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Abstract: In practical wastewater, cationic and anionic dyes usually coexist, while synergistic removal
of these pollutants is difficult due to their relatively opposite properties. In this work, copper slag
(CS) modified hydrochar (CSHC) was designed as functional material by the one-pot method. Based
on characterizations, the Fe species in CS can be converted to zero-valent iron and loaded onto a hy-
drochar substrate. The CSHC exhibited efficient removal rates for both cationic dyes (methylene blue,
MB) and anionic dyes (methyl orange, MO), with a maximum capacity of 278.21 and 357.02 mg-g~ !,
respectively, which was significantly higher than that of unmodified ones. The surface interactions of
MB and MO between CSHC were mimicked by the Langmuir model and the pseudo-second-order
model. In addition, the magnetic properties of CSHC were also observed, and the good magnetic
properties enabled the adsorbent to be quickly separated from the solution with the help of magnets.
The adsorption mechanisms include pore filling, complexation, precipitation, and electrostatic attrac-
tion. Moreover, the recycling experiments demonstrated the potential regenerative performance of
CSHC. All these results shed light on the co-removal of cationic and anionic contaminates via these
industrial by-products derived from environmental remediation materials.

Keywords: modified hydrochar; copper slag; dyes; simultaneous removal; adsorption mechanisms

1. Introduction

With the rapid development of social industry and textile scale, the immature tech-
nology of dye wastewater treatment systems leads to a large number of compounds and
intermediates participating in the process of dye production and dyeing. As the wastewater
is discharged into external water bodies, the treatment capacity of dye wastewater also
decreases [1,2]. The ecological and environmental problems caused by printing and dyeing
wastewater are inevitable and ubiquitous in daily life [3]. The printing and dyeing wastew-
ater is a typical high-pollution wastewater, which is characterized by large discharge, high
chroma, high salt concentration, strong acid, strong alkali, strong resistance to microorgan-
isms, and so on [4,5]. Some organic compounds and toxic heavy metals pose carcinogenic,
teratogenic, and mutagenic risks to humans [6]. In addition, due to the variety of dyes
and complex industrial production, there are always different kinds of dye residues in
the wastewater, that is, anionic dyes and cationic dyes always coexist [7]. However, the
physical and chemical properties of anionic and cationic dyes are basically opposite, and it
is usually difficult to remove both dyes at the same time.
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Coagulation and flocculation, precipitation, microbial, electrolysis, adsorption, and
membrane separation are currently commonly used to remove dyes [8,9]. However, each
method has its advantages and disadvantages. For example, although the microbial
method can utilize cheap renewable resources, the microbial growth and culture path
is long, so it is easy to produce more by-products in the follow-up experiment, and the
reaction cycle is long. The membrane separation method is simple to operate and has little
pollution, but with the increase of the use time, the surface of the membrane will be polluted,
which reduces the performance. Moreover, this method only separates and transfers the
pollutants and cannot fundamentally achieve adsorption. According to previous studies,
the adsorption method still has advantages, which are far ahead of other methods in terms
of application value and actual removal effect. At the same time, it has the advantages of
good removal effect, short time, low cost, simple operation, good cycling performance, and
not easy to cause harm to the environment. The high-efficiency adsorbent for printing and
dyeing wastewater is the core issue of the adsorption.

In recent years, zero-valent iron (ZVI) nanoparticles with abundant REDOX active
sites have received a lot of focus [10]. However, ZVI tends to accumulate in solution, which
reduces its reactivity. Therefore, some porous materials are used to support ZVI to improve
the stability of ZVI, such as activated carbon, zeolite, biochar, and so on. Nevertheless, the
synthesis of ZVI composites is high-cost and low-load, and it is necessary to optimize ZVI
composites. HC is a product prepared under high pressure and low temperature, with rich
functional groups and porous structure [11,12], which shows great potential in removing
pollution [13,14]. Hence, HC seems to be an ideal material to load ZVI. At present, the main
sources of ZVI are K3[Fe(C,04)]-3H,0 [15] and FeCl3-6H,0 [16,17], reduced iron powder,
and iron ores, which mainly includes limonite, siderite, and magnetite [18]. These materials
have the disadvantages of complex preparation methods and high cost [19], although
they have the advantages of environmental protection, economy, and efficient use [20,21].
The composite material of hydrochar and ZVI prepared with the above modifiers is at
variance with the concept of sustainable development. Therefore, it is urgent to find new
modified materials.

