascular invasion) and in most intermediate-risk cases. 

Figure 1. The main role of 131I in the treatment of thyroid cancer. (A) Thyroid remnant ablation for
reducing the likelihood of local recurrence; (B) Treating metastatic disease and clearing hidden thyroid
cancer cells; (C) As a means of addressing persistent disease as reflected by thyroid globulin levels.

However, there is evidence that 131I γ/β radiation interferes with the REDOX cell
signaling pathways, causing an imbalance between cellular oxidants and antioxidants,
resulting in systemic oxidative stress, cell and tissue damage, and an increase in the risk
of genetic DNA damage and secondary cancer [12–15]. Furthermore, it can cause side
effects, including salivary gland dysfunction, gastrointestinal reactions, dry eye, pulmonary
fibrosis, gonad damage, nasolacrimal duct obstruction, secondary cancer, permanent myelo-
suppression, and genetic effects [16,17]. To achieve optimal effectiveness and minimize
discomfort in thyroid cancer patients, adjuvant medication combinations that reduce the
adverse effects of 131I are required.

Antioxidants are chemicals that bind free radicals and drastically decrease or prevent
substrate oxidation [18,19]. They limit free radical damage by blocking free radicals from
damaging lipids, protein amino acids, polyunsaturated fatty acids, and the double bonds
of DNA bases [20–22]. Notably, substances such as β-carotene and vitamin E have been
proven to dramatically minimize the negative effects of 131I [23,24]. This review introduces
the mechanisms of 131I side effects in the treatment of thyroid cancer, focuses on the research
progress of antioxidants for reducing the side effects of 131I treatment, and proposes the
limitations and future trends of antioxidants in the treatment of 131I side effects. This
information aims to serve as a reference for clinicians, nursing staffs, caregivers, and
academies to address the unwanted effects of 131I both effectively and reasonably.

2. Side Effects of 131I

Thyroid surgery followed by risk-adapted 131I therapy represents the treatment of
choice for most DTC patients. In the past, 131I therapy was routinely performed to destroy
thyroid remnant tissue in low-risk DTC patients with the aim of simplifying the follow-up
of such patients by increasing the specificity and accuracy of the basal and/or stimulated
Tg measurements. The 2015 American Thyroid Association (ATA) guidelines underscored
the role of 131I therapy. For low-risk DTC patients, residual ablation is preferred over
adjuvant therapy, and a 131I dose is recommended at 1110 MBq (30 mCi). However, its use
was not indicated or discouraged in low-risk DTC patients (especially those without aggres-
sive features and/or vascular invasion) and in most intermediate-risk cases. Meanwhile,
low-risk DTC patients may require adjuvant or even curative 131I based on additional
risk factors (i.e., patients with additional risk factors or patients requiring maximal treat-
ment) and postoperative assessment (i.e., high postoperative thyroglobulin levels). For
intermediate-risk DTC, 131I within the range of 1110 MBq to 5550 MBq (30–150 mCi) is
usually used for adjuvant treatment. The utility of adjuvant 131I treatment in high-risk
DTC without identified distant metastasis is noncontroversial due to its high recurrence
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rate and the improved outcomes with adjuvant treatment [25–27]. On the other hand, for
the treatment of patients with residual or metastatic DTC, increased amounts of a thyroid-
stimulating hormone (TSH) or thyrotropin are required to optimize the selective uptake of
radioiodine (RAI) by normal thyroid or cancerous cells. The retention of 131I by function-
ing thyroid tissue is believed to be optimized when serum TSH concentrations are high
(30 to 50 µU/mL or more), which can be obtained either by withdrawing levothyroxine
(L-T4) or through the administration of a recombinant human thyroid-stimulating hormone
(rhTSH) [7,28,29]. Correspondingly, when administered throughout the body, 131I remains
unavoidably lodged in the bloodstream. The major body parts involved in the systemic
side effects are shown in Figure 2 [30–34]. In addition to the most frequent salivary gland
diseases, the side effects include genital gland damage, bone marrow suppression, nasal
tear tubal obstruction, and dry eye, as well as late sequelae such as persistent osteomyelitis,
subsequent malignancy, pulmonary fibrosis, and genetic repercussions.
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2.1. Salivary Gland Dysfunction

Salivary gland dysfunction is one of the most common complications of RAI treatment,
including salivary adenoma, mouth drought, a decrease in or change in taste, and tooth
decay symptoms that can appear immediately or months after the treatment of a dose
of RAI, and worsen over time [35–37]. Salivary glands have an enhanced set of 131I
through the sodium iodide symporter (NIS) for the physiological iodide intake [38]. The
concentration of 131I in the salivary gland is approximately 30 to 40 times greater than in the
plasma. Acute salivary adenitis is distinguished by saliva gland discomfort and swelling
caused by conductor obstruction, mucus retention, and elevated pressure surrounding the
conductor [39,40]. Iodine-131 is primarily concentrated in the conductive system, and β

radiation can directly damage the salivary gland, causing tubular fragments in the upper
cortex of the intralobular ductal epithelium, resulting in conductor blockage, inflammatory
reactions in the secretory tissue, and glandular degeneration. In addition, salivary gland
stem cells are thought to be mainly present in the excretory ducts. Exposure to β radiation
may reduce their regenerative potential and cause damage [41,42]. This damage can lead
to endothelial injury and increased vascular permeability, which in turn allows plasma
proteins and electrolytes to enter the saliva beyond the usual levels transported by the
glandular cells producing sodium and chloride. Consequently, there is an elevation in the
sodium and chloride concentrations and a decrease in the phosphate levels in saliva [43]. In
addition, many saliva proteins and enzymes have functional and protective effects. Esther
N. Klein et al. found a decrease in salivary function 5 months after treatment. A decrease
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in the saliva flow rate, as well as lower salivary enzymes production, indicates vesicle
dysfunction, which can have a long-term cumulative effect on oral health [16,41].

