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Abstract: Endocrine-disrupting chemicals (EDCs) are exogenous substances that interfere with the
normal function of the human endocrine system. These chemicals can affect specific nuclear receptors,
such as androgen receptors (ARs) or estrogen receptors (ER) α and β, which play a crucial role in reg-
ulating complex physiological processes in humans. It is now more crucial than ever to identify EDCs
and reduce exposure to them. For screening and prioritizing chemicals for further experimentation,
the use of artificial neural networks (ANN), which allow the modeling of complicated, nonlinear
relationships, is most appropriate. We developed six models that predict the binding of a compound
to ARs, ERα, or ERβ as agonists or antagonists, using counter-propagation artificial neural networks
(CPANN). Models were trained on a dataset of structurally diverse compounds, and activity data
were obtained from the CompTox Chemicals Dashboard. Leave-one-out (LOO) tests were performed
to validate the models. The results showed that the models had excellent performance with prediction
accuracy ranging from 94% to 100%. Therefore, the models can predict the binding affinity of an
unknown compound to the selected nuclear receptor based solely on its chemical structure. As such,
they represent important alternatives for the safety prioritization of chemicals.

Keywords: CPANN; androgen receptor; estrogen receptor; endocrine-disrupting chemicals

1. Introduction

Endocrine-disrupting chemicals (EDCs) are exogenous chemicals that interfere with
the normal function of the human endocrine system through a variety of mechanisms
and, as such, represent a global human health concern [1,2]. Certain chemicals can act
through specific nuclear receptors, such as estrogen receptors (ERs) or androgen receptors
(ARs), which are involved in the regulation of many complex physiological processes in
humans [3]. All of the nuclear receptors mentioned (ARs, ERs) have an amino terminal
group responsible for a ligand-independent activation of transcription, a central DNA-
binding domain, and a ligand-binding domain at the carboxyl end. After binding to the
ligand, the receptors translocate to the nucleus and bind to specific transcription elements
to eventually trigger the transcription of the target genes [4]. It should also be noted
that ARs and ERs can also act through very rapid non-genomic biological responses by
triggering signaling circuits initiated outside the nucleus. This rapid action occurs through
the interaction of nuclear receptors with various signal or scaffold molecules and has been
shown to be involved in cell cycle control, proliferation, migration, and exclusion of steroid
receptors from the cell nucleus [5–7].

Several physiological processes are regulated by estrogens through two estrogen
receptors, ERα and ERβ. ERα is mainly expressed in the uterus, ovaries, breast, liver,
kidney, bone, and white adipose tissue, whereas ERβ expression is found in the ovaries,
male reproductive organs, prostate, central nervous system, cardiovascular system, lung,
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colon, kidney, and immune system. ERs are found predominantly in the nucleus, but
also in the cytoplasm and mitochondria [8]. ERs have long been studied for their role
in controlling the expression of the genes involved in vital cellular processes, such as
proliferation, apoptosis, and differentiation. ERα and ERβ have been shown to have
opposing effects on cell proliferation. While ERα activation promotes cell proliferation,
ERβ activation suppresses cell proliferation and is associated with apoptosis [9]. Given the
pleiotropic functions of ERs, the dysregulation of their signaling pathways contributes to a
variety of diseases, including hormone-dependent breast, endometrial, and ovarian cancers,
as well as neurodegenerative diseases, cardiovascular diseases, and osteoporosis [5].

ARs play an important role in the development and maintenance of the reproductive,
musculoskeletal, cardiovascular, immune, neural, and hematopoietic systems [10]. The
most abundant androgen is testosterone, which is widely considered the male sex hormone.
Other androgens, such as dihydrotestosterone (DHT) and androstenedione, are necessary
for the growth of the male reproductive system [4]. Androgens are present in varying
amounts in both males and females. Dysregulations of the androgen receptor have been
associated with cancers such as prostate cancer, breast cancer, ovarian cancer, and pancreatic
cancer, as well as diabetes mellitus and muscle atrophy [11–15].

Therefore, identifying EDCs and reducing further exposures are more important than
ever. To achieve this, the OECD has issued the Conceptual Framework for Testing and
Assessment of Endocrine Disruptors [16], which provides a five-step workflow. Although
the document is not prescriptive, it offers suggestions for possible next steps in testing.
Unfortunately, there are very few data from in vivo tests such as the uterotrophic and
Hershberger tests. Although very valuable, because they reflect organ-level changes
resulting from interactions of xenobiotics with the endocrine system in the physiological
state, such in vivo assays are expensive, time-consuming, and require large numbers of
animals. In vitro receptor binding assays for estrogen and androgen systems are more
commonly used to evaluate the endocrine-disrupting potential of chemicals, but only
a fraction of all chemicals has been tested. Therefore, most chemicals have little or no
data on their endocrine-disrupting properties, so a Tier 1 approach based on non-testing
information, such as in silico approaches, appears to be the best tool for screening and
prioritizing chemicals for further testing.