The accumulated stock of copper slag (CS) in China has reached 120 million tons [22],
but the actual utilization of CS is rare. The iron in CS mainly exists in the form of weakly
magnetic iron, and the effect of metal recovery by traditional methods is ineffective. The
long-term and large accumulation of CS not only causes land occupation but also damages
the soil and water environment [23]. Iron, copper, and other valuable metals are prevalent
in CS, and it is worth noting that the iron content in CS (Fe% = 35%) is significantly greater
than that recovered from iron ore (Fe% > 27%) [24]. Our research group has used CS as the
modified material to prepare the relevant functional bio-adsorbent via the hydrothermal
reduction method to remove heavy metal (Selenium) from the solution, and the absorption
efficiency of the bio-adsorbent was great. However, whether the magnetic hydrochar
modified by CS can be used in dye wastewater treatment and whether it can achieve
cationic and anionic dyes elimination simultaneously remain to be studied. Moreover, the
adsorption mechanism and industrial feasibility also need to be explored.

Therefore, in this research, we prepared magnetic hydrochar modified by CS and
explored the removal efficiency of cationic dyes (methylene blue, MB) and anionic dyes
(methyl orange, MO) in printing wastewater. The intention of this work was to obtain
adsorbent magnetic hydrochar modified by CS via the hydrothermal reduction called
CSHC and use CSHC for the adsorption of dyes. In this study, we believe that pine sawdust
is used as the precursor to prepare hydrochar, and CS was innovatively modified with
the help of high cellulose content and rich lignin in the structure. The combination of
the two can not only effectively expand the specific surface area but the pore system of
adsorbent materials. Moreover, the ZVI reduced in the preparation process could also be
effectively attached to the hydrochar, thus providing a greater possibility for the adsorption
of target pollutants. Therefore, the modified hydrochar was prepared by the one-pot
method using CS as an iron source and pine sawdust as a carrier to explore its removal
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efficiency of cationic dyes (methylene blue, MB) and anionic dyes (methyl orange, MO)
in printing and dyeing wastewater is a promising solution. Modified hydrochar (CSHC)
was prepared from copper slag and pine sawdust as a high-performance adsorbent and
applied to the removal of MB and MO from printing and dyeing wastewater. Various
characterization methods were used to investigate the physical and chemical properties
of the prepared CSHCS before and after modification. The simultaneous removal of MB
and MO was tested by batch adsorption experiments. Thermodynamic analysis and kinetic
model were used to illustrate the surface interaction and adsorption types, respectively. The
reusability of the composite functional environmental protection material was evaluated
by a recycling test. All this work could provide a promising and potential solution for CS
reutilization and wastewater purification.

2. Resources and Techniques
2.1. Research Materials

The CS was obtained from Xuanwei Phoenix Steel Co, Ltd., from Qujing City, China.
The pinewood sawdust was collected from Kunming City, China. The methylene blue
(C16H18CIN3S, solubility in water: 40 g-L’1 at 25 °C, molar mass: 373.9 g'mol’l), methyl or-
ange (C14H14N3NaO3S, solubility in water: 200 mg-L’1 at 25 °C, molar mass: 327.3 g~mol’1),
NaOH, and other reagents were provided from Beijing Chemical Reagent Factory. The
pinewood SD was rinsed with distilled water and dried at 80 °C, and then the dried
pinewood sawdust was crushed and passed through 80 mesh.

2.2. Adsorbent Preparation Methods

The preparation of CSHC is shown in Scheme 1 [25]. Firstly, weighed CS (4 g) and
CS (4 g) were mixed. Secondly, the mixture was steeped in NaOH solution (200 mg-L~!,
40 mL) and distilled water (60 mL) in order to reduce the crystallinity of cellulose in SD
and improve the mixing degree, and then it was mixed by ultrasonic oscillation (25 °C,
0.5 h) and stirred by a magnetic stirring apparatus (25 °C, 2 h). Thirdly, the mixture had
a hydrothermal reaction (120 °C, 10 h). Finally, the dried slurry was placed in a tube furnace
and underwent a pyrolysis reaction (heating rate was 10 °C-min~!, pyrolysis temperature
was 400, 600, or 800 °C, and holding time was 2 h, N, protection). The three samples
were washed with deionized water three times and were labeled CSHC400, CSHC600, and
CSHC800, respectively. In addition, 8.0 g SD and 8.0 g CS were weighed and pyrolyzed
(heating rate was 10 °C-min !, pyrolysis temperature was 600 °C, and holding time was
2 h, N, protection), respectively, and the products were labeled HC600 and CS600.

