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Abstract: Per- and polyfluoroalkyl substances (PFASs) are important and ubiquitous environmental
contaminants worldwide. These novel contaminants can enter human bodies via various pathways,
subsequently posing risks to the ecosystem and human health. The exposure of pregnant women
to PFASs might pose risks to the health of mothers and the growth and development of fetuses.
However, little information is available about the placental transfer of PFASs from mothers to fetuses
and the related mechanisms through model simulation. In the present study, based upon a review of
previously published literature, we initially summarized the exposure pathways of PFASs in pregnant
women, factors affecting the efficiency of placental transfer, and mechanisms associated with placental
transfer; outlined simulation analysis approaches using molecular docking and machine learning
to reveal the mechanisms of placental transfer; and finally highlighted future research emphases
that need to be focused on. Consequently, it was notable that the binding of PFASs to proteins
during placental transfer could be simulated by molecular docking and that the placental transfer
efficiency of PFASs could also be predicted by machine learning. Therefore, future research on the
maternal–fetal transfer mechanisms of PFASs with the benefit of simulation analysis approaches is
warranted to provide a scientific basis for the health effects of PFASs on newborns.

Keywords: PFASs; alternative; pregnant women; placental transfer; molecular docking; machine learning

1. Introduction

Per- and polyfluoroalkyl substances (PFASs) are a series of chemicals containing one
or more perfluoroalkyl molecules (–CnF2n+1–) and have been used worldwide for the last
seventy years as efficient surfactants and surface protectants [1]. It is widely known that
the strong perfluoroalkyl moiety has unique characteristics, including extraordinary re-
sistance to environmental and biological degradation, thermal and chemical stability for
oxidative, photolytic, and hydrolytic reactions, and hydrophobic and oleophobic proper-
ties [2]. Due to their ubiquitous distribution globally, long-chain perfluoroalkyl carboxylic
acids (PFCAs) (seven or more perfluorinated carbons) and perfluoroalkanesulfonic acids
(PFSAs) (six or more perfluorinated carbons) have received widespread attention [3,4]
since perfluorooctane sulfonate (PFOS) was first discovered in wildlife and even human
blood 20 years ago [5,6]. Studies have revealed the potential toxicity of long-chain PFASs,
leading to defects in reproduction and development, hepatotoxicity, neurotoxicity, and
immunotoxicity [7,8]. PFOS, its salts, and its precursor, perfluorooctane sulfonyl fluoride
(PFOSF), were restricted globally in 2009 [9]. Furthermore, other long-chain PFASs of
emerging concern, perfluorooctanoic acid (PFOA) and perfluorohexane sulfonate (PFHxS),
their salts, and related compounds were eliminated from production internationally in 2021
and 2022 [10,11].

Since the ban on long-chain PFAS production and usage, some replacements have
been developed commercially. These alternatives have similar fluorinated chain structures,
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such as short-chain PFASs and polyfluorinated ethers [12,13]. Recently, these novel alter-
natives have been observed in human bodies, in some cases at accumulated levels, which
indicates that humans have been in contact with emerging PFASs. Compared with legacy
PFASs, alternatives to PFASs have higher environmental stability and mobility [14,15].
They can further migrate into the environment and widely exist and accumulate in the
global environment and organisms [16–19]. The most biologically persistent PFAS is 6:2
Cl-substituted perfluoroether sulfonic acid (Cl-PFESA), which has higher hepatotoxicity
and accumulation capacity than PFOS [20]. Although short-chain PFASs are generally
considered easier to degrade in the environment and less toxic to humans, some studies
have shown that short-chain PFASs have a similar or even greater toxicity than traditional
PFASs. Notably, pregnant women exposed to PFASs can transfer these compounds from
the maternal blood to the umbilical cord blood via the placenta [21,22]. Adverse risks of
PFAS exposure to developing fetuses have been shown in rodent studies, possibly resulting
in associations between PFAS exposure in utero and reduced birthweight [23].

