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Abstract: Removing a drug-like substance that can cause drug-induced liver injury from the drug
discovery process is a significant task for medicinal chemistry. In silico models can facilitate this
process. Semi-correlation is an approach to building in silico models representing the prediction in
the active (1)—inactive (0) format. The so-called system of self-consistent models has been suggested
as an approach for two tasks: (i) building up a model and (ii) estimating its predictive potential.
However, this approach has been tested so far for regression models. Here, the approach is applied
to building up and estimating a categorical hepatotoxicity model using the CORAL software. This
new process yields good results: sensitivity = 0.77, specificity = 0.75, accuracy = 0.76, and Matthew
correlation coefficient = 0.51 (all compounds) and sensitivity = 0.83, specificity = 0.81, accuracy = 0.83
and Matthew correlation coefficient = 0.63 (validation set).

Keywords: drug-induced liver injuries; hepatotoxicity; Monte Carlo method; index of ideality of
correlation (IIC); CORAL software

1. Introduction

The liver is highly susceptible to drug insults: around 5–10% of adverse drug reactions
result in liver injuries [1]. Naturally, this stimulates the search for reliable models to
anticipate and avoid this dangerous toxicity [2]. More than 1100 chemical substances
applied daily have been identified as potentially causing liver injuries [3–5]. The clinical
impact may be vary, provoking oxidative stress, an increase in the level of liver enzymes
(cytochromes P450), and a dangerous impact on metabolism [5–7].

In silico models can help predict adverse effects and plan safer drugs before their
complete development. Of course, these models have limits. This is a general issue since
experimental studies also have limits of different types, such as the time and costs needed
and ethical concerns regarding the use of animals.

“The idea of approximation dominates all exact science” (Bertrand Russell). Quantita-
tive structure–activity relationships (QSARs) are an example of science where approxima-
tion is relevant. QSAR should be considered a surrogate of a real experiment with some
limits. Even though “all models are wrong” [8], “some of them are useful” [9]. Therefore,
the point is to develop “useful models”. This refers to purpose and ambition, and how
far we go with a model. For screening purposes, for instance, models for an initial evalu-
ation are acceptable even if they have greater uncertainty. However, models for the final
evaluation require much less uncertainty.

We aim to develop some simple, fast models for the first evaluation of large collections
of substances. This is suitable for the endpoint we are addressing in the present case:
drug-induced liver injuries (DILI). This relates to many toxicological mechanisms involving
complexity. At the basis of our model, as with QSAR models in general, there are data
collections with experimental values. These data serve to extract the correct information,
but as we said, we must verify that the model is “good”, which is achieved with other
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data not used to build the model. In practice, the original collection of data is split into a
training and a validation set, and avoiding the QSAR model becoming too good depends
on the precise distribution of substances between these sets. The present paper describes a
study on a group of random models to gain a balanced and robust model representative of
multiple conditions. This is achieved with our system of self-consistent models applied
to DILI. This study is pertinent from the methodological and practical points of view, as
the results can be used both to predict DILI and to assess the reliability of the approach
employed to build up the group of models.

2. Materials and Methods

The experimental data (n = 1274) on DILI in the active (denoted by 1) and inactive
formats (denoted by 0) were taken from the literature [1]. The compounds were randomly
distributed into active training (≈25%), passive training (≈25%), calibration (≈25%), and
validation sets (≈25%). Each set has a defined task. The active training set is used to build
the model: molecular features extracted from SMILES of the active training set are used
in Monte Carlo optimization with the CORAL software (http://www.insilico.eu/coral)
(accessed on 24 April 2023) to provide correlation weights (CW) for these features, which
give the largest correlation coefficient between descriptors (the sum of the CW) and the
endpoint of the active training set. The passive training set serves to check whether the
model for the active training set is satisfactory for substances that were not involved in the
active training set. The calibration set should detect the start of overtraining (or overfitting).
At the beginning of the optimization, the correlation coefficients between the experimental
values of the endpoint and the descriptor rise for all sets, but the correlation coefficient for
the calibration set reaches the maximum (this is the start of the overtraining), and further
optimization leads to a decrease in the correlation coefficient for the calibration set. The
optimization should be stopped when overtraining starts.

After stopping the Monte Carlo optimization procedure, the validation set is used to assess
the predictive potential of the model. The present study applied semi-correlations [10–12].
The essence of this approach is the construction of a regression model for a set of compounds
characterized by 1 (if the compound is active) or 0 (if the compound is inactive). Ideally, all
active and inactive ones are above the regression line.

2.1. Optimal SMILES-Based Descriptors

The optimal descriptor forms the basis of the model suggested here. The descriptor is
calculated as follows:

DCW(T , N) = ∑ CW(Sk) + ∑ CW(SSk) + ∑ CW(SSSk) (1)

T is an integer to separate SMILES attributes into rare and non-rare. The non-rare
SMILES are applied to build up the model. The rare SMILES are not used for this. The
selection of a value for T is empirical, according to the results of preliminary probes of
building up the model (usually, it can be 1, 2, or 3). N is the number of epochs of the
correlation weight (CW) optimization. Sk is a SMILES atom, i.e., one symbol of a SMILES
line (e.g., ‘=’, ‘O’) or a group of symbols that cannot be examined separately (e.g., ‘Cu’,
‘%11’). CW(Sk) are the correlation weights of the SMILES attributes. SSk and SSSk are
compositions of, respectively, two and three SMILES atoms. CW(SSk) and CW(SSSk) are
the correlation weights of the SMILES fragments. The CW are obtained through the Monte
Carlo method [10–12].