2.2. Others

Some organs, such as the breast, digestive tract, and urinary system, concentrate 131I
whereas others express the NIS, rendering them vulnerable to the impacts of malignant
transformation [32]. In addition to early genital gland damage, bone marrow suppression,
lacrimal vein blockage, and dry eye disease, the threat of DNA damage to the cells can lead
to the accumulation of genetic errors, resulting in genome instability to the extent that it
induces late complications that cannot be neglected, including permanent bone marrow
inhibition, secondary cancer, pulmonary fibrosis, and genetic effects [22,44,45]. In addition,
radiation exposure is a risk factor for the development of secondary malignancies. After
131I treatment for thyroid cancer, the incidence of second primary malignancies significantly
increases, with the most common being breast and gastrointestinal cancers [32]. According
to Fallahi et al., patients receiving a 131I activity of more than 37 GBq/1000 mCi have a
significantly higher risk of developing second primary malignancies. When the cumulative
dose of RAI exceeds 40 GBq (1.08 Ci), the probability of developing second primary
malignancies sharply increases [46]. Leukemia incidences significantly increase in patients
after RAI therapy and has been found to be more frequent than other cancers [47].

3. Oxidative Stress Dominates 131I Side Effects

RAI is the standard and effective treatment for DTC. The thyroid gland can accumulate
iodine at up to 40 times the concentration of plasma under physiological conditions. This
relies on the NIS located in the basolateral membrane of thyrocytes using the electrochem-
ical gradient generated by the Na,K-ATPase as the driving forces that coordinate with
the KCNQ1-KCNE2 K+ channels located in the basolateral membrane These promote the
potassium efflux, thus facilitating iodine transport into the intracellular compartments, and
thereby increasing the oxidative stress and cytotoxic efficacy from the radioactivity [39,48–50].

Oxidative stress is the result of increased free radical production and/or a decreased
antioxidant defense system physiological activity [51,52]. Each cell in a living organism
maintains a reductive environment. The reducing environment is maintained by enzymes,
which provide constant metabolic energy input to maintain the reducing state [53,54].
This disruption of the normal reduction oxidation (REDOX) state can be mediated by the
generation of peroxide-reactive radicals (hydrogen peroxide (H2O2), superoxide (O2

−),
singlet oxygen (1/2O2), ROS, and the hydroxyl radical (·OH). The abnormal expression of
these substances may result in the destruction of all the components of the cell, resulting
in toxic effects [55–57]. Severe cases can lead to cell death (Figure 3A). The damage can
involve multiple parts throughout the body (Figure 3B).

Iodine-131 can increase the overexpression of NADPH oxidase (NOX)1 in thyroid
tissue, resulting in numerous ROS [12]. At the same time, mitochondria are more vulner-
able to damage when exposed to iodine radiation. This is due to ultrastructural changes
resulting in a decreased antioxidant capacity [58,59]. In other words, the levels of enzy-
matic antioxidants, including superoxide dismutase (SOD), catalase (CAT), glutathione
peroxidase (GPX), and thioredoxin (Trx), as well as non-enzymatic antioxidants such as
glutathione (GSH), ascorbic acid, and tocopherol, were reduced in response to 131I [60,61].
Herein, ferroptosis described a novel form of regulatory cell death that was induced by
fatal lipid peroxidation [62], dependent on iron, which was subsequently induced by
an oxidation-damaged phospholipid accumulation and associated with the glutathione-
dependent antioxidant defense dysfunction mediated by GPX4 via various pathways.
Radiation has been shown to induce ferroptosis [63]. Iodine-131 likely triggered the de-
clines in the metabolism of the lipid peroxides catalyzed by the GPX4 and GSH levels
intracellularly and lead to Fe2+ oxidizing lipids in a Fenton-like manner, which enhanced
ferroptosis and was responsible for thyroid cancer cell death [64]. Comparatively, a GSH
deficiency disrupts the REDOX homeostasis, causing ROS accumulation, which eventually
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results in cell death. The CAT and SOD enzymes play a key role in free radical manage-
ment, and their reduced activity contributes to an increase in the accumulation of O2− and
H2O2 [65–71]. Additionally, excessive ROS interact with specific cellular targets to trigger a
cascade reaction involving polyunsaturated fatty acid free radicals (lipid peroxidation) on
the cell membranes, resulting in an increase in the malondialdehyde (MDA) (marker of
lipid peroxidation) levels and a decrease in the CAT, SOD, and GSH activity, resulting in
an imbalance between oxidants and antioxidants. The excessive depletion of endogenous
antioxidants leads to a decrease in the total antioxidant status (TAS), which ultimately
contributes to oxidative stress [70,72,73]. As a result, RAI in the remaining thyroid tissue
may result in significant apoptosis and mitotic cell death [74].
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Figure 3. Oxidative stress mediates the side effects of 131I. (A) Iodine-131 enters the cells through the
synergistic transport of the NIS and KCNQ1-KCNE2 K+ transporter, and thus increases the expression
of NOX1 and changes the ultrastructure of the mitochondria through β/γ radiation, resulting in a
reduced antioxidant capacity and the production of numerous ROS. As a result, the activities of CAT
and SOD are decreased; the levels of GSH, GPx, Trx, and TAS are decreased; and the levels of MDA
and the total oxidative stress (TOS) are increased, leading to systemic oxidative stress. (B) Oxidative
stress induces erythrocyte membrane damage and vascular permeability changes, salivary gland
dysfunction, and gastrointestinal tract and liver and kidney injury. (C) Oxidative stress induces a
CA and MN increase and mediates a significant increase in the frequency of MNCB, CAEG, and
bicentric chromosomes.