The development stage of the fetus is very critical, and it is easily affected by the
external environment, so we attach great importance to exposure to PFASs during fetal
development. The human placenta is an important barrier to protect the fetus from the
internal circulation of maternal xenobiotic compounds [24]. Epidemiological investigations
showed that, among the environmental chemicals in the umbilical cord blood [25], am-
niotic fluid [26], and meconium, some substances can pass through the placental barrier,
causing the exposure of the fetus to harmful substances in the womb. For instance, earlier
studies have shown that PFASs could penetrate the placental barrier [27] and cause some
adverse effects on the fetus, such as fetal growth restriction, immunosuppression, and
neurotoxicity [28–30]. During early pregnancy, fetal organ systems are not mature, and
detoxification enzymes are not fully developed [31], so fetuses are vulnerable to the impact
of environmental stresses. One related mechanism may be the change in the epigenome
of the fetuses, which could affect gene expression through continuous DNA methylation
changes during cell division, thereby affecting the cardiac metabolic phenotype and in-
creasing the morbidity risk [32]. In addition, another study has shown that the higher
the exposure of pregnant women to PFASs during pregnancy, the higher the level of liver
enzymes in children, so developmental exposure to PFASs may lead to liver damage in
children [33]. Moreover, the placental transfer of PFASs might be dependent on their
physical and chemical properties. A study related to PFASs in matched samples of maternal
and fetal blood showed that short-chain PFASs may increase the placental transfer rate
compared to long-chain congeners [34].

Chemical contaminants can cross the placental barrier by means of passive diffusion,
assisted diffusion, active transport, and cytokinesis [35]. Transport proteins are important
transporters of contaminants from the mother to the fetus, and the binding of certain
transporters to contaminants can affect the placental transfer of contaminants [36]. In order
to better explore the binding of transporters to contaminants, molecular docking techniques
can be used to simulate the binding of transporters to contaminants. Molecular simulation
is an effective method to explore the interaction between molecules, especially biomolecular
complexes (e.g., drugs and receptors), which can obtain information on ligand and receptor
binding conformations, sites, and forces [37]. Computer simulations of molecular docking
techniques not only save a lot of experimental time but also provide more rapid and
direct information about the biological parameters of the receptor macromolecule. A study
using molecular docking to better understand the occurrence of PFASs in the human
placenta and the mechanism of PFAS transfer in the human placenta revealed the binding
of various types of PFASs to human serum albumin (HSA) and the affinity increasing with
the length of carbon chain [38]. In addition, the binding of PFOS to the HSA was visualized
using molecular docking techniques, and their binding energies and binding sites were
obtained [39]. Previous research found that both linear and branched PFHxS, PFOS, and
PFOA could be efficiently transported across the placenta, with the exposure levels in the
order of maternal serum > cord serum > placenta [40]. In addition, another study revealed
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a positive association between cord PFAS levels and birth weight for male infants, as well
as a positive association between branched PFOS isomers in cord blood and the gestational
age of infants [41].

HSA is a globular protein that is a single-peptide chain of 585 amino acid residues.
It includes 30 phenylalanine residues, 35 cysteine residues, 18 tyrosine residues, and
1 tryptophan residue. Aspartic amino acid residues exist at the N-terminal end, and leucine
residues exist at the C-terminal end. A sulfhydryl group exists at position 34 of the peptide
chain, and the rest are disulfide bonds, which play an important role in the maintenance of
the spatial structure of HSA [42]. Alesio et al. [43] developed three models for the binding
of PFASs to bovine serum albumin (BSA). All three models were able to demonstrate that
PFASs can bind to the protein. Pan et al. [36] demonstrated that the binding of HSA to
contaminants had an effect on placental transfer. It was shown that cord serum albumin
was a positive factor in increasing the transfer efficiency, while maternal serum albumin
decreased the transfer efficiency.

In recent years, some advanced tools have been used for sample classification, such as
machine learning algorithms, which can be used for regression, dimension reduction, and
sample classification through simple or composite models [44]. Such methods could be
used to predict the physical and chemical properties of compounds [45] and have gradually
been applied in a broad range of studies. Machine learning has made great progress in the
past two decades. With the improvement of computer computing ability, deep learning
has also made many achievements in various aspects, such as speech, natural language,
and vision. The accuracy of deep learning algorithms with higher adaptability is much
higher than that of classical machine learning algorithms [46]. These advantages enable
artificial intelligence to play a great role in different engineering problems. The deep
learning method can identify the structure and characteristics of data, such as nonlinearity
and complexity, in time series prediction [47]. In previous studies, machine learning has
been used to classify PFASs, which not only saves a lot of time but also makes predictions
about unknown substances and helps people better understand the physical and chemical
properties of these contaminants [48].