The optimal SMILES-based descriptor DCW(T,N) is applied for a model to predict
DILI using the equation:

y = C0 + C1 × DCW(T, N) (2)

http://www.insilico.eu/coral
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y defines the category of a compound:

Category(SMILES) =
{

1(active) i f , y ≥ 0.5
0(inactive) i f , y < 0.5

(3)

2.2. Monte Carlo Optimization

Equation (1) needs the numerical data on the CW, and the Monte Carlo optimization
is used to calculate these. Here, two target functions (TF0 and TF1) for the Monte Carlo
optimization are examined:

TF0 = rAT + rPT − |rAT − rPT | × 0.1 (4)

TF1 = TF0 + I ICC × 0.5 (5)

rAT and rPT are correlation coefficients between the observed and predicted endpoints
for the active and passive training sets. IICC is the index of ideality of correlation [13].
Recent computational experiments have shown [13] that considering the IICc-value in the
Monte Carlo optimization may be useful. IICC is calculated with data on the calibration set
as follows:

I ICC = rC
min(−MAEC, + MAEC)

max(−MAEC, + MAEC)
(6)

min(x, y) =
{

x, i f x < y
y, otherwise

(7)

max(x, y) =
{

x, i f x > y
y, otherwise

(8)

−MAEC =
1
−N ∑|∆k|,−N is the number o f ∆k < 0 (9)

+MAEC =
1

+N ∑|∆k|, +N is the number o f ∆k ≥ 0 (10)

∆k = observedk − calculatedk (11)

The corresponding formulae accompany all values; rc is the correlation coefficient
between the observed and calculated values of the endpoint in the calibration set and ‘c’ in-
dicates that it belongs to the calibration set. Observed and calculated are the corresponding
values of y.

2.3. The System of Self-Consistent Models

The system of self-consistent models [14] for five random splits into the training
(visible) and validation (invisible) sets confirms the high quality (predictive potential) of
the models. The training set here is divided into active, passive training, and calibration
sets. Thus, the difference between models reflects the difference in training sets. However,
the key attribute of the system of self-consistent models is the unified method for validating
these models; each ith model has an ith validation set. The validation sets are far from
identical (Table S1, Supplementary Materials). This supports the statistical fact that we
explore multiple conditions, and the results are representative of a set of cases, each
obtained by chance, and their overall results should be evaluated jointly.
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The measure of self-consistency is based on the average and dispersion of the Matthews
correlation coefficient (MCC) in different validation sets. The corresponding computational
experiments are represented by the following matrix: (M1(V1) : V1 → MCCv11) · · · (M 5(V5) : V′1 → MCCv51)

...
...

(M 1(V1) : V′5 → MCCv15) · · · (M5(V5) : V5 → MCCv55)

 (12)

Mi is an ith model, V′ j is the list of compounds employed as the validation set in
the case of the jth split, and MCCvij is the Matthews correlation coefficient for the jth
validation set if applied to the ith model. Figure S1, in the Supplementary Materials, shows
the general scheme of validation of model 1 with validation set 3.

3. Results

We applied different methods using the CORAL software. Some models were de-
veloped with the classical approach, as in Equation (4), while others used a more recent
approach, using Equation (5). Figure 1 shows the pattern of the Monte Carlo optimization
of the correlation coefficient between the experimental and calculated y-values for the
active training, passive training, calibration, and validation sets in the case of the Monte
Carlo optimization without IIC (Figure 1a) or optimized with IIC (Figure 1b).
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Figure 1. The evolution histories of the Matthews correlation coefficients during the Monte Carlo
optimization for the active training set, the passive training set, the calibration set, and the validation
set: (a) the optimization without IIC and (b) the optimization with IIC.

The determination coefficients of the training set increase slowly and continuously.
Nevertheless, the patterns for the values of the other two sets, calibration and validation, are
different, in particular for the validation. In Figure 1a, they peak earlier. As a consequence,
depending on the epoch number, the results vary. The values for the two training sets
(passive and active) are not a good indicator of the results when new substances are
predicted. On increasing the number of epochs, overfitting starts (Figure 1a). It is also clear
that in our conditions, the training set values often differ from those of the other sets, and
depending on the epoch, the highest or lowest values of the training sets appear.

Figure 1b shows the Matthews correlation coefficients for the active training, pas-
sive training, calibration, and validation sets in the case of the optimization with IIC
(Equation (5)). In this case, the training set provides general features that are useful for the
model, and the calibration set optimizes these features. The overall process is successful
since the results for the validation set in Figure 1b are better than those in Figure 1a.
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Table 1 illustrates the acceptable statistical quality of the approach, with the repro-
ducibility of the predictive potential for all variations, expressed as

Mi(Vi) : V′ j → MCCvij, i 6= j (13)

since the average
−

MCCvij = 0.7634 ± 0.0528.