Artificial neural networks (ANN) have been used effectively in many areas of life
science [17–20]. ANN functions as a self-learning system and it is typically a “black box”.
By learning a set of examples with the correct answers, it can automatically derive logical
solution principles and create a mapping between input and output. The fundamental
advantage of modeling with neural networks is that they allow modeling of complicated,
nonlinear relationships without assumptions about the structure of the model. Additionally,
when accuracy is evaluated using a test set from the working database, the performance of
most model predictions appears to be quite close to experimental measurements [21]. The
counter-propagation artificial neural networks’ (CPANN) models are commonly used for
the prediction of biological endpoints based on the chemical structure [22–25].

The CPANN models for predicting AR- and ER-mediated endocrine disruption are
discussed in the paper. The use of the CPANN mapping technique allows us to identify the
distribution of chemicals based on their structural similarity across the self-organizing map
(SOM) and to distinguish such related chemicals based on their activity.

2. Data

For modeling, we created a dataset of structurally heterogeneous compounds from
published data, including compound name, CAS, QSAR-Ready SMILES (SMILES repre-
sentations of desalted, de-isotoped, stereo-neutral forms of chemical structures associated
with specific chemical substances), and activity details (available in the Supplementary File
supdata.xlsx).

Activity data were taken from the CompTox Chemicals Dashboard (https://comptox.
epa.gov/dashboard/, accessed 10 October 2022) [26]. This is a publicly available, web-
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based application developed by the U.S. Environmental Protection Agency to provide access
to systematically compiled and consolidated chemistry, toxicity, and exposure information
for more than 900,000 chemicals. All Tox21 data used are assays redouts obtained by
measuring reporter genes via receptor activity and developed using an inducible reporter
(β-lactamase induction) detected using the GAL4-β-lactamase reporter gene [27]. The shift
in fluorescence emission (from green to blue color) is used to identify the activation of the
reporter gene as a result of ligand GR binding to the glucocorticoid response element. The
β-lactamase reporter gene assay has two readouts: background (Channel 1, ch1, or green
channel) and gene expression (Channel 2, ch2, or blue channel), which are used to calculate
a ratio (ch2/ch1) for analysis. Details of assay protocols are described in EPA publication
Toxicity Forecaster (Toxcast) In Vitro Assays [28]. Potentially active compounds (positive
hit calls) were then determined by curve fitting using the ToxCast Data Pipeline [29].

Six available assays were included in our study and are listed in Table 1.

Table 1. Assays readout used in the study.

Assay Number of Substances in
Database

Number of Substances Used
for Modeling

TOX21_AR_BLA_AGONIST_RATIO 1009 156
TOX21_AR_BLA_ANTAGONIST_RATIO 2004 228
TOX21_ERA_BLA_AGONIST_RATIO 1398 123
TOX21_ERA_BLA_ANTAGONIST_RATIO 1617 231
TOX21_ERB_BLA_AGONIST_RATIO 1740 36
TOX21_ERB_BLA_
ANTAGONIST_RATIO 1966 194

Assays readouts were taken from the CompTox Chemicals Dashboard [26].

Due to the large differences between the results of different laboratories, only com-
pounds found to be positive in at least 50% of the laboratories. A similar number of
compounds, identified as negative in the CompTox Chemicals Dashboard [26], was cho-
sen. The compounds that were selected were those that were tested as active the least in
individual laboratories.

3. Methods

The DRAGON [30] program package was used to calculate 3690 structural descriptors
for all compounds. The descriptors that had negligible variance or were not calculated for all
compounds were removed and then analyzed using the principal component analysis (PCA)
method. PCA is a popular method for analyzing multidimensional data [24,25,31,32] and
is a mathematical transformation of the original variables into new variables or principal
components (PCs). The new variables are sorted according to the proportion of variance
they contain. Typically, only a handful of new variables is necessary to describe the entire
variance hidden in the data. In the reported case, thousands of descriptors were replaced
with 22 new variables.