In this review, we summarized the exposure pathways of PFASs in pregnant women,
the factors influencing the placental transfer efficiency, and the related mechanisms of
placental transfer, based upon a review of the published literature; outlined the methods
of simulation analysis for revealing the placental transfer mechanisms using molecular
docking and machine learning; and finally highlighted the research emphases that need to
be focused on in the future.

2. Methodology of Literature Sources

To obtain an overview of PFASs, the present review initially focused on PFASs in
pregnant women and their placental transfer, together with a simulation analysis of pla-
cental transfer mechanisms. Reports that addressed fluorosurfactants and fluoropolymers
were also included. The literature related to certain use categories was retrieved for more
information on the application of PFASs.

In addition, databases and scientific studies were examined via Web of Science and
PubMed. The retrieved keywords involved “emerging contaminants“, “per- and polyfluo-
roalkyl substances”, “PFASs”, “PFOA”, “PFOS”, “Cl–PFESA”, “short-chain”, “long-chain”,
“alternative”, “substitute”, “pregnant women”, “placental transfer”, “machine learning”,
“molecular docking”, “model”, and “simulation”.

The literature related to molecular docking and machine learning was summarized,
compared, and analyzed. Important information about molecular docking, such as recep-
tors, ligands, binding information, and software for molecular docking, was extracted. For
the literature related to machine learning, important information such as research content,
datasets, models, and validation methods was given special attention. Based upon the
extraction and comparison of significant information from the literature, research areas that
need to be focused on could be identified.
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3. PFASs in Pregnant Women
3.1. Maternal Exposure to PFASs

The primary route of human exposure to PFASs is likely to be diet and drinking water.
Previous studies have demonstrated that PFASs can enter the human body. For instance,
mothers who consumed more fish could have higher concentrations of placental PFASs,
since a variety of PFASs can be detected in seafood [49]. Although adult females are exposed
to PFASs through indoor ambient air, house dust, and drinking water, the primary route is
through the diet [50,51]. It has been suggested that the accumulation of short-chain PFASs
in the human body could lead to adipogenesis, with health consequences [52]. During
pregnancy, maternal PFOS are transferred through the placenta, resulting in fetal exposure
to PFOS [53]. According to previous reports, branched isomers crossed the placenta more ef-
ficiently than linear isomers for both PFOS and PFOA, and the placental transfer of branched
PFOS isomers increased as the branching point moved closer to the sulfonate end of the
molecule [54]. The transfer efficiencies from maternal to cord sera decreased by 70% with
each increasing unit of –CF2– chain within a PFCAs group, while those for PFOS declined
by half compared to PFOA [55]. There was a significant correlation of PFAS concentrations
between maternal and cord serum samples, implying the transplacental transport of PFASs.
The ranking of transplacental transfer efficiency was PFOA > PFHxS > PFOS [56].

PFOS and PFOA are highly persistent in human sera, with half-lives ranging from 3.8
to 5.4 years [57], and are currently the major sources of total PFAS levels in maternal blood,
umbilical cord blood, fetal blood, and even breast milk [58,59]. Postnatally, breastfed infants
might be continuously exposed to PFASs through the consumption of breast milk [54].
Although the concentrations of PFASs in breast milk are one to two orders of magnitude
lower than those in maternal sera [54,58], breastfeeding for 6 months significantly increased
the PFAS burdens in infants. Some studies have shown that 90% of infant PFOS exposure
might be attributed to breastfeeding [60]. A positive correlation between maternal PFOS
concentrations and PFOS concentrations in cord blood, neonatal blood, and breast milk
has been well documented in the most abundant congeners. It has been demonstrated
that PFOS and PFOA concentrations in breast milk frequently exceed screening values
for children’s intake of drinking water and are not limited by geographical locations.
This also provides strong evidence that the main source of PFASs in infants is breast
milk [61]. Previous studies have shown that one month of breastfeeding increased the
concentrations of PFOS, PFOA, perfluorohexane sulfonate (PFHxS), and perfluoroheptane
sulfonate (PFHpS) in infants by 3–5%, and this was independent of the prenatal PFAS
concentrations. For each additional month of breastfeeding, the infant concentrations of
PFOS and PFOA increased by 4% and 6%, respectively [62].