120°C, 12 h 400-800°C, 2 h
I— ﬂ —
Hydrothermal Pyrolysis

Scheme 1. Flowchart of preparation of CSHC.
2.3. Analysis Methods

The surface functional groups of the hydrochar were measured with Fourier transform
infrared spectroscopy (FTIR, Spectrum Two, Perkin-Elmer, Waltham, MA, USA) using the
KBr disk technique. Scanning electron microscopy (SEM, FEI Quanta 200FEG, Thermo
Scientific Quanta, Hillsboro, OR, USA) was used to detect the surface morphology. The
specific surface area (SSA) of biochar was detected by N, adsorption isotherms at 77 K
using a Micropore Analyzer (ASAP 2460, Micrometrics, Norcross, GE, USA). The crystal
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structure was characterized by X-ray diffractometry (XRD, D8 Advance Sox-1, Bruker
Co., Billerica, MA, USA) with Cu K-alpha radiation at 40 kV (A = 0.15418 nm). An X-ray
photoelectron spectrometer (XPS, ESCALAB 250Xi, Thermo Fisher Scientific, Waltham, MA,
USA) was used to characterize the surface composition and chemical state of the modified
bone hydrochar before and after the adsorption of the organic dyes.

2.4. Batch Experiment

All sorption experiments were performed in a 10 mL centrifuge tube with varied
environmental factors at optimum operational parameters. The initial solution pH was
adjusted with trace amounts of 0.001-0.1 mol-L~! HCI/NaOH solutions. The adsorption
kinetics were investigated by dispersing 10.0 mg of adsorbent into 10 mL of aqueous MB
and MO solutions containing different initial concentrations (i.e., 50 or 500 mg-L~!) at
pH =12 for MB and pH = 3 for MO, T = 318 K. The adsorption isotherm experiments were
carried out by vigorously shaking 10 mL of a solution containing varied levels of organic
dyes (MB and MO from 25 to 500 mg-L~!) mixed with 10.0 mg of CSHC for 3 h to reach
equilibrium at pH = 12.0 and pH = 3.0, respectively, T = 318 K.

Adsorption experiments were carried out in an orbital shaker (HNY-100B, Honour
instrument shaker, Tianjin, China) at 120 rpm-min~! for 3 h to ensure that the sorption
reached equilibrium. The supernatants were then filtered with a 0.22 pm filter membrane,
followed by determining the MB and MO concentrations (C,, mg-L~!) with an Ultraviolet-
visible spectrophotometer (UV-722, Evolution 201 & 220, Thermo Fisher Scientific, Waltham,
MA, USA) to measure the quantitative absorbance of these organic dyes under the influence
of an adsorbent. Then, the MB and MO adsorption capacities of the adsorbent materials
were computed. The MB was centered at a wavelength of 663 nm [26], and the MO was
centered at a wavelength of 463 nm [27]. According to Formulas (1) and (2), the adsorption
capacity g. (mg-g~!) and removal rate can be calculated, respectively. The calculation
formula of the Langmuir model and Freundlich model was shown as Formulas (3) and (4).
Additionally, Formulas (5) and (6) provided the expressions for the pseudo-first-order
model and pseudo-second-order model. In order to ensure the uniformity of measurement
and accuracy of dates, all experiments were repeated three times.

Co—Ce) XV
4 )
Remouval rate = Co—Ce x 100% 2)

Co

where C (mg~L’1) was the initial concentration of dye, Ce (mg-L’l) was the concentration
of dye solutions after adsorption, V (L) was the volume, and W (g) was the quantity of
the adsorbent.

K -

Langmuir model : g, = Z?—Tigz 3)
1

Freundlich model : g, = K-C/* 4)

where C, (mg-L~!) was the action’s equilibrium content, g, (mg-g~!) was the target pol-
lutant’s absorption capacity, K; (L-mg~!) was the constant in the Langmuir model, Kr
(mg!' ™ L".g~ 1) was the constant in the Freundlich model, and g, (mg-g~!) was the highest
adsorbent capacity.

Pseudo—first-order model : q; = g, (1 — ekt ) (5)
2
Pseudo-sec ond—order model : g¢ = Lkzt (6)
1+ %th

The quantities of MB and MO that were adsorbed onto the CSHC600 at equilibrium
and time t, respectively, are denoted by the variables g, and g; in these formulations,
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whereas k; (min~!) and k, (g-(mg min) ') were the constants for the pseudo-first-order
and pseudo-second-order models, respectively. The fitting results are shown in Table 1.
The final fitting results showed that during the adsorption of MB, the R? of the pseudo-
second-order model was superior to that of the pseudo-first-order model, demonstrating
that chemical adsorption dominated. Moreover, k, on MB (2.58 x 10~2) was larger than k,
on MO (1.87 x 10~%), indicating that the equilibrium time of adsorption of MB by CSHC600
was shorter than that of MO.