Table 1. The statistical characteristics of the DILI model observed for split 1.

Set Observed Classification Quality Statistical Characteristics

TP TN FP FN N Sensitivity Specificity Accuracy MCC

Active
training 119 99 49 47 314 0.7169 0.6689 0.6983 0.3861

Passive
training 123 101 32 63 319 0.6613 0.7594 0.7022 0.4150

Calibration 160 100 28 31 319 0.8377 0.7813 0.8150 0.6167

Validation 181 86 20 35 322 0.8380 0.8113 0.8292 0.6300

Total 583 386 129 176 1274 0.7681 0.7495 0.7606 0.5116

The comparison of the models described here with the statistical quality of DILI
models from the literature (Table 2) confirms the practical and heuristic potential of the
developed approach.

Table 2. The statistical quality of the DILI models reported in the literature.

N Sensitivity Specificity Accuracy Sensitivity
(Validation Set)

Specificity
(Validation Set) References

- 0.73 0.73 - - - [2]

6853 0.91 0.53 0.79 - - [3]

1550 0.76 0.71–0.92 - - - [4]

1148 - - - 0.68–0.76 0.83–0.99 [4]

1254 0.82 0.75 0.78 - - [5]

83 - - - 0.818 0.748 [5]

1036 0.82–0.90 0.55–0.64 0.71–0.75 - - [6]

1274 0.77 0.75 0.76 - - This work (split 1)

322 - - - 0.838 0.8113 This work (split 1)

4. Discussion

The approach considered here is based on the use of semi-correlations. The latter are
specific kinds of correlations where one variable takes only two values (for example, 0 and
1), expressing the presence (1) or the absence (0) of some modeled activity. The concept of
categorical (binary classification) simulation has been successfully tested for several types
of biological activity [15–21]. The convenience of the practical application of the concept of
semi-correlation lies in the possibility of using SMILES to represent the molecular structure
without requiring additional descriptors. The hidden analogy of semi-correlations with
the usual linear regression helps the perception and interpretation of the resulting models.
The necessary CORAL software is available on the internet (http://www.insilico.eu/coral)
(accessed on 24 April 2023). The models considered here are comparable in their predictive
potential with models obtained through more complex calculations using random forest
procedures, support vector machines, gradient methods, and others [2–6].

http://www.insilico.eu/coral
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Of particular note are actually new principles for testing the predictive potential of
models that can be used for any similar models aimed at developing categorical binary
models of biological activity. Criticism of cross-validation has a long history. The essence of
claims of Q2 is its weak relationship with the predictive ability of models [22]. The ‘naïve’
Q2 [22] is present as a characteristic of the model; however, this criterion has lost confidence.
The first attempt to achieve a plausible test of the predictive potential of the model was to
use an external set of test substances unknown at the time of model development called
the validation set [23]. However, if we assume that the model can be built on an arbitrary
distribution of data in the training and testing sets, then any model being constructed based
on a random split should be considered as some random event described by statistical
criteria (most significant ones, are related to the validation set) [24].

In view of what has been said, the system of self-consistent models looks very attractive
from the point of view of justifying the use of an appropriate approach to constructing
the models. A test of this scheme for the case of ordinary regression models showed
the convenience of using the approach for linear regression models [14,25–29]. Since the
system of self-consistent models implies the consideration of groups of models with the
allocation of average values of statistical parameters, this approach provides more objective
information about the statistical significance of the approach used.

The index of ideality of correlations is an important component of the considered
scheme for constructing self-consistent models. This criterion for the predictive potential of
linear regression models has found a number of applications for the development of various
endpoints related to organic substances [30–34], polymers [26], and nanomaterials [35–40].
The universality and attractiveness of IIC applications are probably due to the fact that this
index contains information on correlation and average absolute error. It should be noted
that the self-consistency methodology of models and the use of IIC are two innovations in
modeling that harmoniously complement each other.

Thus, the predictive potential of corresponding models is similar for all random splits.
However, the model applying the IIC, i.e., the Monte Carlo optimization using the target
function calculated with Equation (5), is better. Table 2 compares models for the DILI
reported in the literature.

The advantage of our model is that it is simple: it does not require the calculation of
molecular descriptors since only the SMILES are used. The results are optimized towards
the prediction of new substances, remaining far from overfitting. Even if this may reduce
the results of the training set, it is a good approach for predicting other substances. The
detection of outliers for models based on semi-correlations is carried out using the values
of statistical defects described in the literature [10].

5. Conclusions

We have introduced some new models for DILI using the CORAL software. The
statistical quality of models developed here confirms (i) the suitability of the index of
ideality of correlation as the criterion for the predictive potential and (ii) the expediency
of the system of self-consistent models as the rational method for the validation of QSAR
models for DILI.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxics11050419/s1, Table S1 contains MCC values for validation
set after removing compounds present in the training set; and Table S2 contains technical details on
split 1. Figure S1 demonstrated the general scheme of checking up of model-1 with validation set-3.
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