Geographic locations might also affect PFAS levels in pregnant women. Compared
with cord plasma PFAS concentrations reported in other Chinese cities, the PFOS cord blood
level in Beijing participants was about three-fold lower than that found in Wuhan [36,63].
Furthermore, the blood PFOA concentration in Beijing participants was eight-fold lower
than that reported for Shanghai [63,64]. This was consistent with the findings of Xie
et al. [65], showing lower emissions of PFOS and PFOA contaminants in Beijing compared
with Wuhan and Shanghai.

Wang et al. [63] demonstrated that the levels of perfluorononanoic acid (PFNA),
perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), PFHxS, PFHpS, and
PFOS in the maternal blood were significantly and positively correlated with maternal
age at delivery. Based on 650 Beijing cord plasma samples collected over a 20-year period
from 1998 to 2018, another study found that the total detectable PFAS concentration in
cord plasma increased from 1998 to 2003 and then decreased significantly [63]. Over
time, the changing trend was more noticeable for traditional PFASs in cord plasma, such
as PFOS, PFHxS, and PFOA, with PFOS showing the greatest decrease, while the trend
was most remarkable for 6:2 Cl-PFESA among emerging PFASs in cord plasma. The
detection rates of PFASs could give a good indication of the contaminants existing in
plasma—those of PFOS, PFOA, and 6:2 Cl-PFESA were all high. It is worth mentioning
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that only 6:2 Cl-PFESA was detected for 100% of all the cord plasma samples (Figure 1).
Moreover, the percentage contribution of 6:2 Cl-PFESA in the total concentration of detected
PFASs was always second or third place compared with other PFAS congeners in cord
plasma (Figure 2), which indicates that the concentration of 6:2 Cl-PFESA in human blood
might no longer be negligible. Meanwhile, research has shown that the stronger binding
affinity of 6:2 Cl-PFESA to HSA may contribute to its higher bioaccumulation potential
than PFOS [66]. Similarly, there were comparable trends determined in maternal samples
from other countries worldwide. From 1972 to 2016, the concentrations of PFHxS, PFNA,
PFDA, PFUnDA, and perfluorotridecanoic acid (PFTrDA) in human milk from Stockholm
increased significantly over the entire monitoring period [67]. In Australia, serum samples
from subjects 0 to 60 years old and above were collected. It was found that levels of
longer-chained PFDA and PFUnDA in serum samples started to decrease between 2006
and 2013, while perfluorododecanoic acid (PFDoDA) increased during the same period of
time [68]. Therefore, it is important to focus on the mother-to-child transfer of emerging
PFASs such as 6:2 Cl-PFESA and the potential impacts of emerging PFASs on maternal and
neonatal health.