Table 1. Pore structure analysis of four activated carbons.

Specific Area Pore Volume . o
Sample (m2.g-1) (m3-g-1) Pore Size (A)
CSHC800 201.33 0.16 27.15
CSHC600 186.40 0.15 28.37
CSHC400 159.71 0.13 25.32
HC600 122.33 0.12 20.35

3. Findings and Discussion
3.1. Adsorbent Material Characterization

SEM directly displayed the morphologic characteristics of HC composites. The mor-
phologies of unmodified HC600 and CSHC600 are shown in Figure 1. It was obvious to
observe the different morphologies of HC600 and CSHC600. Compared with CSHC600,
HC600 had a more smooth surface and dense structure with the unobvious distribution
of micropores [28]. The edges of HC600 were mainly broken sheets, and a few fibrous
structures could be detected, which was likely due to the pyrolysis of structural fibers in the
SD [29]. There were metallic luster and white particles on the surface of CSHC600, which
was most likely ZVI. The existence of ZVI could be attributed to the magnetic nanoparticles
(Fe30y4) [30,31] and demonstrated that zero-valent iron effectively bonded to the surface of
hydrochar [32]. In addition, some pores with different sizes were formed on the surface of
CSHC600, which showed random and uneven characteristics in disorganized directions,
a large number of irregular agglomeration spherical particles were attached, and a small
number of micro and macro cracks appeared around the agglomeration particles, which
may be the cross-linking process of multi-pore development [26]. It helped the dispersion
and adsorption of dye. Compared with HC600, it was also noted that the pore diameters
of CSHC600 were significantly reduced (Figure 1b). This phenomenon was due to the
introduction of magnetite modifications, which blocked the pore.

(€))

10 um

Figure 1. SEM images of HC600 (a) and SEM—EDS images of CSHC600 (b—d).
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According to Figure 2, based on the IUPAC classification, CSHC is a typical Type I
adsorption isotherm. When P/ PY < 0.48, adsorption isotherms coincide with desorption
isotherms, indicating that activated carbon has a microporous structure. With the increase of
pressure, capillary condensation occurs in the pore structure, and the desorption rate of Nj
is higher than the adsorption rate, and H4-type hysteresis rings are produced, indicating the
existence of a mesoporous structure. Such microporous mesopores not only provide more
adsorption sites but also improve the adsorption rate. The formation of pores is caused
by the dehydration of hydrochar. Surface materials begin to aggregate and form granular
microcarbon balls. There are pores of different sizes inside and between the particles.
Table 1 shows that the specific surface area of CSHC600 and HC600 are 186.40 m?-g~! and
122.33 m2-g~ !, respectively, and the total pore volume is 0.15 m3-g~! and 0.12 m3-g~ 1,
indicating that the pore structure and Sgpr are improved by about 1.52 times after CS
modification. Viot improved by about 1.25 times. This shows that CS-modified hydrochar
can be a very good preparation of high specific surface area adsorbent.

1204 —e— CSHC800
= @ CSHC600
Te5 1004 —9— CSHC400
= @ HC600 o
7 80
g
2 60
= | ¥ .0¥YT @ . aQf
S 1 H¥ o223 PM398383897"
T .| 289833 3303-2935000094
2 e 233333333
2
g
S 20
o 3
o
O_

T N T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Relative Pressure (P/P,)

Figure 2. N, adsorption/desorption isotherms of four activated carbons.

The XRD diffractograms of HC600 and CS600 are shown in Figure 3. There was
an intense peak corresponding to SiO, at 26 of 26.66°, and there were diffraction peaks
of CaCOs at 26 of 20.95° and 29.56°. In the XRD diffractograms of CSHC, there were
diffraction peaks of Fe® and Fe;Oy at 20 of 44.57°, 35.47°, and 57.54°, respectively. The
diffraction peak at 20 = 46.81° represented CusFeSy, and the appearance of CusFeS, may be
the result of a high-temperature vulcanization reaction between copper, iron, and residual
sulfur in CS during the pyrolysis process [33]. Compared HC600 to CSHC600, Fe” and
Fe3O4 were successfully attached to the surface of the modified hydrochar [34]. In addition,
when the temperature rose, the peak intensity of FeY rose. This was because more reducing
gases were created at high temperatures, which reduced Fe?* and Fe®* into Fe®.