The CPANN method was used for modeling, which is an example of a self-organizing
map technique developed for analyzing data in multidimensional space. This technique is
based on a nonlinear projection from multidimensional space onto a network of neurons
organized as a two-dimensional map. To achieve a topology-preserving projection, a
nonlinear algorithm called training is used. A neuron is in fact a vector with a dimension
equal to the number of descriptors. The weights are the individual components of the
vectors determined by a nonlinear iterative training algorithm. The objects are presented to
the networks in this procedure, and the weights are modified to be ‘similar’ to the descriptor
values. The training is repeated until the changes in weights between two successive steps
fall below a certain threshold. Since the basic property of the trained network is that similar
objects are close to each other, it is expected that chemicals with similar structural features
form clusters [23]. An additional output layer is added to the CPANN to the network
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associated with the property. In our case, the output layer is two-dimensional, with one
dimension corresponding to binders and the other to non-binders. When a compound is
presented to the model, it is placed in a group of ‘similar’ objects. The output layer is used
to read the property. In our case, the prediction was given as a two-dimensional vector
with elements expressing the specific class. The threshold for classifying a substance as
a binder or non-binder was set to 0.5. After the leave-one-out (LOO) tests, the technical
parameter of the model, namely the dimension of CPANN and number of epochs, was
determined. All models were finally trained with 500 epochs.

In our study, we used four common evaluation metrics to assess and compare the per-
formance of the model, namely specificity (SP) (Equation (1)), sensitivity (SE) (Equation (2)),
accuracy (ACC) (Equation (3)), and the Matthew correlation coefficient (MCC) (Equation (4)).
Calculations were based on true positive (TP), true negative (TN), false positive (FP), and
false negative (FN) predictions. These were derived from the statistics of the model’s
prediction results, i.e., the confusion matrix.

SP =
TN

TN + FP
(1)

SE =
TP

TP + FN
(2)

ACC =
TP + TN

TP + FN + TN + FP
(3)

MCC =
(TP × TN)− (FP × FN)√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
(4)

4. Results and Discussion

In order to create the most accurate model possible, the careful selection of exper-
imental data is paramount. A comparative analysis of ED-relevant data from several
sources, including the CERAPP [33], CoMPARA [34,35], and Tox21 projects, as well as
the ChEMBL and PubChem databases, revealed poor agreement between experimental
values from different sources [36]. For this reason, we used data from only one source,
the Tox21 screening program, where the results were obtained using the same assay and
under the same conditions. Unfortunately, even in this case, the reproducibility of the
assay is low. The determined assay reproducibility is 80.6% for the AR agonist, 67.2%
for the AR antagonist, 76.9% for the Erα agonist, and 76.8% for the Erα antagonist [37].
No reproducibility was found for the ERβ assays. On the other hand, the comparison of
different in silico models has shown that the size of the dataset is not directly related to the
performance of the model [36]. Therefore, to ensure the highest quality of input data, we
only included compounds that were identified as positive by at least 50% of the laboratories
in the model.

For all selected compounds, 3690 structural descriptors were calculated using the
program package DRAGON [30]. The descriptors that had negligible variance or were not
calculated for all compounds were removed. In further PCA analysis, 2386, 2495, 2444, 2518,
2404, and 2484 descriptors were used for the AR agonist, AR antagonist, ERα agonist, ERα
antagonist, ERβ agonist, and ERβ antagonist a, respectively. As an example, we present
the scree plots (Figure 1) for AR agonists showing that the first PC carries more than 40%
of the total variance, the second PC about 8.0–9.5% of the variance and the others even less.
In fact, the scree plots are very similar for all cases studied. The common feature is that the
first 22 PCs account for about 80% of the total variance.



Toxics 2023, 11, 486 5 of 14Toxics 2023, 11, 486 5 of 15 
 

 

 
Figure 1. Scree plot for AR agonist. Blue bars represent the percentage of variance explained by each 
PC and red line represents sum of the variance explained by PCs. 

The first two PC scores (Figure 2a–f) show the separation between active and inactive 
compounds. Most of the inactive compounds are on the left of the line defined by the 
condition PC1 = 0, while the majority of active compounds are on the right of the line. The 
remaining PCs contribute little to the separation. 
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Figure 1. Scree plot for AR agonist. Blue bars represent the percentage of variance explained by each
PC and red line represents sum of the variance explained by PCs.

The first two PC scores (Figure 2a–f) show the separation between active and inactive
compounds. Most of the inactive compounds are on the left of the line defined by the
condition PC1 = 0, while the majority of active compounds are on the right of the line. The
remaining PCs contribute little to the separation.
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Figure 2. PC scores for (a) AR agonist, (b) AR antagonist, (c) ERα agonist, (d) ERα antagonist, (e) ERβ
agonist, and (f) ERβ antagonist. Blue dots represent inactive substances and red dots represent
active substances.