3.2. Placental Transfer of PFASs

PFASs are transferred from the mother to the fetus via the placenta and might be
harmful to the fetus, so it is important to focus on the placental transfer of PFASs and
the influencing factors. Li et al. [69] investigated the role of molecular descriptors of
chemicals and placental transporters during placental transfer, and the results showed a
transporter- and chemical-dependent binding affinity, indicating that molecular descrip-
tors and placental transporters could play an important role in the placental transfer of
environmental chemicals. Gao et al. [70] analyzed and calculated the placental transfer
efficiencies of 21 PFASs. It was found that the placental transfer efficiency of perfluori-
nated alkyl carboxylic acids (PFCAs) showed a positive U-shaped trend from C4 to C13.
A positive correlation between maternal body weight and PFOS transfer efficiency was
also observed. Bao et al. [71] reported 20 novel PFAS congeners of four classes in human
blood and placenta for the first time by analyzing maternal and umbilical cord serum
and placenta samples collected from pregnant women at delivery. Furthermore, the novel
PFASs were found to account for 90% of all the traditional and novel PFASs in maternal sera
and even 96% of all the PFASs in placentas and umbilical cord sera. This showed that the
maternal–infant transfer of emerging PFASs is also an important part that cannot be ignored.
Eryasa et al. [72] observed a significant transfer of PFASs from the mother to the fetus, with
transplacental transfer efficiencies ranging from a median efficiency of 36% (PFUnDA and
PFDA) to 128% (branched FOSA isomer). Both functional groups and carbon chain length
of different PFASs were important predictors of placental transfer and blood distribution,
and transplacental transfer rates of perfluorocarboxylates and perfluorosulfonates showed
a positive U-shaped relationship with carbon chain length. Liu et al. [73] investigated the
isomers of PFOS, PFOA, and PFHxS in maternal and umbilical cord sera from Mianyang
and Hangzhou, located in the upper and lower reaches of the Yangtze River in China, and
found the isomers of PFASs in maternal and umbilical cord sera. The situation may be
greatly influenced by the local production process of PFASs and the dietary habits of local
residents; n–PFOS, iso–PFOS, 4m–PFOS, 1m–PFOS, n–PFOA, n–PFHxS, and br–PFHxS
placental transfer efficiencies decreased significantly with increasing concentrations in
maternal sera. Furthermore, Li et al. [74] analyzed novel PFASs in maternal and umbilical
cord sera and found that novel PFASs accounted for a considerable proportion of total
PFASs in pregnant women and could be transferred to the fetus at non-negligible concentra-
tions. The placental transfer efficiencies of PFASs showed a positive U-shaped trend in the
perfluoroalkyl carboxylic acid, perfluoroalkyl sulfonic acid, and unsaturated perfluorinated
alcohol series, and those of novel PFASs were suggested to be structure-related. Overall,
the carbon chain lengths, functional groups, and chemical structures of PFASs may affect
the efficiencies of PFASs crossing the placental barrier [21,30].
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The binding ability of PFASs to HSA might play another vital mechanistic role in
the process of placental transfer. Lower placental transfer efficiencies of PFASs were
associated with higher maternal HSA levels, which supports this hypothesis. It is well
known that drugs and environmental contaminants penetrate the placenta mainly by means
of passive diffusion. The passive diffusion of serum albumin may impede the filtration
of the HSA–PFAS binding complex, and hence, only free PFASs could pass through the
placenta [36].
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3.3. Binding of PFASs to Proteins

Previous studies have shown that the carbon chain length, functional groups, and
structure (linear and isomeric) of PFASs may affect the binding of HSA. However, the affin-
ity of HSA for PFASs with different carbon chain lengths is controversial. Jones et al. [75]
and Qin et al. [76] reported that the binding of bovine serum albumin (BSA) to PFASs
(C4, C8, C10) increased with increasing carbon chain length. In contrast, Bischel et al. [77]
found that the affinity of BSA increased from C2 to C8 and then decreased from C8 to
C12, suggesting that longer carbon chains hinder binding. Gao et al. [70] analyzed the
dissociation constants (Kd) of HSA–PFAS complexes (Kd–HP) using human sera and also
found that Kd–HP showed a positive U-shaped pattern when the carbon chain length
increased. In addition, the isomeric HSA dissociation constants (Kd) were higher and less
tightly bound compared to linear PFOS and PFOA [78].

By summarizing the previous literature (Table 1), it is found that the PFASs studied
were usually traditional PFASs, especially PFOS and PFOA. However, few studies have
been carried out on emerging PFASs. Among the macromolecules docked with PFASs, HSA
was the most studied, indicating that HSA plays an important role in placental transfer,
while there are some other substances that can be molecularly docked with contaminants,
such as serum albumin (SA), androgen receptor (AR), hemoglobin (Hb), human and
rat liver-type fatty acid binding protein (hLFABP and rLFABP). Researchers usually use
molecular docking for the study of binding energy and binding sites, and consequently,
the binding of PFASs to proteins could be observed more visually, which could support
the study of placental transfer mechanisms. However, the software used is relatively
uniform; i.e., AutoDock is usually employed for molecular docking. In addition, placental
transfer is a complex process that cannot be analyzed from a single compound, and multiple
macromolecules should be studied together.