In the FTIR spectra (Figure 2b), the wide peaks at 3435 cm~! and 877 cm~! [35]
represented the O-H and C-H, and the oscillation peak at 1647 cm ! and 1008 cm ! repre-
sented C=0 [36,37], and the peak at 1065 cm~! represented Si—-O-5i [38]. The FTIR spectra
showed the presence of functional groups such as ~OH (3429 cm~1), C=0 (1008 cm™1),
C-H (1647 cm™1), C=C (1426 cm 1), and so on in these adsorbents.
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Figure 3. (a,b) XRD diffractograms and FTIR spectra of CSHC, CS600, and HC600.

In addition, it was observed that the oxygen-rich functional groups in the modified
hydrochar prepared by pyrolysis at 600 °C and 800 °C were more than adsorbent prepared
by pyrolysis at 400 °C. This indicated that pyrolysis at 600 °C stimulated and retained
oxygen-rich functional groups and aromatic substances better [38], and thus CSHC600 had
a better effect on the adsorption of MB and MO.

The XPS analysis is shown in Figure 4. The binding energy at 288.1 eV and 529.1 eV
represented C 1s and O 1s, respectively, and the binding energy at 348.3 eV represented Ca
2p. The peaks at 710.13 eV and 725.14 eV represented FeZ*, moreover, the peaks at 711.26 eV
and 727.24 eV represented Fe>*. The peaks at 720.10 eV represented Fe’, indicating that Fe’

was successfully loaded onto HC [39,40].
a b
(@) ———(b)
Fe’ (40.53%) Fe?" (59.47%)

3 3

s Ols s

2 z

E Ca2p =

L]
1 1 1 1 1 1 1 1 1 1 1 1 L
1200 1000 800 600 400 200 O 740 735 730 725 720 715 710 705
Binding Energy (eV) Binding Energy (eV)

(c) (d)

Fe° (16.77%)
Fe?* (17.44%)

Intensity (a.u)

Fe** (65.79%)

Intensity (a.u.)

Fe?* (18.62%)
Fe” (19.80%)

L L L 1 L

Fe** (61.58%)

1 L
725 720
Binding Energy (eV)

1 1
740 735 730

L
715

1 1
710 705

740

735 730 725 720 715

Binding Energy (eV)

710 705

Figure 4. The full spectrum of CSHC600 (a) and XPS images of CSHC400 (b), CSHC600 (c), and

CSHC800 (d).
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The magnetic properties of CSHC400, CSHC600, and CSHC800 were determined by
a vibrating sample magnetometer with a pole diameter of 5 cm under the condition of
300 K. The magnetic effect of zero-valent iron modified hydrochar was prepared from
copper residue. The saturation magnetic strength of CSHC600 was 79.83 emu-g~!, while
that of CSHC400 and CSHC800 were 62.60 emu-g~! and 60.92 emu-g~!, respectively
(Figure 5). Thus, the high-temperature pyrolysis magnetized the hydrochar [41], but the
magnetization did not change with temperature. The intensity of magnetization was
related to the generation of Fe304 during pyrolysis, and Fe304 had a high conductivity [42].
The adsorption properties were usually due to the electron transfer of ferromagnetism
(ferrite magnets) between Fe?" and Fe3*. A secondary phase transition occurred above
the Curie temperature to a paramagnetic substance. Due to the Curie temperature of
Fe;04 being 585 °C, the pyrolytic temperature of 600 °C can oxidize the iron part of CS
to Fe3O4 to the greatest extent. The stronger the magnetic properties of the adsorbent,
the more favorable the magnetization separation between the adsorbent and the dyeing
wastewater [43]. Under the attraction of a permanent magnet, the adsorbent can be quickly
separated from the adsorption liquid. Considering the adsorption capacity and magnetic
properties, CSHC600 was considered the optimal one for further analysis.

100
——— CSSD400 79.83 emu-g '
—— CSSD600 62.60 emu-g”'
—— CSSD800 S
50 // 60.92 emu-g '
:/’
e /
£
=
= 0
2
=
/,
=507~ J
——_
—100 1

L 1 1 1 1 L L
-25k —20k —15k -10k -5k o Sk 10k 15k 20k 25k
Field(G)

Figure 5. VSM spectra of CS600, CSHC400, CSHC600, and CSHC800.