In contrast, although most radiation from RAI enters the thyroid gland, a small amount
of 131I present in the blood and tissues is also capable of causing radiation in other parts of
the body [75], such as lipid peroxidation in the kidney, salivary glands, and erythrocytes,
resulting in structural and functional damage to the cells [22,75]. Specifically, reductions in
salivary TAS, SOD, CAT, and uric acid molecules may have long-term cumulative effects
on the oral cavity. A study found that 131I treatment decreased SOD activity by 40%. The
gastrointestinal tract may be adversely affected as saliva is continuously swallowed after
secretion [16]. Other studies have demonstrated that 131I ionizing radiation can indirectly
promote or induce significant changes in the red blood cell oxidative and antioxidant status.
In addition, it can alter the appearance of erythrocytes, as well as their characteristics, such
as their lifespan, permeability, and microcirculation [74].

Furthermore, oxidative stress will also involve other aspects, including DNA damage
(such as chromosome aberrations (CA) and micronucleus (MN)), changes in the erythro-
cyte mechanical properties, and changes in vascular permeability. Studies have shown
that H2O2 can induce DNA double-strand breaks and chromosomal rearrangements in
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thyroid cell lines and primary cultures of human cells (Figure 3C). A significant delay
in the repair of γ-radiation-induced DNA damage was observed in human thyroid cells
previously exposed to H2O2 [76]. The studies showing evidence of DNA damage as a
consequence of 131I treatment are summarized in Table 1. (I) Moreover, 131I has been shown
to cause transient unstable DNA damage consisting of ROS-induced single-strand breaks
and increased chromosomal damage in thyroid cancer patients [13]. (II) The treatment
of thyroid cancer using 131I (2590 MBq (70 mCi)) caused genetic damage to circulating
lymphocytes, with an initial small increase in MDA (1 month to 1.1-fold). The frequency of
the binucleated cells that present MN (MNCB) (~1.9 times), aberrant cells excluding gaps
(%) (CAEG) (~2.0 times), and double center chromosomes (3.0 times) increased significantly.
At 6 months after treatment, there was a further increase in CAEG/dicentric chromosomes
but a decrease in MNCB. (III) Ballardin et al. observed a seven-fold increase in the MN
frequency after 4 days of RAI treatment (2.96 to 5.50 GBq) in patients, which only reached
a baseline after 180 days [77]. (IV) Naoto et al. also reported an increase in MN (3.7 GBq) in
patients for a week after treatment [78]. (V) Livingstone et al. observed a six-fold increase in
the MN content 11 days after a 9-month continuous treatment (1780 MBq). (VI) Ramabi’rez
et al. showed a 2.3-fold increase in MN 1 week after treatment (3700 to 5500 MBq). (VII)
Gundy et al. identified an increase in CA in patients treated with 131I (1734 to 2600 MBq).
(VIII) Baugnet-Mahieu et al. reported a small but significant increase in CA approx. 10 days
after treatment (3700 MBq). (IX) M ’Kacher et al. found the presence of persistent biolog-
ical damage for up to 2 years after treatment exposure using conventional CA assays or
chromosome 4 staining [11,75,79–83].

Table 1. DNA damage caused by 131I. (single-strand breaks (SSBs); double-strand breaks (DSBs);
anti-reactive oxygen metabolites (Anti-ROMs); reactive oxygen metabolites-derived compounds
(d-ROMs)).

Subject Dose of 131I Test Site Side Effects of 131I Ref.

Thirty-one patients in
hypothyroidism (HYPO
group) and 31 patients in

euthyroidism (rhTSH group)

1850 MBq blood In the HYPO patients, the radiation exposure rate,
chromosome breaks, SSBs, DSBs, total exchanges
(DNA-1), transient unstable DNA damage, stable
DNA damage, anti-reactive oxygen metabolites

(Anti-ROMs), “FAST” antioxidants (Anti-ROMsF),
polymorphisms,

DNA mutation score↑ and d-ROMs, “SLOW”
antioxidants (Anti-ROMsS)↓ at one week.

d-ROMs and Anti-ROMsS↑ at 3 months compared
to one week.