Table 1. Previous studies on PFASs binding to different proteins.

PFASs Target Proteins Research Content Software Ref.

PFOA
PFOS HSA

Structure and
energies of the
binding sites

AutoDock 3.0
package [79]

PFOS HSA Binding sites,
binding molar ratio – [39]

PFBA, PFHxA,
PFOA, PFDA HSA Binding mechanism

Binding affinity

AutoDock Vina,
MGLTools,
Discovery
Studio 3.5

[78]

PFOS, GenX HSA Binding sites AutoDock 4 [80]

PFBA, PFPeA, PFHxA,
PFHpA, PFOA, PFNA,
PFDA, PFUdA, PFTrA,
PFTeA, PFPrS, PFBS,
PFPeS, PFHxS, PFHpS,
PFOS, PFNS, PFDS,
FOSA, N–MeFOSAA,
N–EtFOSAA, 4:2 FTS,
6:2 FTS, 8:2 FTS,
HFPO–DA (GenX)

HSA Binding affinity AutoDock Vina
(v 1.1.2) [81]

PFOA, PFOS SA Binding sites AutoDock [82]

PFOS BSA Binding sites AutoDock 4.2.3 [83]

29 PFASs AR Binding affinity LigPrep, Glide [84]
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Table 1. Cont.

PFASs Target Proteins Research Content Software Ref.

PFOS Hb

Effects on the
stability and
conformation of Hb,
binding sites

Autodock 4.2.3 [85]

PFBA, PFPA, PFHxA,
PFHpA, PFOA, PFNA,
PFBS, PFHxS, PFOS,
EEA, GenX, ADONA,
2m–PFOA, F–53,
F–53B

hLFABP,
rLFABP

Relative binding
affinity

Autodock Vina
(v1.1.2) [86]

PFBA, PFPA, PFHxA,
PFHpA, PFOA, PFNA,
PFDA, PFUnA,
PFDoA, PFTA,
PFHxDA, PFOcDA,
PFBS, PFHxS, PFOS,
6:2 FTOH, 8:2 FTOH

Liver fatty acid
binding protein

Kd
structure changes,
binding strength

AutoDock 4.2 [87]

PFBA, PFHxA,
PFHpA, PFOA, PFNA,
PFDA, PFUnA,
PFDoA, PFOcDA,
PFTA, PFBS, PFHxS,
PFOS, 6:2 FTOH, 8:2
FTOH, 10:2 FTOH

Thyroid
hormone
transport
proteins

Relative potency
Kd

AutoDock 4.2 [88]

3.4. Simulation through Machine Learning

The placental transfer efficiencies of certain environmental chemicals have been de-
termined in several studies by measuring concentrations in maternal and cord blood (or
serum/plasma) [71]. Among various possible factors, the physicochemical properties of
environmental chemicals, mainly determined by molecular descriptors, may affect their
ability to diffuse across the human placental barrier or to bind to lipids, membrane trans-
port proteins, and pharmacologically active molecules, thus affecting passive diffusion or
active transport.

The physical and chemical information of chemical molecules can be described in
numerical form through molecular descriptors. There are many types of molecular descrip-
tors, such as structural indexes, topological indexes, descriptors based on two-dimensional
matrices, and descriptors based on three-dimensional matrices. Molecular descriptors have
now been used to predict chemical properties and material structures of chemicals [48].
Molecular descriptors are used to describe the important data on the transfer of contami-
nants through the placenta, and the application of molecular descriptors might not affect
the prediction of placental transfer. Therefore, using molecular descriptors for model
training can effectively predict the placental transfer of chemicals. Through this method,
the mother-to-fetus transfer of emerging PFASs that are not fully understood might be
predicted. However, it should be noted that there is no direct experiment to prove the
impact of these data on placental metastasis, and using a single model to predict placental
metastasis may also ignore other important factors, leading to inaccurate prediction results,
which should be paid more attention in the future.