3.2. Analysis of Batch Experiments
3.2.1. Effect of pH

Figure 6 shows the effect of pH value on the adsorption capacity of CSHC600. The
initial concentration of MB was 50 mg-L ™!, the initial concentration of MO was 500 mg-L~},
and the pH of the solution was 3-12. When pH > 3, the adsorption capacity of CSHS600
for MB was high, but the overall trend was stable. When pH = 10, the adsorption capacity
increased slightly. The results showed that CSHS600 can remove MB over a wide pH range.
For MO, the maximum adsorption capacity appealed when pH = 3, but the adsorption ca-
pacity evidently decreased with the increase of pH value. This was probably due to pHpzc
6.42. The positive charge of protonation of functional groups on the surface of CSHC600 led
to positive zeta potential, and the anionic dye MO can be adsorbed by electrostatic adsorp-
tion. As can be seen from Figure 6, the adsorbent had a strong adsorption capacity for MB
under an alkaline environment and MO under an acidic environment [44]. According to
previous studies, the adsorption effect of CS-derived zero-valent iron-modified hydrochars
on MB and MO solutions varies significantly at different pH levels [45]. In addition, the
pH of the adsorbed solution was measured, and it was found that for MB, the pH level
varied from 2.8 to 11.2. Similarly, the pH of MO varies from 3.5 to 11.8. The reason for this
result may be that electrostatic attraction neutralizes part of the charge in the adsorption
process, making the solution nearly neutral. However, the adsorbent material itself shows
alkalinity, so most of the solution after adsorption is weak alkalinity, while the individual
shows strong alkalinity.
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Figure 6. MB (a) and MO (b) were adsorbed onto CSHC600 and HC600 at various pH levels;
Solution pH after adsorption of MB and MO (c); Zeta potential determination (d). Experiment
conditions: [dosage =1 g-Lfl], [temperature = 318 K], [MB = 50 mg-Lfl], MO = 500 mg-Lfl],
[reaction time = 3 h].

3.2.2. Analysis of Isothermal Adsorption

The adsorption efficiency of CSHC600 on MB and MO at various initial concentrations
are shown in Figure 7c,d, and the similarities between MB and MO were obvious. The
adsorption capacity gradually rose as the pollutant concentration rose. The adsorption
capacity of CSHC600 tended to be steady when the concentration rose to a certain point.
The experimental dates were fitted by the Langmuir and Freundlich models [46], and the
results are shown in Table 2. For the adsorption MB by CSHC600, the R? of the Langmuir
model was considerably higher (0.99) than that of the Freundlich model (0.94). For the
adsorption MO by CSHC600, R? values were 0.97 and 0.88 for the Langmuir and Freundlich
models, respectively. Thus, the MB and MO absorption process was better fitted by the
Langmuir model [47]. The statement of Langmuir has four basic assumptions. There is
no interaction between substrates, there is no adsorption site with the same energy, all
adsorption sites are equivalent, and the substrate is uniformly distributed on the surface of
the adsorbent monolayer film [48,49]. In other words, the adsorption preponderance of MB
and MO by CSHC600 was mediated by chemisorption on a single molecular layer [50,51].
CSHC600 was an effective MB and MO adsorbent, which showed the best effect [52], as its
greatest adsorption capacity respectively reached 278.21 mg-g~! and 357.02 mg-g~! for MB
and MO (Table 2), which compared with other research data (Table 3). These results show
that CSHC600 was an effective substance for removing these two kinds of organic dyes.
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Figure 7. The MB (a) and MO (b) removal capacities of the isotherms, thermodynamics (c); Fit-
ted curves of MB (c) and MO (d) for the Langmuir and Freundlich isotherms. Experiment con-
ditions: [dosage =1 g~L*1], [temperature = 318 K], [MB = 50 mg~g’1], [MO = 500 mg~g’1],
[reaction time = 3 h].

Table 2. Adsorption isotherms, kinetics, and related factors summarized.

Isotherms Target Experimental Parameters R?
Data
Langmuir Gm (mg-gfl) Kt (L-mgfl)
MB 196.89 278.21 0.005 0.99
MO 261.78 357.02 0.006 0.97
. Kr
Freundlich (mgl—"Ln.g1) 1/n
MB 196.89 7.80 0.53 0.94
MO 261.78 13.68 0.49 0.88
Kinetics Target Experimental Parameters
data
Pseudo-first-order e (mg-g~1) k; (min—1)
MB 49.95 48.56 0.43 0.99
MO 254.38 250.65 0.04 0.99
Pseudo-second-order ge (mg-g™h) k (g-(mg-min)~1)
MB 49.95 49.52 2.58 x 1072 0.99

MO 254.38 287.14 1.87 x 107* 0.99
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Table 2. Cont.