[13]

Nineteen patients (16 women
and three men) suffering from

thyroid cancer

2590 MBq blood MN and CA↑ and the in-serum uric acid
concentration↑ after 1 month.

Thiobarbituric acid-reactive products↓ after
6 months.

[11]

Eleven patients already
submitted to total

thyroidectomy

Between 2.96 and 5.50 GBq peripheral blood
lymphocytes

MN and clastogenic factor↑ [77]

Twenty-two DTC patients 3.7 GBq Peripheral blood
lymphocytes

MN↑ [78]

Ten patients suffering from
thyroid cancer

1850 MBq Circulating blood
lymphocytes

[75]

A 34 year old male patient 1780 MBq Lymphocytes [80]

Twelve women with papillary
or folhcular thyroid cancer

3700–5500 MBq Blood lymphocytes Clastogenic effects, X
chromosome-independent aneugenic activity↑ at

1 week after treatment.

[81]

Fifty DTC patients 3.7 GBq Peripheral lymphocytes CA↑ approx. 10 days after treatment [82]

Nineteen DTC patients 1734–2600 MBq Blood lymphocytes CA↑ [84]

Iodine-131 also altered the transcriptional profiles in another study. Iodine-131 did
not induce apoptosis after 24 h, but it increased the p21 levels and prolonged the cell cycle
arrest for up to 5 days, indicating that it caused cell senescence. The transcriptome profile of
the thyroid cells after 131I exposure was similar to that after exposure to H2O2 and gamma
radiation. The thyroid gene expression profiles obtained 4 h after 131I exposure revealed
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a modulation of the AEN, IER5, GDF15, FAS, JUN, MDM2, CDKN1A, BAX, and CCL2
expression. These genes have been identified as ionizing radiation response genes in
various cell types, including fibroblasts, endothelial cells, and peripheral blood cells, and
the thyroid gene expression profiling 24 h after exposure revealed an altered expression of
the genes involved primarily in cell division, mitotic/cell cycle regulation, apoptosis, and
DNA repair [85].

4. Antioxidants Reduce 131I Side Effects

In general, it can be observed that oxidative stress mediates the pathological process
of almost all the 131I side effects. Herein, the antioxidants showed a robust effectiveness
against their side effects. The antioxidants that have been proven to alleviate the side effects
of 131I are shown in Figure 4 and the drug type, drug treatment, subject, dose, side effects,
and drug efficacy are summarized in Table 2.
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Table 2. The applications of various antioxidants to alleviate the side effects of 131I. (8-Epi-
prostaglandin F2alpha (8-epi-PGF2α); uptake fraction (UF); uptake index (UI); excretion fraction
(EF); excretion ratio (ER); first-minute uptake ratio (FUR); maximum uptake ratio (MUR); hypoxia
inducible factor-1α (HIF-1α)).

Drug Type Drug Treatment Subject Dose of 131I Side Effects of 131I Drug Efficacy Ref.

Natural
antioxidant

Daily supplementation
consisting of 2000 mg

vitamin C and 1000 mg
vitamin E and 400 µg
selenium for 21 days

before 131I

Forty patients with
thyroid cancer
submitted for
thyroidectomy

(n = 20)

3.7 GBq 8-epi-PGF2α↑ 8-epi-PGF2α↓ [86]

1500 mg vitamin C daily
2 days after (group 2), 2 days

before to 2 days after
(group 3), and 2 days before

RAI (group 4)

Fifty-eight DTC
patients ablated

with 131I

5550 MBq MDA, CAT↑; GSH↓ MDA↓ (group 2,3,4); GSH↑
(group 3,4); CAT↓ (group 3,4)

[22]

Groups A, B, and C received
vitamin E 100, 200, and

300 mg/day orally,
respectively, for a duration of

1 week before to 4 weeks
after I therapy

Eighty-two DTC
patients with 131I

100 mCi UF, UI, EF, and ER↓ UI, EF, UF, ER↑ [87]

Vitamin D (200 ng/kg/day) Wistar albino rats
(n = 12)

111 MBq/kg TOS, TNF-α, IL-6↑;
IL-10, TAS↓

TOS, TNF-α, IL-6↓; IL-10,
TAS ↑

[88]
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Table 2. Cont.

Drug Type Drug Treatment Subject Dose of 131I Side Effects of 131I Drug Efficacy Ref.

Vitamin E (800 IU/day for
one week before and four
weeks after RAI therapy)

Thirty-six DTC
patients with RAI

(n = 18)

3700–5550 MBq FUR, MUR, MSP,
and EF↓

FUR, MUR, MSP, and EF↑
[43]

Bethanechol (2 mg orally
twice a day) for one month

after 131I

Fifty DTC patients
with RAI (n = 25)

97.2 to 213.4 mCi MUR, MSP, ∆MS,
EF↓

Serum amylase↓

Selenium 300 mcg orally for
ten days (from three days
before until six days after

RAI therapy)

Sixteen DTC patients
with RAI (n = 8)

3.7 GBq Xerostomia,
sialadenitis
symptoms↑

Xerostomia, sialadenitis
symptoms↓

KGF-1 (100 ug/1 mL PBS) Eighteen C57BL/six
mice (n = 6)