Subsequently, we considered the 22 PCs as input descriptors in the CPANN modeling.
The architecture of the CPANN model and the LOO test are described in the above section.
The LOO test results are shown in Table 2, considering different dimensions of CPANN.

Table 2. LOO test results. Final models are presented in bold format.

Androgen Receptor Agonist Androgen Receptor Antagonist

16 × 16 18 × 18 20 × 20 16 × 16 18 × 18 20 × 20
TP 71 77 77 103 105 109
FP 0 0 0 2 3 2
TN 78 78 78 112 111 112
FN 7 1 1 11 9 5
Se 0.910 0.987 0.987 0.904 0.921 0.956
Sp 1.000 1.000 1.000 0.982 0.974 0.982
Acc 0.955 0.994 0.994 0.943 0.947 0.969
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Table 2. Cont.

Androgen Receptor Agonist Androgen Receptor Antagonist

MCC 0.914 0.987 0.987 0.889 0.896 0.939

Estrogen receptor alfa agonist Estrogen receptor alfa antagonist

16 × 16 18 × 18 20 × 20 16 × 16 18 × 18 20 × 20
TP 58 59 60 104 109 106
FP 1 1 1 3 2 0
TN 60 60 60 112 113 115
FN 4 3 2 12 7 10
Se 0.935 0.952 0.968 0.897 0.940 0.914
Sp 0.984 0.984 0.984 0.974 0.983 1.000
Acc 0.959 0.967 0.976 0.935 0.961 0.957
MCC 0.920 0.935 0.951 0.873 0.923 0.917

Estrogen receptor beta agonist Estrogen receptor beta antagonist

6 × 6 8 × 8 10 × 10 16 × 16 18 × 18 20 × 20
TP 18 18 18 83 89 90
FP 0 0 0 3 4 2
TN 18 18 18 95 94 96
FN 0 0 0 13 7 6
Se 1 1 1 0.865 0.927 0.938
Sp 1 1 1 0.969 0.959 0.980
Acc 1 1 1 0.918 0.943 0.959
MCC 1 1 1 0.839 0.887 0.918

As a final model, we chose the 18 × 18 dimension for the models, except for the Erβ-
agonists 8 × 8 due to the small number of molecules. In the case of the Erβ-agonists, the
model gives perfect separation, which is a consequence of the small number of molecules
that have similar structures, especially for non-active molecules. The upper maps are
shown in Figure 3.
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g/mol and c-terminal pyrimidine, which are difficult to separate in the model. The top 
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compounds (romidepsin, dronedarone, nelfinavir mesylate, and clindamycin palmitate) 
with molecular weights between 540 and 700 g/mol, which contain sulfur. Only clindamy-
cin palmitate was non-binding in in vitro experiments, while the other three compounds 
were found to be binding. On the other hand, there are also four molecules on neuron (18, 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 3. Top map of model for (a) AR agonist, (b) AR antagonist, (c) ERα agonist, (d) ERα antagonist,
(e) ERβ agonist, and (f) ERβ antagonist. Light blue represents neuron with one inactive compound,
dark blue neuron with two or more inactive compounds, light red represents neuron with one active
compound, dark red represent neuron with two or more active compounds, and green represents
conflict neuron, where at least one substance is classified differently than others.

The model for the AR agonist receptor shows near-perfect separation with only one
misclassified molecule and an accuracy of 0.994. The only conflict (highlighted in green) in
the AR agonist ‘recall-ability’ test presented in the top map is on the neuron (118) occupied
by deslorelin and eledoisin, both short peptides with a molecular weight of >1000 g/mol
and c-terminal pyrimidine, which are difficult to separate in the model. The top map of
the AR antagonist shows nine conflict neurons. On neuron (1,6), there are four compounds
(romidepsin, dronedarone, nelfinavir mesylate, and clindamycin palmitate) with molecular
weights between 540 and 700 g/mol, which contain sulfur. Only clindamycin palmitate
was non-binding in in vitro experiments, while the other three compounds were found to
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be binding. On the other hand, there are also four molecules on neuron (18, 9) presented
in Table 3, all of which contain a heterocycle with nitrogen (1-butyl-4-methylpyridinium,
1-butylpyridinium, 1,8-diazabicyclo[5.4.0]undec-7-ene, and butylmethyl-imidazolium),
with 1-butyl-4-methylpyridinium binding as an antagonist to AR in in vitro experiments,
whereas the other three compounds were not binding. We would like to point out that
1-butyl-4-methylpyridinium and 1-butylpyridinium differ only by a methyl group attached
to the pyridine, while the in vitro experiment shows a different classification.