Isotherms Target Experimental Parameters R?

Data

. AG? AS? AHO

Thermodynamics T (K) K'mol-!)  (KJ-(molK)~1)  (KJ-(mol-K)~1)

MB 298 —2.74
308 —3.68

318 —4.10 1.96 x 102 2.13
MO 298 —4.85
308 —5.78

318 —6.02 3.11 x 1072 3.87

Table 3. Comparison of different magnetic hydrochar or biomass—based adsorbents’ abilities to bind
MB and MO.

_ Initial Concentration Capacity (mg-g—1)
-1
Sample Dosage (g-L—1) pH (mg-L-1) MB MO
11 for MB
Fe304-PAMH 0.8 5 for MO 100 148.84 202.02 [53]
BM 0.5 7 50 2 41.49 [54]
NFGPBC 0.7 7 50 67.54 - [55]
Asph-Al 10 3 20 - 41.25 [56]
FE-LB 2 4 200 180.00 - [57]
12 for MB 50 for MB .
CSHC600 1 3 for MO 500 for MO 49.58 261.78 This study

3.2.3. Adsorption Kinetics

Response time was also a key parameter in adsorption, which reflected the adsorption
speed. Response time contributed to the efficient removal of pollutants and provided more
valuable information for the adsorption process. According to the existing experimental
data, CSHC600 had the best adsorption capacities for MB and MO when pH = 12 and
pH = 3, respectively. The results of the fitting are displayed in Figure 8a,b. The adsorption
equilibrium for MO was 130 min, and the adsorption equilibrium for MB was 30 min. The
adsorption capacity of MO and MB increased rapidly during the early stages of adsorption,
increased slowly, and ultimately tended to a stable state. MB and MO rapidly diffused
from the solution to the surface of the adsorbent material, after that, the adsorption tended
to be slow. There may have been a lot of adsorption active sites on the surface of CSHC600,
but when the reaction was going on, these active sites gradually filled with small molecules
such as MO and MB, which weakened the adsorption.

3.2.4. Thermodynamic analysis

Thermodynamic analysis was carried out by evaluating the entropy and energy
changes in the adsorption process. The formula for figuring out the Gibbs free energy and
other factors during the adsorption process is shown in Formulas (7) and (8).

qu) _ AS”  AHY
1“(@) ~ R RT @
AG? = AH® — TAS? (8)

where AG? represented the change in free energy, AS? represented the change in entropy,
and AHY represented the change in enthalpy. The isothermal adsorption data were used to

calculate In <%) , which had been given a value of 8.314 J-(mol-K)~1 [58], where T was the

temperature and R was the universal gas constant.
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Table 2 showed that AG? adsorbing MB by CSHC600 at 318 K was —4.10 KJ-mol !,
while that of MO was —6.02 KJ-mol~!. Both AG? values were negative when adsorbing
MB and MO, indicating that the adsorption reactions may be totally irreversible [59]. The
AH? was positive, indicating the reactions were endothermic.

(@) (b)
MB adsorption 250 F MO adsorption
50 F = E K 1 K
¥
200
40
T 1s0 +
w0 0
501 &
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Pscudo-first-order model Pscudo—first-order model
Or j Pseudo-second-order moedel O Pseudo—second—order moedel
1 1 1 1 L 1 1 1

0 50 100 150 200 0 50 100 150 200
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Figure 8. The adsorption kinetics of MB (a) and MO (b). Fitting of adsorption kinetics by linear relations
of pseudo-first-order and pseudo-second-order models.

3.3. Regeneration Experiments

CSHC600 was a reusable adsorbent (Figure 9). Solvent desorption was used to evalu-
ate the reproducibility of CSHC. The main method was achieved through five continuous
adsorption-desorption processes [47]. To achieve pH neutrality, the attachments of the
adsorbent were eluted, and the residue was repeatedly rinsed with deionized water. The
recovered adsorbent was dried in a vacuum drying oven at 60 °C. To explore regeneration
capabilities, the adsorption was placed into the same adsorption circumstances as previ-
ously, and the adsorption-desorption cycle was carried out five times. By using CSHC600,
MB (50 mg-L~!) and MO (500 mg-L~?!) can be reused with ease. As shown in Figure 10,
MB could almost be desorbed completely. The removal rate of CSHC600 on MB was still
achieved at 97% after five cycles. At pH = 3, the removal rate of MO by CSHC600 was 51%
in the first cycle and more than 41% in the fifth cycle. The removal rates of CSHC600 for
MB and MO were great even after five cycles. The decrease in adsorption efficiency may be
related to the fact that some original adsorption sites of CSHC600 were occupied and did
not regenerate after the preliminary test. The removal rates of CSHC600 for MB and MO
were great even after five cycles. The outcomes demonstrate that CSHC600 was simple to
recycle and has strong adsorption capability.