0.01 mCi/g HIF-1α↑; mucin
stained acini,

amylase↓;
periductal fibrosis↑

HIF-1α↓; mucin stained acini,
amylase↑; periductal fibrosis↓

[89]

50 µg curcumin per mL of
blood and 5.738 mg trehalose

per mL of blood

Blood of five humans 20 µCi DSB increased to
102.9%

DSBs decreased by 42%
(curcumin) and 38% (trehalose)

[84]

0.0167 mg melatonin per mL
of blood and 0.025 mg Se NPs

per mL of blood

Blood of five humans 20 µCi DSB increased to
102.9%

DSBs decreased by 38%
(melatonin) and

30% (selenium nanoparticles)

[90]

0.0666 mg vitamin E per mL
of blood and 0.0167 mg

vitamin C per mL of blood

Blood of five humans 20 µCi DSB increased to
102.9%

DSBs decreased by 21.5%
(vitamin E) and

36.4% (vitamin C)

[23]

Barbados Cherry juice
(5 mg)/100 g

Wistar rats (n = 6) 25 µCi/100 g 1,1-diphenyl-2-
picrylhydrazyl↑;

chromosomal and
cellular

aberrations↑

1,1-diphenyl-2-picrylhydrazyl↑;
chromosomal and cellular

aberrations↑

[91]

20 mmol N-acetyl-L-cysteine Normal differentiated
rat thyroid cell

line PCCL3

10 µCi/mL ROS, DBS, MN↑ ROS, DBS, MN↓ [92]

8 mg β-carotene/mL corn oil
(0.2 mL/100 g)

Wistar rats (n = 6) 25 µCi /100 g body
weight

CA, MN, water
consumption↑

CA, MN, water consumption↓ [12]

20 mg/kg/day resveratrol Thirty Wistar albino
rats (n = 10)

3 mCi/kg Caspase-3, TUNEL,
TNF-α, IL-6,

nuclear
factor-kappa-B
(NF-кB), TOS↑;

IL-10, TAS↓

Caspase-3, TUNEL, TNF-α,
IL-6, NF-кB, TOS↑; TAS↓

[93]

1 mL lycopene
(5 mg/kg body

weight)

Twenty Wistar albino
rats (n = 10)

3 mCi Duodenal and ileal
lamina propria

edema, duodenal
ulcer, gastric

mucosal erosion,
and gastric and
colon mucosal
degeneration↑

Duodenal and ileal lamina
propria edema, duodenal ulcer,
gastric mucosal erosion, gastric

and colon mucosal
degeneration↓

[94]

Synthetic
antioxidants

200 mg/kg amifostine
or L-carnitine

Forty adult
guinea pigs

555–660 MBq Body weight and
thyroid hormone↓

Body weight and thyroid
hormone↑

[34]

200 mg/kg amifostine to
three rabbits/500 mg/m2

amifostine before 131I to
eight patients

Five
rabbits/17 patients

1 GBq to rabbits/6
GBq to patients

Reduced
parenchymal

function in parotid
and submandibular
glands; xerostomia;

lipomatosis

None of the parenchymal
function in parotid and

submandibular glands reduce,
xerostomia and

lipomatosis occurred

[95]

rhTSH (1 mg/2 d and
1 mg/1 d before 131I)

Sixty-two patients
prepared with rhTSH

or by thyroid
hormone withdrawal

1850 MBq CA, MN, ROS↑ CA, MN, ROS↓ [13]

8 µg of F1 peptide labeled
with 200 µCi 131I every

3 days for a total of
three times

Nude mice with
human anaplastic

thyroid cancer

200 µCi Weight loss and 131I
enter the

internal circulation

Constant weight [96]

Dexmedetomidine (3 µg/kg) Thirty-six Wistar
albino

female rats (n = 12)

111 MBq MDA, advanced
oxidized protein
products↑, total

sulfur group, CAT↓

MDA, advanced oxidized
protein products↓; total sulfur
group, CAT↑; liver protection

[97]

Montelukast (10 mg/kg/day) Fifty female Wistar
albino rats (n = 10)

111 MBq/kg Inflammation and
pulmonary fibrosis

Reduced the degree of
inflammation and

pulmonary fibrosis

[45]
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4.1. Natural Antioxidant

Natural antioxidants, sourced mostly from plants, counteract radiation by neutralizing
the free radicals produced in the body when it is exposed to the radiation [98,99]. The
mechanism of action generally involves scavenging free radicals and preventing them from
damaging cells, tissues, and DNA. As a result, they are capable of shielding the organism
cells from damage and aiding in the prevention of cancer and other health problems
associated with exposure to radiation [100]. One of the advantages of natural antioxidants
is that they are safer than synthetic antioxidants and have been utilized in conventional
medicine for centuries. Furthermore, natural antioxidants are metabolized by the body into
harmless compounds, most of which are excreted through normal metabolic processes and
are more easily tolerated [101,102].