Table 3. Compounds on neuron (18, 9) in top map for AR antagonist.

Compound Structure
AR Antagonist Classification

In Vitro In Silico

1-Butyl-4-
methylpyridinium
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Similarly, the compounds 1-butyl-4-methylpyridinium and 1-butyl-2-methylpyridinium
at the conflict neuron (12, 6) in the ERα-antagonist model are structural isomers (Table 4).
They have the same chemical formula but differ in the position of the methyl group. They
were classified as non-binding and binding, respectively, in vitro, whereas our model classi-
fied both as non-binding.

In the ERβ-antagonist model, three structurally related compounds (fenticlor, bithionol,
and phencapton) are found in the conflict neuron (1, 1) (Table 5). Although fenticlor was
non- binding in the in vivo experiment, the other two were. All three molecules contain
chlorine bound to an aromatic ring. However, fenticlor and bithionolate show greater simi-
larity in structure, as both consist of two chlorinated phenols bridged with sulfur to form
C1, differing only in the number of chlorines attached to the phenol. These examples clearly
demonstrate the robustness of the model, as it only has difficulty classifying molecules that
are structurally closely related.
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Table 4. Compounds on neuron (12, 6) in top map for ERα antagonist.

Compound Structure
AR Antagonist Classification

In Vitro In Silico
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Unfortunately, ED-relevant data from several sources showed poor agreement between
experimental values from different sources [26]. Therefore, we were not able to create a
test set for the external validation of the models. However, the LOO validation procedure
performed results in a reliable and unbiased estimate of model performance.

Following a previous study in which a comparative analysis of docking models
(Endocrine disruptome software and VirtualToxLab) and their interpretation using Tox21
in in vitro data was performed, our models show better accuracy than the selected docking
models. The prediction accuracy of the endocrine disruptome model was 0.53 for AR, 0.58
for Erα, and 0.62 for Erβ, while Virtual ToxLab showed slightly better results of 0.57, 0.59,
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and 0.62, respectively [38]. In this regard, the QSAR models show better accuracy. The
comparison of different published QSAR models for screening AR showed that the balanced
accuracy ranged from 0.55 to 0.81 [26]. The QSAR model with the best performance was
presented by Todorov et al. [39], and was based on the multiparameter formulation of
the common reactivity pattern (COREPA) approach. Better results were obtained with
OASIS, a QSAR platform covering both ER and AR binding [40]. Evaluation with ToxCast™
of in vitro binding data gave an accuracy of ER of 0.88 and of AR of 0.84 [41]. Despite
the fact that the above QSAR models show excellent results in compound classification,
we managed to further improve the accuracy (0.94–1) of the predictions (presented in
Table 2) with CPANN. Moreover, with the exception of the endocrine disruptome, none of
the aforementioned models distinguishes between agonists and antagonists, which is an
additional added value of our models.

5. Conclusions

In the interest of avoiding animal testing, in silico modeling focuses on models for
categorizing and grouping substances using various chemometric approaches. In this
work, we present CPANN models for agonistic and antagonistic binding to the androgen
and estrogen (ERα and ERβ) receptors. The structural properties of the compounds were
fully described by the set of molecular structural descriptors given by DRAGON. Variable
reduction was performed by the PCA-based clustering technique. In all cases, the first PC
contributes about 40% to the total variance, and thus, plays a crucial role in the distribution
of the objects. Score plots using the first two PCs show a weak separation between active
and non-active compounds. Subsequently, we used CPANN models for classification.
Notwithstanding the uncertainties in the classification of the compounds in the selected
in vitro data, we divided the compounds into binders and non-binders. The models that
were created were validated using statistical parameters for LOO, which showed that
the models had a high level of balance and accuracy. Comparison with other QSAR and
docking models presented in the literature with the CPANN models suggests that CPANN
models are superior, although an absolute measure of comparison is not possible due to
the different sets of compounds used. As far as we know, these are only QSAR models
that distinguish between antagonists and agonists. This is an important detail that further
increases their usefulness. Overall, the CPANN models we created are robust and predictive
of new chemicals. Based on chemical structure alone, the models can predict the binding
affinity of an unknown compound to the chosen nuclear receptor. Thus, these models
provide a viable, effective, and practical tool for rapidly screening the endocrine activity of
organic compounds and prioritizing them for further testing.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxics11060486/s1, dataset including compound name, CAS,
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