(a) 100 (P) 300 100
50 H £ 3 f——;
250 H
_ / / / / H 80 0 / 480
T:n 40 § Tco / / g
&n s &0 200 H / o
= =l =
£ Heo & £ / He0 &
E o] - 2
g g § 150 H t— | | L E‘
= i = i =
S 20H 40 % E 40 g
g g & 100 g
K 2 2 <
H 20 -
10 H ol 20
0 0 0 0
1 2 3 4 5 1 2 3 4 5
Cycle number Cycle number

Figure 9. Adsorption of MB (a) and MO (b) using CSHC600 as an adsorbent that is reusable. Experi-
ment conditions: [dosage =1 g~L_1], [temperature = 318 K], [MB = 50 mg~g‘1], [MO =500 mg~g‘1],
[reaction time = 3 h].



Toxics 2023, 11, 484

13 of 17

(@)

Intensity (a.u.)

(b)

#Fe,0, #F v Si0, GO0 GO0 go

After adsorption MB

I L ! I Il 1

(c)

3500 3000 2500 2000 1500 1000 500
20 (degree) (d) Wavenumber (cm™)

Intensity (a.u.)

Fe** (37.96%)

Fe?* (52.84%) Fe® (6.17%)

Fe¥™ (53.72%)

0
Fe® (9.20%) Fe?* (40.11%)

Intensity (a.u.)

740

735

730

725 720 715 710 705 740 735 730 725 720 715 710 705
Binding Energy (eV) Binding Energy (eV)

Figure 10. The images of XRD, FTIR, and XPS of CSHC600 after adsorption. (a) XRD diffractograms,
(b) FTIR spectra, (c) XPS of CSHC600 adsorption of MB, (d) XPS of CSHC600 adsorption of MO.

3.4. Mechanisms

The removal mechanisms of MB and MO were studied. The SEM images showed that
CSHC600 had a smooth surface and uniform pore distribution. In addition, the crystal
structure of the adsorbent was discovered. The FTIR spectra after adsorption (Figure 10)
showed that the interaction of these functional groups on the surface of CSHC600 with
MB and MO, for example, -OH and -COOH functional groups shifted, the strength of
C—C functional groups decreased, and additionally C-O and -COOH participated in
the reaction. This indicated that hydrogen bonding existed in the adsorption process of
CSHC600 [60]. By comparing the XRD diffractograms of CSHC before and after adsorption,
it can be seen that Fe’ decreased obviously after adsorption. It was also clear that the
peak of Fe’ significantly weakened after adsorption, which may be because ZVI loaded on
CSHC600 reduced mineralized MB and MO. Eventually, the dye was degraded to small
molecules such as CO, and H,O, while ZVI was oxidized to Fe2* and Fe3*. As MO was
a typical anionic compound, the positive and negative charges between Fe?*, Fe**, and
MO attracted each other, which attached MO to the surface of the adsorbent. According
to the XPS of CSHC before and after adsorption, the peak of Fe3* increased significantly
after adsorption. A large amount of Fe** flocculated with the free -OH in solution to
form Fe(OH)j3. Precipitation was the main mechanism of dye adsorption by hydrochar. In
the same way, HC was usually alkaline and carried a negative charge, which can be well
combined with cationic dye (MB) via complexation (Figure 11).
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Figure 11. Adsorption mechanism of MO and MB by CSHC.

4. Conclusions

In this work, the green construction of CSHC was realized by the hydrothermal
method with pine sawdust as a carrier and copper slag as an iron source. A variety of
characterization methods have demonstrated the successful loading of ZVI. The adsorption
process of CSHC600 on MB and MO was fitted by the pseudo-second-order kinetic equa-
tion and Langmuir model, respectively. The adsorption process is mainly controlled by
chemisorption, and the maximum adsorption capacity is 278.21 mg-g~! and 357.02 mg-g~!,
respectively. CSHC600 has good recovery performance. The experimental results prove
the feasibility of copper slag and pine chip adsorbent for purifying industrial wastewater
containing cationic dyes and anionic dyes.
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