Vitamin C as ascorbic acid regulates the activity of the glutamate receptors, lowering
the level of free radicals produced by the glutamate release, and has been proven to reduce
the frequency of chromosomal aberrations by approximately 30%, significantly reduces
the number of DNA breaks, and has a repairing effect on DNA [103,104].Vitamin C reacts
directly with alkoxyl, hydroxyl, and lipid peroxyl radicals or neutralizes them and converts
them into water, alcohols, and hydroperoxylated lipids, respectively. Importantly, studies
have indicated that vitamin C has a radioprotective effect against oxidative stress, regardless
of the timing of administration before and after RAI treatment [43]. Vitamin C in plasma
leads to an increased resistance to lipid peroxidation and a decrease in DNA, lipid, and
protein oxidation. In addition, vitamin C leads to the neutralization of free radicals of
other antioxidants in the form of glutathione and vitamin E, as well as their regeneration.
Approx. 2 days after RAI (5550 MBq), the MDA levels and CAT activity declined and the
GSH levels decreased, while the daily administration of 1500 mg vitamin C starting two
days before significantly reduced the MDA levels and not only prevented the reduction in
GSH, but also significantly increased its levels after RAI treatment [22].

Additionally, vitamin E is the collective term for four tocopherols (α-, β-, γ-, and
δ-tocopherols) and four tocotrienols (α-, β-, γ-, and δ-tocotrienols) found in food, and is a
lipid-soluble antioxidant that protects polyunsaturated fatty acids in the membranes from
oxidation, regulates the production of reactive oxygen species and reactive nitrogen species,
and modulates the signal transduction [73]. The significant protective effect of vitamin
E on the parotid and submandibular glands after 131I (23 mCi) treatment with DTC has
been published [87,105], which was comparable to the results of Filiz Aydoğan et al. [106].
RAI (111 MBq/kg) resulted in a significant increase in the tissue TOS, TNF-α, IL-6 levels
and a significant decrease in the IL-10 and TAS levels, while vitamin D (200 ng/kg/day)
dramatically reversed all these parameters [88]. Meanwhile, sialogogues such as lemon
candy, vitamin E, lemon juice, and lemon slices as well as parotic gland massages may
all minimize injury to the salivary glands [10]. Parotid massages, aromatherapy, vitamin
E, selenium, and bethanechol showed a significant reduction in the salivary gland dys-
function induced from the 131I treatment (2960–7890 MBq) [43]. Additionally, keratinocyte
growth factor-1 (KGF-1) (100 µg/1 mL PBS) restored saliva homeostasis and reduced the
131I-induced (0.01 mCi/g) cell apoptosis in the mice [90]. A marker of lipid peroxidation,
8-Epi-PGF2α, is the outcome of free radical-mediated arachidonic acid peroxidation, and
the effect of high-activity treatment (2960 or 7400 MBq) is significantly higher and longer in
length than that of low-activity treatment (185 or 740 MBq), with a dose-dependent oxida-
tive damage in vivo [107]. In the research of Rosário et al., the 8-epi-PGF2α concentrations
were significantly higher in thyroid cancer patients 2 days before and 7 days after the 131I
injection, and the increase (percentage) was significantly larger (mean 112.3% vs. 56.3%
compared to the intervention group). Iodine-131 (3.7 GBq) after 2 days of plasma 8-epi-
PGF2α significantly increased, while the daily intake of 2000 mg of vitamin C, 1000 mg of
vitamin E, and 400 µg of selenium for 21 days before RAI treatment significantly reduced
8-epi-PGF2α and inhibited oxidative stress [86].

In terms of the protection against DNA damage, the use of curcumin and alginate as
antioxidants reduced the number of DSBs caused by 131I. At the same time, the radiation
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protection effect of curcumin exceeded that of trehalose [84]. Melatonin and Se NPs (as ra-
dioprotective agents) reduced the 131I-induced DSBs levels in peripheral lymphocytes [90].
Vitamins E and C were capable of reducing the DSBs levels by 21.5% and 36.4%, respec-
tively [23]. The positive results of the Barbados cherry fruit radiation protection may be
due in part to its rich content of antioxidant compounds, including vitamins A, B1, B2
and C; carotenoids; anthocyanins; phenols; and flavonoids. The 131I (25 µCi) treatment of
Wistar rats with an increased thyroid function and associated vitamins and sugars from the
Barbados cherry fruit stimulated a significant increase in the mitotic index in the normal
cells of the rat bone marrow. In particular, the Barbados cherry juice (5 mg) may act as an
effective scavenger of the reactive oxygen species in acute radiation protection treatment,
protecting the cells by neutralizing free radicals before and during treatment. Meanwhile,
it may play a role in the healing process of ionizing radiation-induced damage after treat-
ment. Barbados cherry sub-chronic treatment has higher radioprotective activity in terms of
trapping free radicals or preventing their formation [91]. N-acetyl-L-cysteine has also been
demonstrated to guard against an increase in ROS and eventual DNA damage in thyroid
cells caused by 131I in vivo [92]. Before, during, and after 131I treatment, β-carotene exerts
a significant anti-mutagenic/radioprotective activity, stimulates the DNA repair systems,
and minimizes chromosomal aberrations and genetic material damage [12]. Apart from
this, resveratrol had anticancer and antioxidant effects, protected the histopathological
pattern of the lacrimal gland from damage, reduced inflammation in the histopathological
assessment, and decreased the histocytokine levels, apoptosis, and DNA fragmentation
on the lacrimal gland after RAI [93]. Iodine-131 caused an edema of the duodenum and
ileum lamina propria, duodenal ulceration, gastric mucosal erosion, and gastric and colonic
mucosal degeneration in the rats, whereas lycopene resulted in a statistically corresponding
reduction in the inflammation present [94].