Because many PFAS components are highly resistant to degradation, PFAS contamina-
tions could be able to persist in different environmental matrices for decades. This poses a
challenge in identifying the source of detected environmental contaminations, as they may
have come from decades ago or from several candidate sources at different times during
previous decades. Furthermore, due to the different mobility of individual PFAS compo-
nents [89], the composition of PFASs detected in the environment is similar to the original
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formulation released into the environment on site, but the further the detected sample is
from the source, the less the observed samples often resemble the original formulation [90].
Therefore, supervised machine learning can be used to distinguish PFASs from different
sources based on their composition.

The quantitative structure–activity relationship (QSAR) methodology is a useful tool to
systematically analyze the information contained in the chemical structures of compounds
related to existing biological data [91]. This method has been extensively applied to evaluate
and predict the activity of drug molecules on therapeutic targets, as well as the toxicity risk
assessment of drugs and chemicals. The QSAR model can provide information about the
possible toxic effects of contaminants on the fetus. This model can be used to predict the
placental metastasis of compounds. For instance, the QSAR model can be used to predict
the molecular characteristics of contaminants and analyze whether contaminants can pass
through the placenta. If the contaminant fails to penetrate the placenta, it might not affect
the fetus [92].

Machine learning saves a lot of time in predicting unknown substances. Hyuna et al. [93]
provided the first semi-supervised machine learning study for predicting structure–activity
relationships for the possible bioactivities of various PFAS species. Cheng et al. [94] built
machine-learning-based quantitative structure-activity relationship (QSAR) models to
predict the bioactivity of PFASs. Through model prediction, the study found that most of
the biologically active PFASs had perfluoroalkyl chain lengths of less than 12 and were
categorized into fluorotelomer-related compounds and perfluoroalkyl acids. Lai et al. [95]
used a novel machine-learning-based approach to find alternatives for the most commonly
used PFAS molecules. The substitutes need to maintain their desirable chemical properties
and be harmless to the organisms. By this approach, 22 promising new alternatives for
PFASs were identified. Singam et al. [84] identified 29 PFASs with high potential activity
against AR by screening the binding sites of PFASs to AR, and the authors concluded that
these PFASs should be prioritized for biotoxicity testing. Feinstein et al. [96] used a machine
learning approach to predict the acute toxicity of PFAS compounds. This approach assisted
the problem of expensive in vivo experiments. The toxicity of PFASs with well-defined
chemical structures was successfully predicted. Eguchi et al. [97] predicted the maternal
transfer rate and molecular weight of contaminants via machine learning. Abrahamsson
et al. [98] developed and tested an artificial neural network (ANN) to evaluate the extent
to which small molecules, especially PFASs, could cross the placenta and partition in the
cord blood. The predictions of the concentration ratio between cord and maternal blood
(RCM) for PFASs suggested that 3623 compounds had a log RCM > 0, indicating preferable
partitioning in cord blood.

Consequently, it is demonstrated that all of the models applied to PFASs are common
in the field of machine learning, and all of them prevent overfitting by processing the
dataset (Table 2). However, little information is available about machine learning studies
on the placental transfer of emerging PFASs so far.

Table 2. Machine learning on PFASs in the literature.

Research Content Dataset Model Validation Significance Ref.

To automatically
predict the

biological activity
of PFASs in

various human
biological targets

The CF dataset, the
C3F6 dataset

QSAR,
unsupervised/semi-
supervised machine

learning models

Structural alerts
were used to

cross-check the
validity of the

predicted
substructures

The first
semi-supervised

machine learning study
of structure—activity

relationships for
predicting possible

bioactivities in a variety
of PFAS species

[93]
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Table 2. Cont.

Research Content Dataset Model Validation Significance Ref.

To predict the
bioactivity of

PFASs

The bioactivity
information on
1012 PFASs for

26 bioassays

Logistic regression,
random forests,
multitask neural
networks, graph

convolutional models,
and weave models

30% of data were
used to tune

hyperparameters
and evaluate

models

To provide valuable
insight into the behavior
of those chemicals and

thus facilitate
high-throughput

screening and
prioritization

[94]

To find alternatives
for the most

commonly used
PFAS molecules

The curated EPA
dataset consists of

7751 PFAS molecules

Junction tree
variational

autoencoder (JTVAE)

No validation set
but well processed

22 promising new PFAS
substitutes were

identified
[95]