4.2. Synthetic Antioxidants

Synthetic antioxidants have advantages in radiation protection due to their greater
potency, consistency, stability, and application flexibility. Despite the fact that natural
substances have been used in traditional medicine for centuries, their variability, lack of
specificity, and instability require modifications to their properties [108,109]. Accordingly,
synthetic substances offer a reliable and effective way to protect against the harmful
effects of radiation. Thus, further research and development is required to create more
effective radiation protection, safer synthetic substances for human consumption, and to
determine the safe limits for their applications [110–112]. However, it is important to note
that synthetic antioxidants can frequently cause adverse health effects when used in high
doses [113].

Iodine-131 (555–660 MBq) treatment with 200 mg/kg L-carnitine or amifostine for
10 days can provide radiation protection and reduce salivary gland injury [34]. Amifostine
is an organic thiophosphate, which is dephosphorylated to the active metabolite WR-1065
in normal tissues. Once activated in the cells, WR-1065 acts as a free radical scavenger.
Additionally, many studies have reported the radiation-proof effect on 131I treatment [35,114].

Iodine-131 causes transient unstable DNA damage composed of reactive oxygen-
induced SSBs, and increased chromosome damage in hypothyroidism patients (mutations
in enzymes deputed to DNA repair (DNA-1) or in the enzymes involved in the scavenging
of free oxygen radicals (DNA-2)). The rhTSH administration reduced radiation exposure
by 27% over 120 h and decreased the genomic instability by maintaining hyperthyroidism
and normal renal clearance (Epi-GFR and creatinine values). It significantly induced a
reduction in the reactive oxygen metabolites-derived compounds. The patients had less
radiation-induced chromosome damage, even though several enzyme mutations were
present [13].

Lin et al. prepared a drug delivery system with 131I-labeled caerin 1.1 peptide (F1)
(200 µCi 131I and 8 µg caerin 1.1 peptide). The MTT results showed that 5 µg F1 had an
inhibitory effect on the CAL-62 cells cultured in vitro. Interestingly, studies identified
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weight loss over time in the 131I treatment group in vivo, but not in the 131I-F1 or F1 groups.
It is possible that 131I-F1 or F1 was confined to the tumor after injection, while 131I may
have entered the microcirculation through the blood vessels within the tumor and then
entered the internal circulation. In view of the fact that radiation entering the human body
can cause acute injury, the occurrence of acute radiation sickness or syndrome characterized
by weight loss suggests that 131I-F1 is safer with fewer side effects [96].

Additionally, synthetic drugs have been studied for the treatment of other side effects.
Treatment with dexmedetomidine (3 µg/kg) significantly decreased the levels of MDA,
advanced the oxidized protein products induced by RAI (2 MBq), significantly increased
the levels of the total sulfur group and CAT, and reduced histopathological abnormalities,
which could be applied as a post-131I liver protection regimen [97]. In the case of RAI, a
high absorbed dose may be produced in the lung parenchyma, thus causing lung dam-
age [115]. Montelukast (10 mg/kg/day) significantly reduced the degree of inflammation
and pulmonary fibrosis in the Wistar rats treated with 131I (111 MBq/kg). The authors
attributed this protective effect in part to the antioxidant effect of montelukast [45].

4.3. Antioxidant Deficiency

In summary, the application of the above antioxidants will hopefully play an important
role in alleviating the side effects of 131I. It is important to highlight that even when the use
of antioxidants has been shown to ameliorate the side effects of 131I therapy, there are also
reports on the drawbacks of using them. Some antioxidants induce oxidative stress at high
concentrations (e.g., β-carotene) [24]. Meanwhile, it has been reported that an excessive
vitamin E intake can affect the absorption and function of other fat-soluble vitamins [116].
Furthermore, synthetic antioxidants have been reported to cause potential health hazards,
including liver damage and cancer [117–119]. Therefore, further investigation is needed at
a pre-clinical level to standardize the use of antioxidants as adjuvants for 131I treatment.