To classify the
active and inactive

PFASs for AR

The resulting dataset
contained 568 active

and 3934 inactive
chemicals

Logistic regression,
random forest,
support-vector

machine, k-nearest
neighbors

A grid search
cross-validation

method was used
to tune the
parameters

29 PFASs had strong
potential for activity

against the AR
[84]

To predict acute
toxicity of PFAS

compounds

LDToxDB of
13,329 unique

compounds of any
type with oral rat

LD50 measurements

RF regressor, Gaussian
process (GP)

regression, deep
neural network, graph
convolutional neural

network

Five-fold
cross-validation

Predicting toxicity for
PFASs with a defined

chemical structure
[96]

To predict the
maternal–fetal

transfer rates of the
POPs

The Chiba University
Hospital’s Delivery

Unit and various other
obstetric units in Japan

Principal component
analysis (PCA),

multiple
linear regression

(MLR), partial least
squares regression

(PLS), random forest
regression (RF)

Ten-fold
cross-validation

Maternal transfer rate
and molecular weight,
and/or lipophilicity,
might be important
parameters for the

maternal–fetal transport
of organohalogen

compounds

[97]

To develop a
computational

approach that can
be used to evaluate
the extent to which

small molecules
can cross the
placenta and

partition in the
cord blood

From the literature

Support-vector
machine (SVM), a

random forest (RF),
and an artificial neural

network (ANN)

Shuffle-split
cross-validation

with an 80/20 split

These observations have
important public health

implications
[98]

4. Conclusions and Future Research Emphases

In this review, we initially summarized the levels of various PFASs in pregnant women
and revealed that the concentrations of PFASs in the environment in different regions were
positively correlated with those of PFASs in the sera of pregnant women. Based on the
levels of PFASs in cord plasma samples of pregnant women from China from 1998 to 2018,
we found that the concentrations of PFASs in maternal plasma first increased and then
decreased, which might be attributable to changes in international control measures for the
production and usage of PFASs and related changes in the PFAS levels in the environment.
Due to the updated restrictions on legacy PFASs, many alternatives of PFASs have emerged
and are widely used, but the structures of some novel PFASs are not yet clear.

Secondly, we also summarized the placental transfer of PFASs and the factors influ-
encing this process, indicating that PFASs can be transferred from the mother to the fetus
via the placenta. There are many factors that affect the placental transfer of PFASs, such as
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carbon chain length and functional groups. Furthermore, the placental transfer efficiency
of PFCAs, PFSAs, and unsaturated perfluorinated alcohols generally showed a positive
U-shaped trend with increasing carbon chain length. With the production and usage of
PFOS substitutes, the effects of emerging PFASs on mothers and infants would gradually
become non-negligible. Previous studies have shown that emerging PFASs account for
a large proportion of PFASs in mothers and infants, suggesting that maternal and fetal
exposure to emerging PFASs should be focused on this in particular. However, few studies
on emerging PFASs in mothers and infants are available so far.

Transporters are also a very important influencing factor, and transporters can bind
to PFASs and have an effect on placental transfer. Notably, the binding of contaminants
to transporters can be observed more visually using molecular docking techniques. In
existing studies, PFOS is usually molecularly docked with HSA to simulate its binding
mode and to obtain the binding energy and binding sites. However, limited information
is available on the binding of emerging PFASs to HSA, and the proteins for docking are
relatively uniform. Future studies are required to investigate the binding energy and
binding sites of emerging PFASs to HSA and transporters during the placental transfer of
emerging PFASs. Meanwhile, the effects of other transporters on placental transfer should
also be considered.

Finally, we summarized the applications of machine learning and found that machine
learning for the prediction of the physicochemical properties of compounds could be time-
saving. Moreover, previous studies commonly used machine learning to predict some
physical properties of PFASs and chemical properties or the structure of PFASs. Although
machine learning could be employed to predict the influencing factors of maternal–fetal
transfer and the efficiency of placental transfer for emerging contaminants, few studies
have been implemented on PFASs so far.

As a result, future studies on the maternal–fetal transfer of emerging PFASs through
the simulation analysis of molecular docking and machine learning would be warranted to
reveal possible mechanisms of placental transfer in order to provide a scientific basis for
the health effects of PFASs on newborns.
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