5. Challenges and Prospects

Notably, the clinical use of antioxidants presents the following challenges shown in
Figure 5A–C. (A) Studies have shown that, at high concentrations, beta-carotene may have
agonistic activity (i.e., pro-oxidant) and may induce oxidative stress by increasing free
radicals or failing to reduce the mutagenicity of 131I ionizing radiation [24]. (B) Some
antioxidants have a complex mechanism of action that is not fully understood. For instance,
studies have found that vitamin C and pilocarpine do not have a significant protective
effect against salivary gland dysfunction [43]. A daily dose of 1500 mg of vitamin C in
thyroid cancer patients 2 days after surgery did not significantly alter the GSH levels,
and its role as a oxidative stress reliever is questionable [22]. In other words, some of
the chemical complexity of antioxidants, the diversity of cellular pathways that may be
involved, and their interactions with other molecules in the cell remain to be studied. Bartoc
et al. identified that the plasma total antioxidant capacity decreased significantly after 131I
treatment for 1 week. In this study, the TAS showed no significant difference between
1 month and 6 months after treatment, which may indicate that the maximum period of
oxidative stress was missed and the recovery period had already been entered [11]. (C) A
potential risk associated with the use of antioxidants is that they may reduce the ablative
effect of 131I, since its efficacy is dependent upon radioactivity.
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Figure 5. The challenges for the clinical application of antioxidants combating 131I side effect:
(A) High concentrations of antioxidants (such as β-carotene) may promote oxidative stress. (B) Re-
search on some antioxidants is incomplete, including diversity of cellular pathways, maximum
oxidative stress, unknown molecular interactions and chemical complexity. (C) There may be po-
tential risks associated with the improper use of antioxidants. And the corresponding improving
strategies are as follow. (D) Consume vegetables containing a variety of antioxidants or develope
NPs applications. (E) Conduct more multicenter clinical studies. (F) Seek appropriate administration
methods and staggered administration according to the nature of the drug.

The corresponding potential strategies are as follows (Figure 5D–F). (D) Consuming
vegetables containing a variety of antioxidants, such as acerola, which contain vitamin C,
carotenoids, anthocyanins, flavonoids, and phenols, may be more beneficial than eating in-
dividual synthetic carotenoids [24]. Encouragingly, nanoparticles (NP) (mainly mesoporous
silica, gold, carbon, or liposomes) have been developed to carry drugs with high payloads,
prolong the half-life of drugs, reduced toxicity of the drugs, enhance the solubility of drugs,
increased the targeting efficiency, finetune the pharmacological properties, and thereby
improve the detection of biomarkers and routine laboratory parameters (e.g., thyroid-
stimulating hormone, thyroglobulin, and calcitonin), tumor imaging, and drug delivery in
TC [120]. Drug loaded nanocarriers for the treatment of anaplastic thyroid cancer have been
developed to address the abnormal expression of the NIS, as current treatment methods are
suboptimal [121,122]. Li et al. developed lipid-peptide-mRNA NPs capable of adsorbing an
mRNA encoding NIS, which can increase the NIS expression in anaplastic thyroid cancer
cells more than 10-fold and result in a higher 131I accumulation in the tumor [123]. Further,
Zou et al. successfully prepared selenium nanoparticle delivery systems FTY720@T7-SF-Se
NPs (silk fibroin (SF), selenium nanoparticles (Se NPs), fingolimod (FTY720), and hep-
tathiepin (T7)), which enhanced the permeability and retention of the tumor sites [124].
Nanospheres can serve as an effective treatment for thyroid cancer and also provide a new
idea for how to resolve the negative effects of 131I. At the same time, the re-functionalization
of red blood cell-based nanomaterials to enhance the targeted drug delivery strategy at the
site of oxidative stress injury can also be considered as a key reference [125]. In addition,
salidroside has been identified as a mitochondria-targeted antioxidant to prevent salivary
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gland damage caused by X-ray radiation [126]. The development of drugs that target
131I-damaged organs and tissues may provide an alternative solution to the side effects
associated with high doses of traditional antioxidants. On the other hand, it is necessary to
fully study the temporal and spatial distribution of the oxidative stress state in various parts
of the body for thyroid cancer patients after 131I treatment, and then develop a personalized
combination therapy of antioxidants based on the drug pharmacokinetics, patients’ disease
status, and other factors that may affect the duration of the medication. (F) It is important
to highlight that more investigation is needed at a pre-clinical level to standardize the use
of antioxidants as adjuvants of 131I treatment. This requires researchers to conduct further
high-quality, multicenter clinical studies that can help standardize treatment protocols and
harmonize measurement techniques to ensure research consistency and produce reliable
results. (G) It is worth referring to measures similar to lemon candy, sugar-free gum, etc.
for the prevention of salivary gland damage (similar targeting) [127]. Using a cross-peak
administration approach, antioxidant supplements can be taken a few hours after RAI
therapy or during the rest period between treatments.

6. Conclusions

Incidences of thyroid cancer, primarily DTC, continue to rise. Iodine-131 plays an
excellent role in assisting the ablation of residual cancer cells in vivo after surgery. However,
since 131I accumulates in normal tissues except the thyroid, radiation damage is brought
about to multi-organ tissues as a result of oxidative stress. Both natural substances and syn-
thetic antioxidants can restore cell function by scavenging ROS free radicals, maintaining
the oxidant/antioxidant balance in the body, and reducing DNA damage, with positive
responses to thyroid damage, salivary gland dysfunction, dry eye, pulmonary fibrosis,
gonad damage, nasolacrimal duct obstruction, gastrointestinal reaction, and other side
effects. Several challenges, including some antioxidants, probably induce oxidative stress
at high concentrations (e.g., β-carotene). The low targeting and unclear mechanisms of an-
tioxidants in practical application can also be addressed through higher-quality multicenter
clinical studies, the search for targeted drugs at sites of oxidative stress, or the development
of delivery systems based on the re-functionalization of erythrocytes. It is believed that the
administration strategy of 131I supplemented with antioxidants can provide a reference for
clinicians, nursing staff, caregivers, and academics to alleviate the side effects of 131I in the
future, both effectively and reasonably.
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